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Abstract

We obtain a characterization of the uniform exponential stability for the
continuous-time skew-product three-parameter semiflows in Banach spaces,
using a discrete-time approach. Our technique is based on the classical “test-
function” method of O. Perron and Ta Li.

1 Introduction

The notion of a cocycle over a (semi)flow appears naturally when taking into
account the linearization along an invariant manifold of a dynamical system
generated by an autonomous differential equation in an infinite dimensional
space (see for instance [19] Chapter 4). V. A. Pliss and G. R. Sell [14] proved
that well-known equations like Navier-Stokes, Taylor-Couette, Bubnov-Galerkin,
can be modeled asymptotically by associating a cocycle over a semiflow. Lately,
there has been an increasing interest in the study of the exponential dichotomy of
the exponentially bounded, strongly continuous cocycles over continuous flows
on a locally compact metric space Θ and acting on a Banach space X (see for
instance [7]). The results obtained showed that the cocycle has an exponential
dichotomy if and only if the associated evolution semigroup is hyperbolic and if
and only if the imaginary axis is contained in the resolvent set of the generator
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of the evolution semigroup. Based on the notion of exponential dichotomy, R. J.
Sacker and G. R. Sell (for details we refer the reader to [18]) developed a theory for
linear skew-product flows with compact base flow, the so-called Sacker-Sell theory.
Thus, it was proved that by associating to a linear nonautonomous differential
equation an exponentially bounded, strongly continuous cocycle, its asymptotic
behavior (such as exponential stability) is closely related to that of the equation
under consideration.
Other important results in this direction have been obtained by Y. Latushkin,
S. Montgomery-Smith and T. Randolph [6], Y. Latushkin, A.M. Stepin [8],
V.A. Pliss, G.R. Sell [13], C. Chicone, Y. Latushkin [1].
The more general concept of (non)linear skew-product three-parameter semi-
flows, also known as (evolution) cocycles has become popular recently.
M. Rasmussen (see for instance [17]) obtained relationships between the concepts
of exponential dichotomy, dichotomy spectra and Morse decompositions for a
linear cocycle Φ : I × I × X → X, where I denotes a real interval of the form
(−∞, 0], [0, ∞) or R, respectively and (X, d) represents a metric space.
In our case, the natural question that appeared was whether the ”input-output”
techniques introduced by O. Perron [12] and developed later by Ta Li [21] for
discrete-time systems could be extended for this case. Therefore, in order to
obtain a condition for the uniform exponential stability of the (non)linear skew-
product three-parameter semiflows we will use the admissibility of a well-known
pair of spaces (lp(X), lq(X)), where (p, q) 6= (1, ∞), 1 ≤ p ≤ q ≤ ∞ and X is
a Banach space. This means that a (non)linear skew-product three-parameter
semiflow acting on X is uniformly exponentially stable if and only if for any
“input” f from lp(X), the corresponding ”output” x f belongs to lq(X), where
1
p +

1
q is not necessarily equal to 1. It is worth mentioning that the techniques used

in the present paper do not require any continuity condition on the (non)linear
skew-product three-parameter semiflow. Also, we must note that we obtain char-
acterizations for the continuous-time (non)linear skew-product three-parameter
semiflows using a discrete-time approach.
Other extensions of Perron’s results for the infinite-dimensional Banach spaces
were obtained by J. L. Daleckij, M. G. Krein [2], J. L. Massera, J.J Schäffer [9], [10]
and N. van Minh, F. Räbiger, R. Schnaubelt [11].
Some other results concerning the property of stability for the (non)linear skew-
product three-parameter semiflows in the framework of infinite-dimensional
Banach spaces were also obtained by C. Stoica, M. Megan [20], C. Preda, P. Preda,
A. P. Petre [16] and P. V. Hai [3], [4].

2 Preliminary results

Let us consider (Θ, d) a metric space, X a Banach space, B(X) the space of all
bounded operators acting on X and ∆ = {(t, t0) ∈ R

2 : t ≥ t0 ≥ 0}. We denote
the norm of vectors on X and operators on B(X) by || · ||.
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Definition 2.1. A three-parameter (non)linear semiflow σ : Θ×∆ → Θ is defined
by the properties:

i) σ(θ, t, t) = θ for all t ≥ 0 and all θ ∈ Θ

ii) σ(σ(θ, s, t0), t, s) = σ(θ, t, t0) for all t ≥ s ≥ t0 ≥ 0 and all θ ∈ Θ.

If in addition (θ, t, t0) 7→ σ(θ, t, t0) is continuous, then σ is called a continuous
three-parameter (non)linear semiflow on Θ.

Definition 2.2. The pair π = (Φ, σ) is said to be a (non)linear skew-product three-
parameter semiflow on X if Φ : Θ × ∆ → B(X) satisfies the following properties:

i) Φ(θ, t, t) = I for all t ≥ 0 and all θ ∈ Θ, where I represents the identity
operator on X;

ii) Φ(σ(θ, s, t0), t, s)Φ(θ, s, t0) = Φ(θ, t, t0), for all t ≥ s ≥ t0 ≥ 0 and all
θ ∈ Θ.

iii) the maps (θ, t, t0) 7→ Φ(θ, t, t0)x are continuous on Θ × ∆ for each x ∈ X;

iv) there exist M, ω ∈ R, M ≥ 1 such that ||Φ(θ, t, t0)|| ≤ Meω(t−t0), for all
t ≥ t0 ≥ 0 and θ ∈ Θ.

The following example illustrates the fact that by linearization, the nonlinear
and non-autonomous equations become variational (three-parameter) equations
around an invariant manifold.

Example 2.3. Consider the Cauchy problem

{

ẏ = F(t, y)
y(t0) = y0

(1)

where F is taken so that the problem (1) has a unique solution and F(t, ·) is Fréchet
differentiable. Let us denote by ϕ(y0, t, t0) the solution of the problem (1) and
assume that there exists M ⊂ X × ∆ such that ϕ(y0, t, t0) ∈ M for all (y0, t, t0) ∈
M. Then ϕ(ϕ(y0, s, t0), t, s) = ϕ(y0, t, t0). Now take y = x + ϕ, and we obtain that

ẋ + ϕ̇ = F(t, ϕ + x) = F(t, ϕ) + dϕ(t)F(t, ·)(x) + ||x||ω(t, x + ϕ).

Hence ẋ = A(ϕ(t))x + G(t, x), where G(t, 0) = 0 and d0G(t, ·) = 0. Taking
ϕ = σ, where σ represents a (non) linear three-parameter semiflow, it follows
that ẋ = A(σ(θ, t, t0))x + G(t, x). Therefore, the variational (three-parameter)
equations come from nonlinear non-autonomous equations around an invariant
manifold M.

Example 2.4. Let σ be a continuous three-parameter (non)linear semiflow on Θ,
A : Θ → B(X) a continuous map and f a locally integrable function on X. It is
easy to see that the solution of the homogeneous Cauchy problem

{

ẋ(t) = A(σ(θ, t, t0))x(t), t ≥ t0 ≥ 0
x(t0) = x0
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satisfies the integral equation

x(t) = x0 +
∫ t

t0

A(σ(θ, τ, t0))x(τ)dτ (2)

and that the solution of the inhomogeneous Cauchy problem:
{

ẋ(t) = A(σ(θ, t, t0))x(t) + f (t), t ≥ t0 ≥ 0
x(t0) = x0

satisfies the integral equation

x(t) = Φ(θ, t, t0)x0 +
∫ t

t0

A(σ(θ, τ, t0))x(τ)dτ +
∫ t

t0

f (τ)dτ (3)

due to the fact that, in both cases, the solution of the variational Cauchy problem
is an absolutely continuous function.

Example 2.5. With a similar argument as in the proof of the existence and unique-
ness theorems for the non-autonomous systems (see for example [2, 10]), one can
show that the solution of the variational homogeneous equation (1) is x(t) =
Φ(θ, t, t0)x0, where π = (Φ, σ) is a (non)linear skew-product three-parameter
semiflow, and that (2) has the solution

x(t) = Φ(θ, t, t0)x0 +
∫ t

t0

Φ(σ(θ, τ, t0), t, τ) f (τ)dτ.

Definition 2.6. A family of linear and bounded operators {U(t, t0)}t≥t0≥0 is said
to be a two-parameter evolution family if it satisfies the following conditions:

i) U(t, t) = I, for all t ≥ 0;

ii) U(t, s)U(s, t0) = U(t, t0), for all t ≥ s ≥ t0 ≥ 0;

iii) U(·, t0)x is continuous on [t0, ∞), for all t0 ≥ 0, x ∈ X; U(t, ·)x is contin-
uous on [0, t], for all t ≥ 0, x ∈ X;

iv) there exist M ≥ 1 and ω ∈ R such that ||U(t, t0)|| ≤ Meω(t−t0) for all
t ≥ t0 ≥ 0.

Example 2.7. If {U(t, t0)}t≥t0≥0 is a two-parameter evolution family on X and σ
is a (non)linear three-parameter semiflow on Θ, then π = (Φ, σ) is a (non)linear
skew-product three-parameter semiflow, where Φ(θ, t, t0) = U(t, t0). Thus we
can consider that evolution families are particular cases of (non)linear skew-pro-
duct three-parameter semiflows.
Conversely, considering Θ = R+, σ : R+ × ∆ → R+, σ(θ, t, t0) = θ, and
π = (Φ, σ) a (non)linear skew-product three-parameter semiflow on X, we have
that {U(t, t0)}t≥t0≥0, U(t, t0) = Φ(0, t, t0) is an evolution family on X.

Example 2.8. Let Θ = R+ and let σ : Θ × ∆ → Θ, σ(θ, t, t0) = θ + t − t0. If
{U(t, t0)}t≥t0≥0 is a two-parameter evolution family on X, then π = (Φ, σ) is a
(non)linear skew-product three-parameter semiflow, where

Φ(θ, t, t0) = U(θ + t − t0, θ).
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Definition 2.9. Let π = (Φ, σ) be a (non)linear skew-product three-parameter
semiflow.
π = (Φ, σ) is uniformly exponentially stable if there exist N ≥ 1 and ν > 0 such that

||Φ(θ, t, t0)x|| ≤ Ne−ν(t−t0)||x||, for all x ∈ X, t ≥ t0 ≥ 0 and θ ∈ Θ.
π = (Φ, σ) is uniformly stable if there exists N > 0 such that ||Φ(θ, t, t0)x|| ≤
N||x||, for all x ∈ X, t ≥ t0 ≥ 0 and θ ∈ Θ.

3 Main result

Throughout this paper (Θ, d) is a metric space and X is a Banach space. Also, we
denote by σ a three-parameter (non)linear semiflow on Θ and Φ satisfying the
conditions from Definition 1.2.

l∞(X) = { f : N → X : sup
n∈N

|| f (n)|| < ∞}) and

lp(X) = { f : N → X |
∞

∑
n=0

|| f (n)||p < ∞} (p ∈ [1, ∞))

are Banach spaces endowed with norms

|| f ||∞ = sup
n∈N

|| f (n)|| and || f ||p =
( ∞

∑
n=0

|| f (n)||p
)

1
p
.

For f ∈ lp(X) we consider the map

x̃ f : Θ × N → lq(X), x̃ f (θ, n0) = x f (θ, ·, n0),

where

x f (θ, n, n0) =
n

∑
k=n0

Φ(σ(θ, k, n0), n, k) f (k),

for all θ ∈ Θ, and n, n0 ∈ N, n ≥ n0 ≥ 0.

Definition 3.1. For p, q ∈ [1, ∞], the pair (lp(X), lq(X)) is admissible to π = (Φ, σ)
if for all f ∈ lp(X), the map x̃ f ∈ Cb(Θ × N, lq(X)), the set of all bounded func-
tions on Θ × N.

Theorem 3.2 is essential in the proof of our main result, Theorem 3.5

Theorem 3.2. Let π = (Φ, σ) be a (non)linear skew-product three-parameter semiflow.
If the pair (lp(X), lq(X)) is admissible to π = (Φ, σ), then there exists L > 0 such that

||x̃ f (θ, n0)||q ≤ L|| f ||p , for all f ∈ lp(X) and (θ, n0) ∈ Θ × N.

Proof. Define
U : lp(X) → Cb(Θ × N, lq(X)), U f = x̃ f ,

where x̃ f is defined as above. We note that U is a linear operator. In order to show
that U is also closed, we consider ( fm)m∈N ∈ lp(X), f ∈ lp(X) such that:



372 C. Preda – A.-P. Popiţiu

|| fm − f ||p → 0, for m → ∞

which leads to

fm(k) → f (k) for m → ∞ and for all k ∈ N

and take U fm → g for m → ∞ in Cb(Θ × N, lq(X)). Thus

||x fm
(θ, n, n0)− x f (θ, n, n0)|| ≤

n

∑
k=n0

||Φ(σ(θ, k, n0), n, k)|| || fm(k)− f (k)|| → 0

for m → ∞ which implies that U f = g, therefore U is also bounded, which means
that there exists L > 0 such that

||x̃ f (θ, n0)||q ≤ L|| f ||p , for all f ∈ lp(X) and (θ, n0) ∈ Θ × N.

Remark 3.3. Let π = (Φ, σ) be a (non)linear skew-product three-parameter semi-
flow. If the pair (lp(X), lq(X)) is admissible to π = (Φ, σ), then there exists a
constant L > 0 such that

||x f (θ, k, n0)|| ≤ L|| f ||p , for all f ∈ lp(X), k ∈ N and (θ, n0) ∈ Θ × N.

Another crucial tool in the proof of Theorem 3.5 is Lemma 3.4, which is inspired
by [9, Lemma 5.3, p. 539].

Lemma 3.4. [15] If g : {(t, s) ∈ R
2 : t ≥ s ≥ 0} → R+ satisfies the conditions

i) g(t, s) ≤ g(t, τ)g(τ, s) for all t ≥ τ ≥ s ≥ 0;

ii) sup0≤t0≤t≤t0+1 g(t, t0) < ∞;

iii) there exists h : N → R+ with limn→∞ h(n) = 0 such that:

g(m + n0, n0) ≤ h(m), m, n0 ∈ N

then there exist N, ν > 0 such that: g(t, t0) ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0.

Theorem 3.5. Let π = (Φ, σ) be a (non)linear skew-product three-parameter semiflow.
π = (Φ, σ) is uniformly exponentially stable if and only if there exist p, q ∈ [1, ∞], with
(p, q) 6= (1, ∞) such that the pair (lp(X), lq(X)) is admissible to π = (Φ, σ).

Proof. In order to prove the necessity, we used as a source of inspiration the work
P. Hartman [5]. Let f ∈ lp(X) and x̃ f : Θ × N → lq(X) be the application defined
above. If p = 1, then

||x f (θ, n, n0)|| ≤
n

∑
k=n0

||Φ(σ(θ, k, n0), n, k)|| || f (k)||

≤ N
n

∑
k=n0

e−ν(n−k)|| f (k)|| = N
n−n0

∑
i=0

e−νi|| f (n − i)||,
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for all θ ∈ Θ, and n, n0 ∈ N, n ≥ n0 ≥ 0. Applying Fubini’s Theorem, we obtain
that:

∞

∑
n=n0

||x f (θ, n, n0)|| ≤ N
∞

∑
n=n0

(n−n0

∑
i=0

e−νi|| f (n − i)||
)

≤ N
∞

∑
i=0

( ∞

∑
n=n0

e−νi|| f (n − i)||
)

= N
∞

∑
i=0

e−νi
( ∞

∑
n=n0

|| f (n − i)||
)

≤
N

1 − e−ν
|| f ||1 < ∞ (4)

It follows from (4) that x f (θ, ·, n0) ∈ l1(X). It is obvious that x f (θ, ·, n0) ∈ l∞(X),

and therefore x f (θ, ·, n0) ∈ l1(X) ∩ l∞(X), hence x f (θ, ·, n0) ∈ lq(X), for all
q ∈ [1, ∞]. Now let 1 < p < q < ∞, and take α, β such that α + β = 1.
Applying Hölder’s inequality, we find that

∞

∑
n=n0

(n−n0

∑
i=0

e−νi|| f (n − i)||
)q

=
∞

∑
n=n0

(n−n0

∑
i=0

e−ναi|| f (n − i)||
p
q e−νβi|| f (n − i)||

1−
p
q

)q

≤
∞

∑
n=n0

[(n−n0

∑
i=0

e−ναqi|| f (n − i)||p
)

1
q

·
(n−n0

∑
i=0

e
−νβ

q
q−1 i

|| f (n − i)||
q−p

q ·
q

q−1

)

q−1
q
]q

=
∞

∑
n=n0

[(n−n0

∑
i=0

e−ναqi|| f (n − i)||p
)

·
(n−n0

∑
i=0

e
−νβ

q
q−1 i

|| f (n − i)||
q−p
q−1

)q−1]

. (5)

Let x = p(q−1)
q−p , and x′ = p(q−1)

q(p−1)
. Then 1

x + 1
x′ = 1. Applying Hölder’s Inequality

using x and x′ to the second sum in (5), we obtain that

∞

∑
n=n0

(n−n0

∑
i=0

e−νi|| f (n − i)||
)q

≤
∞

∑
n=n0

[(n−n0

∑
i=0

e−ναqi|| f (n − i)||p
)

·
(n−n0

∑
i=0

e
−νβ

q
q−1 ix′

)

q−1

x′

·
(n−n0

∑
i=0

|| f (n − i)||
q−p
q−1 x

)

q−1
x
]

=
∞

∑
n=n0

[(n−n0

∑
i=0

e−ναqi|| f (n − i)||p
)

·
(n−n0

∑
i=0

e
−νβ

p
p−1 i

)

q(p−1)
p

·
(n−n0

∑
i=0

|| f (n − i)||p
)

q−p
p
]

.
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Now

(n−n0

∑
i=0

e
−νβ

p
p−1 i

)

q(p−1)
p

≤
( ∞

∑
i=0

e
−νβ

p
p−1 i

)

q(p−1)
p

=
( 1

1 − e
−νβ

p
p−1

)

q(p−1)
p

,

and

(n−n0

∑
i=0

|| f (n − i)||p
)

q−p
p

=
( n0

∑
s=n

|| f (s)||p
)

q−p
p

≤
( ∞

∑
s=0

|| f (s)||p
)

q−p
p

= || f ||
q−p
p ,

hence

∞

∑
n=n0

(n−n0

∑
i=0

e−νi|| f (n − i)||
)q

≤
∞

∑
n=n0

[(n−n0

∑
i=0

e−ναqi|| f (n − i)||p
)

·
( 1

1 − e
−νβ

p
p−1

)

q(p−1)
p

· || f ||
q−p
p

]

=
( 1

1 − e
−νβ

p
p−1

)

q(p−1)
p

· || f ||
q−p
p

∞

∑
n=n0

(n−n0

∑
i=0

e−ναqi|| f (n − i)||p
)

.

It follows from Fubini’s Theorem that

∞

∑
n=n0

(n−n0

∑
i=0

e−νi|| f (n − i)||
)q

≤
( 1

1 − e
−νβ

p
p−1

)

q(p−1)
p

· || f ||
q−p
p

∞

∑
n=n0

(n−n0

∑
i=0

e−ναqi|| f (n − i)||p
)

≤
( 1

1 − e
−νβ

p
p−1

)

q(p−1)
p

· || f ||
q−p
p

∞

∑
i=0

( ∞

∑
n=n0

e−ναqi|| f (n − i)||p
)

=
( 1

1 − e
−νβ

p
p−1

)

q(p−1)
p

· || f ||
q−p
p

∞

∑
i=0

e−ναqi
( ∞

∑
n=n0

|| f (n − i)||p
)

≤
( 1

1 − e
−νβ

p
p−1

)

q(p−1)
p

· || f ||
q−p
p ·

1

1 − e−ναq

∞

∑
u=0

|| f (u)||p ,

and it follows that x f (θ, ·, n0) ∈ lq(X).
Now let p = q, and take α, β such that α + β = 1. Then

∞

∑
n=n0

(n−n0

∑
i=0

e−νi|| f (n − i)||
)p

=
∞

∑
n=n0

(n−n0

∑
i=0

e−ναi|| f (n − i)||e−νβi
)p

.
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Applying successively Hölder’s inequality and Fubini’s Theorem, we obtain that

∞

∑
n=n0

(n−n0

∑
i=0

e−νi|| f (n − i)||
)p

≤
∞

∑
n=n0

[(n−n0

∑
i=0

e−νpαi|| f (n − i)||p
)

1
p
·
(n−n0

∑
i=0

e
−νβ

p
p−1 i

)

p−1
p
]p

≤
( 1

1 − e
−νβ

p
p−1

)p−1
·

∞

∑
n=n0

(n−n0

∑
i=0

e−νpαi|| f (n − i)||p
)

=
( 1

1 − e
−νβ

p
p−1

)p−1
·

∞

∑
i=0

( ∞

∑
n=n0

e−νpαi|| f (n − i)||p
)

=
( 1

1 − e
−νβ

p
p−1

)p−1
·

∞

∑
i=0

e−νpαi
( ∞

∑
n=n0

|| f (n − i)||p
)

=
( 1

1 − e
−νβ

p
p−1

)p−1
·

1

1 − e−ναp ·
( ∞

∑
n=n0

|| f (n − i)||p
)

≤
( 1

1 − e
−νβ

p
p−1

)p−1
·

1

1 − e−ναp · || f ||
p
p.

It follows that

∞

∑
n=n0

(n−n0

∑
i=0

e−νi|| f (n − i)||
)p

≤
( 1

1 − e
−νβ

p
p−1

)p−1
·

1

1 − e−ναp · || f ||
p
p < ∞,

and x f (θ, ·, n0) ∈ lp(X).

In order to prove the sufficiency, consider n0 ≥ 0, θ ∈ Θ, x ∈ X and take

f (n) = χ{n0}(n)Φ(θ, n, n0)x.

Here χA is the characteristic function of the set A. Then f ∈ lp(X), || f ||p = ||x||
and

x f (θ, n, n0) =
n

∑
k=n0

Φ(σ(θ, k, n0), n, k) f (k) = Φ(θ, n, n0)x,

f or all n ≥ n0 and θ ∈ Θ. From Theorem 3.2 we obtain that

||Φ(θ, n, n0)x|| ≤ L||x||, (6)

for all n ≥ n0 ≥ 0, θ ∈ Θ and x ∈ X. Now let m > 1, θ ∈ Θ and x ∈ X and take

gm(n) = χ{n0,··· ,n0+m}(n)Φ(θ, n, n0)x.

It follows from (6) that ||gm(n)|| ≤ L χ{n0,··· ,n0+m}(n)||x||, for all n ≥ n0. We
conclude that

gm ∈ lp(X) and ||gm||p ≤ L am||x||,
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where

am =

{

(m + 1)
1
p if p ∈ [1, ∞)

1 if p = ∞

Therefore

xgm(θ, n, n0) =
n

∑
k=n0

Φ(σ(θ, k, n0), n, k)gm(k)

=

{

(m + 1)Φ(θ, n, n0)x if n ≥ n0 + m

(n − n0 + 1)Φ(θ, n, n0)x if n0 ≤ n < n0 + m

Let n = n0 + m and p > 1. It follows from Theorem 3.2 that

||Φ(θ, n0 + m, n0)x|| ≤ L2 am

m + 1
||x||.

Since limm→∞
am

m+1 = 0, it follows from Lemma 3.4 that there exist N, ν > 0 such

that ||Φ(θ, t, t0)x|| ≤ Ne−ν(t−t0)||x|| for all t ≥ t0 ≥ 0, θ ∈ Θ and x ∈ X.
If p = 1, then it follows from Theorem 3.2 and Hölder’s Inequality that

m(m + 1)

2
||Φ(θ, n0 + m, n0)x|| =

n0+m

∑
k=n0

(k − n0 + 1)||Φ(θ, n0 + m, n0)x||

≤ L
n0+m

∑
k=n0

(k − n0 + 1)||Φ(θ, k, n0)x|| = L
n0+m

∑
k=n0

||xgm(θ, k, n0)||

≤ L(m + 1)
1− 1

q ||x̃gm(θ, n0)||q ≤ L3(m + 1)
2− 1

q ||x||,

which implies that

||Φ(θ, n0 + m, n0)x|| ≤ 2L3 bm

m
||x||,

for all m, n0 ∈ N, where

bm =

{

(m + 1)
1− 1

q if q ∈ [1, ∞)

m + 1 if q = ∞

In order to apply Lemma 3.4 one more time we note that

Φ(θ, [t] + 2, t0) = Φ(σ(θ, τ, t0), [t] + 2, τ) Φ(θ, τ, t0),

for all t ∈ [t0, t0 + 1], and therefore

sup
0≤t0≤t≤t0+1

||Φ(θ, [t] + 2, t0)x|| ≤ M2e3ω||x||,

for all x ∈ X and θ ∈ Θ. Thus, there exist N, ν > 0 such that ||Φ(θ, t, t0)x|| ≤
Ne−ν(t−t0)||x||, for all t ≥ t0 ≥ 0, θ ∈ Θ and x ∈ X.
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Remark 3.6. Let π = (Φ, σ) be a (non)linear skew-product three-parameter semi-
flow. In general, if p, q ∈ [1, ∞] with p > q and π = (Φ, σ) is uniformly expo-
nentially stable, then the pair (lp(X), lq(X)) is not admissible to π = (Φ, σ), as it
can be seen in Example 3.7, illustrating the fact that the hypothesis that p ≤ q is
essential throughout our paper.

Example 3.7. Take X = R, let π = (Φ, σ) be a (non)linear skew-product three-

parameter semiflow, where Φ(θ, t, t0) = e−(t−t0), and let σ be a three-parameter
semiflow. Then the pair (l2(X), l1(X)) is not admissible to π = (Φ, σ).
In order to prove this, take f ∈ l2(X), f (n) = 1

n+1 . Then

x f (θ, n, n0) =
n

∑
k=n0

e−(n−k) 1

k + 1
= e−n

n

∑
k=n0

ek 1

n + 1
≥ e−n en

n + 1
=

1

n + 1
,

and
∞

∑
n=0

x f (θ, n, n0) ≥
∞

∑
n=0

1

n + 1
,

which implies that (∑n≥0 x f (θ, n, n0)) is divergent and therefore x f 6∈ l1(X).

Theorem 3.8. Let π = (Φ, σ) be a (non)linear skew-product three-parameter semiflow.
π = (Φ, σ) is uniformly stable if and only if the pair (l1(X), l∞(X)) is admissible to
π = (Φ, σ).

Proof. The necessity is immediate and for the sufficiency part, let us consider
n0 ≥ 0, θ ∈ Θ, x ∈ X and take

f (n) = χ{n0}(n)Φ(θ, n, n0)x.

Then f ∈ l1(X), || f ||1 = ||x|| and

x f (θ, n, n0) =
n

∑
k=n0

Φ(σ(θ, k, n0), n, k) f (k) = Φ(θ, n, n0)x.

From Theorem 3.2 we obtain that

||Φ(θ, n, n0)x|| ≤ L||x||, for all n ≥ n0 ≥ 0, θ ∈ Θ, x ∈ X,

which implies that there exist N = L > 0 such that

||Φ(θ, n, n0)x|| ≤ N||x||, for all n ≥ n0 ≥ 0, θ ∈ Θ, x ∈ X,

and thus π = (Φ, σ) is uniformly stable.
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