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Abstract

Study of the quotient module of a finite-dimensional Hopf subalgebra
pair in order to compute its depth yields a relative Maschke Theorem, in
which semisimple extension is characterized as being separable, and is there-
fore an ordinary Frobenius extension. We study the core Hopf ideal of a Hopf
subalgebra, noting that the length of the annihilator chain of tensor powers
of the quotient module is linearly related to the depth, if the Hopf algebra
is semisimple. A tensor categorical definition of depth is introduced, and a
summary from this new point of view of previous results are included. It
is shown in a last section that the depth, Bratteli diagram and relative cyclic
homology of algebra extensions are Morita invariants.

1 Introduction and Preliminaries

Sometimes it is useful to classify numbers with the same prime factors together.
Similarly, it is useful to classify together finite-dimensional modules over a finite-
dimensional algebra with isomorphic indecomposable summands - two such
modules, which have the same indecomposables but perhaps with different
nonzero multiplicities, are said to be similar. Since an abelian category has
direct sum ⊕ that work as usual, similarity of two objects X, Y, denoted by X ∼ Y,
is defined by X ⊕∗ ∼= n ·Y, i.e., “X divides a multiple of Y,” and Y ⊕∗ ∼= m · X (or
briefly Y | m ·X) for some multiplicities m, n ∈ N . In the presence of a uniqueness
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theorem for indecomposables that includes X, Y, they share isomorphic indecom-
posable summands. Also, the endomorphism rings of X and Y are Morita equiva-
lent in a particularly transparent way [1, 20]. For example, one may introduce the
theory of basic algebras without complications using the regular representation
and a similar direct sum of projective indecomposables with constant multiplicity
one.

A special type of abelian category is a tensor category, which has a tensor
product ⊗ satisfying the usual distributive, associative and unital laws up to nat-
ural isomorphism. An algebra A may then be defined in terms of multiplication
A ⊗ A → A as usual. Define the minimum depth of A to be the least 2n + 1 =

1, 3, 5, . . . such that A⊗(n) = A ⊗ · · · ⊗ A (n times A) is similar to A⊗(n+1), which
simplifies to A⊗(n+1) | q · A⊗(n) for some q ∈ N , since A⊗(n) | A⊗(n+1) follows
from applying the multiplication and unit. This definition applied to an algebra
A in the category of bimodules over a ring B with tensor ⊗ = ⊗B, recovers the
minimum odd depth of the ring extension B → A [2], where it is applied to fi-
nite group algebra extensions to recover (together with minimum even depth)
subgroup depth [7]. Interesting values of subgroup depth have been computed
in [7, 2, 11, 13, 14, 18], where subgroup depth less than 3 are normal subgroups
[3, 4, 25, 28, 26]. Several properties of subgroup depth extend to Hopf subalgebra
(and left coideal subalgebra) pairs such as a characterization of normality [3] and
unchanged minimum even depth when factoring out the subgroup core [2, 16].

The main problem in the area is the one formulated in [2, p. 259] for a finite-
dimensional Hopf subalgebra pair R ⊆ H, where d(R, H) denotes the minimum
depth.

Problem 1.1. Is d(R, H) < ∞?

There are examples in subfactor theory by Haagerup of infinite depth, al-
though not answering the problem. We bring up three other equivalent problems
below.

In the opposite tensor category, algebra becomes a notion of coalgebra with
the same definition of depth. In the tensor category of bimodules over B, a coal-
gebra in this sense is a B-coring. Applying the definition of depth to the Sweedler
coring of a ring extension, one recovers the minimum h-depth of the ring exten-
sion as defined in [29]. The minimum h-depth of a Hopf subalgebra pair R ⊆ H
is shown in [31] to be precisely determined by the depth of their quotient mod-
ule QH = H/R+H in the finite tensor category of finite-dimensional H-modules
[12]. In turn the depth of Q is determined precisely by the length of the descend-
ing chain of annihilator ideals of the tensor powers of Q, if the Hopf algebra is
semisimple, as proven in Theorem 3.14. The quotient module Q has many uses,
including the following equivalent reformulation of the problem above, either
as an H- or R-module isoclass in the respective representation ring (see [31] or
Section 3, the notion below is algebraic element in a ring).

Problem 1.2. Is Q an algebraic module?

For example, a finite group algebra extension has quotient module Q equal
to a permutation module, which is algebraic [13, Ch. 9]. The question in general
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is only interesting for the projective-free summands of Q, since projectives form
a finite rank ideal in the representation ring [15]. If either R or H has finite rep-
resentation type (e.g., is semisimple, Nakayama serial), Q is similarly algebraic.
Example 4.6 computes a finite depth where both Hopf algebras are of infinite
representation type.

In Section 4, we study depth of a non-normal subalgebra in a factorisable Hopf
algebra in terms of entwined subalgebras such as a matched pair of Hopf alge-
bras. In Section 3, we prove a relative Maschke theorem characterizing semisim-
ple extension of finite-dimensional Hopf algebras as a separable extension; as a
corollary, these are ordinary (or untwisted) Frobenius extensions. We also
define and study the core Hopf ideal of a Hopf subalgebra, which extends to Hopf
algebras the usual notion of core of a subgroup pair of finite groups. We note that
the length of the annihilator chain of tensor powers of the quotient module is lin-
early related to the depth if the Hopf algebra is semisimple, improving on some
results in [15]. In Section 5, we make a categorical study of a Morita equiva-
lence of noncommutative ring extensions. We show that depth and relative cyclic
homology of a ring extension are Morita invariants, as is the inclusion matrix of
a semisimple complex algebra extension.

1.1 Similar modules

Let A be a ring. Two left A-modules, AN and AM, are said to be similar ([1], or
H-equivalent [20]) denoted by AM ∼ AN if two conditions are met. First, for
some positive integer r, N is isomorphic to a direct summand in the direct sum
of r copies of M, denoted by AN ⊕ ∗ ∼= r · AM ⇔

N | r · M ⇔ ∃ fi ∈ Hom (AM, AN), gi ∈ Hom (AN, AM) :
r

∑
i=1

fi ◦ gi = idN (1)

Second, symmetrically there is s ∈ Z + such that M | s · N. (Say that M and N are
dissimilar if neither condition M | s · N or N | r · M holds.) It is easy to extend this
definition of similarity to similarity of two objects in an abelian category, and to
show that it is an equivalence relation.

Example 1.3. Suppose A is an artinian ring, with indecomposable A-modules
{Pα|α ∈ I} (representatives from each isomorphism class for some index set I).
By Krull-Schmidt finitely generated modules MA and NA have a unique factor-
ization into a direct sum of multiples of finitely many indecomposable module
components. Denote the indecomposable constituents of MA by Indec (M) =
{Pα | [Pα, M] 6= 0} where [Pα, M] is the number of factors in M isomorphic to Pα.
Note that M | q · N for some positive q if and only if Indec (M) ⊆ Indec (N). It
follows that M ∼ N iff Indec (M) = Indec (N).

Suppose AA = n1P1 ⊕ · · · ⊕ nrPr is the decomposition of the regular module
into its projective indecomposables. Let PA = P1 ⊕ · · · ⊕ Pr. Then PA and AA are
similar (and call P the basic A-module in the similarity class of A). Then A and
End PA are Morita equivalent. The algebra End PA is of course the basic algebra
of A.
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Suppose A is a semisimple ring. Then Pi = Si are simple modules. Note
that the annihilator ideal Ann Si is a maximal ideal in A; denote it by Ii. Note
that Ann (ni · Si) = Ii, Ann (ni · Si ⊕ nj · Sj) = Ii ∩ Ij, and any ideal I is uniquely
Ann (Si1 ⊕ · · · ⊕ Sis

) for the 2r integer subsets, 1 ≤ i1 < · · · < is ≤ r.

Proposition 1.4. If two modules are similar, then their annihilator ideals are equal. Con-
versely, if A is a semisimple ring, two finitely generated modules with equal annihilator
ideals are similar.

Proof. Given modules M and N, if M →֒ N, then Ann N ⊆ Ann M. It follows
that M | r · N implies that Ann N ⊆ Ann M. Hence, M ∼ N ⇒ Ann M = Ann N.

Suppose A is a semisimple ring; we use the notation in the example. If M and
N are finitely generated A-modules such that Ann M = Ann N is the ideal I in
A, then I = Ii1 ∩ · · · ∩ Iis

for some integers 1 ≤ i1 < · · · < is ≤ r. It follows
that Si1 ⊕ · · · ⊕ Sis

is the basic module in the similarity class of both M and N; in
particular, M ∼ N.

Example 1.5. Suppose R is an artinian ring that is not semisimple and with two
additional indecomposable modules I1, I2 that are not projective and not isomor-
phic. Then the modules M = R ⊕ I1 and N = R ⊕ I2 are both faithful generators,
but dissimilar by Krull-Schmidt. This contradicts the converse of the proposi-
tion for more general rings. (Without dissimilarity, one additional nonprojective
indecomposable would suffice.)

1.2 Subring depth

Throughout this section, let A be a unital associative ring and B ⊆ A a subring
where 1B = 1A; more generally, it suffices to assume B → A is a unital ring
homomorphism, called a ring extension, although we suppress this option nota-
tionally. Note the natural bimodules B AB obtained by restriction of the natural
A-A-bimodule (briefly A-bimodule) A, also to the natural bimodules B AA, A AB

or B AB, which are referred to with no further ado. Let A⊗B(n) denote A ⊗B · · · ⊗B

A (n times A, n ∈ N ), where A⊗B0 = B. For n ≥ 1, the A⊗B(n) has a natural
A-bimodule structure which restricts to B-A-, A-B- and B-bimodule structures
occurring in the next definition. Note that A⊗B(n) | A⊗B(n+1) automatically occurs
in any case for n ≥ 2, since A → A ⊗B A given by a 7→ a ⊗B 1 is a split monomor-
phism. For n = 1 and A-bimodules, this is the separability condition on A ⊇ B;
otherwise, A | A ⊗B A as A-B- or B-A-bimodules (via the split epi a ⊗B a′ 7→ aa′).

Definition 1.6. The subring B ⊆ A has depth 2n + 1 ≥ 1 if as B-bimodules

A⊗B(n) ∼ A⊗B(n+1). The subring B ⊆ A has left (respectively, right) depth 2n ≥ 2

if A⊗B(n) ∼ A⊗B(n+1) as B-A-bimodules (respectively, A-B-bimodules). Equiva-
lently, A ⊇ B has depth 2n + 1 ≥ 1, or left depth 2n ≥ 2, if

A⊗B(n+1) ⊕ ∗ ∼= q · A⊗B(n) (2)

as B-B-bimodules, or B-A-bimodules, respectively. Right depth 2n is defined sim-
ilarly in terms of A-B-bimodules.
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It is clear that if B ⊆ A has either left or right depth 2n, it has depth 2n + 1 by
restricting the similarity condition to B-bimodules. If B ⊆ A has depth 2n + 1, it
has depth 2n + 2 by tensoring the similarity by −⊗B A or A ⊗B −. The minimum
depth is denoted by d(B, A); if B ⊆ A has no finite depth, write d(B, A) = ∞.
We similarly define minimum odd depth dodd(B, A) and minimum even depth
deven(B, A).

A subring B ⊆ A has h-depth 2n − 1 if Eq. (2) is more strongly satisfied as
A-A-bimodules (n = 1, 2, 3, . . .). Note that B has h-depth 2n − 1 in A implies
that it has h-depth 2n + 1 (also that it has depth 2n). Thus define the mini-
mum h-depth dh(B, A) (and set this equal to ∞ if no such n ∈ N exists). Note
that h-depth 1 is the Azumaya-like condition of Hirata in [20]. The notion of h-
depth is studied in [29]; by elementary considerations the inequality |dh(B, A)−
d(B, A)| ≤ 2 is satisfied if either the minimum depth or minimum h-depth is
finite.

2 Depth of algebras and coalgebras in tensor categories

In this section, we define depth of algebras and coalgebras in tensor categories.
When applied to algebras and coalgebras in a bimodule tensor category, this def-
inition recovers minimum odd depth defined in [7] and h-depth defined in [30].
In particular, a coalgebra in bimodule tensor category is a coring, with depth de-
fined in [16]. An algebra or coalgebra in a finite tensor category is an H-module
algebra or H-module coalgebra with depth defined in [31].

2.1 Tensor Category

By a tensor category (M,⊗, 1) we mean an abelian category M with unit object
1 ∈ Ob(M) and tensor product ⊗ : M×M → M, an additive bifunctor (satisfy-
ing distributive laws w.r.t. ⊕) with associativity constraint, a natural isomorphism

αX,Y,Z : (X ⊗ Y)⊗ Z
∼

−→ X ⊗ (Y ⊗ Z), X, Y, Z ∈ M

satisfying the pentagon axiom (a commutative pentagon with 4 arbitrary
objects in a tensor product grouped together in different ways, see for example
[41, (2.3)]), and unit constraints, natural isomorphisms ℓ, r such that

ℓX : 1 ⊗ X
∼

−→ X, rX : X ⊗ 1
∼

−→ X, X ∈ M

satisfy the triangle axiom (a commutative triangle with the unit object between
two other arbitrary objects in a tensor product associated in two ways using α, ℓ, r,
[41, (2.4)]). The Coherence Theorem of MacLane states that every diagram con-
structed from associativity and unit constraints commutes. (Here we are making
no requirement of left and right duals satisfying rigidity axioms.)

A tensor functor between tensor categories (M,⊗, 1) and (M′,⊗′, 1′) is a func-
tor F : M → M′ such that for every X, Y ∈ Ob(M), there are isomorphisms

JX,Y : F(X) ⊗′ F(Y)
∼

−→ F(X ⊗ Y) defining a natural isomorphism, and
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φ : 1′
∼

−→ F(1) is an isomorphism satisfying a commutative hexagon and two
commutative rectangles, see for example [41, (2.12),(2.13),(2.14)]. If F is an equiv-
alence of categories, the tensor categories M,M′ are said to be tensor equivalent.

Example 2.1. Let R be a ring, and RMR denote the category of R-R-bimodules
and their bimodule homomorphisms (denoted by Hom R−R(X, Y) or
Hom (RXR, RYR)). Note that RMR has a tensor product ⊗R and unit object RRR,

the natural bimodule structure on R itself. For example, ℓX : R ⊗R X
∼

−→ X is
the well-known natural isomorphism. This makes (RMR,⊗R, RRR) into a tensor
category.

Let A, R are rings, MA, MR their categories of right modules and homomor-
phisms. Recall that A and R are Morita equivalent rings if R ∼= End PA for some
progenerator A-module P, if and only if the categories MR and MA are equiv-
alent, via the additive functor − ⊗R P. The inverse bimodule of P is denoted
without ambiguity by P∗ ∼= Hom (PA, AA), since Hom (PA, AA) ∼= Hom (RP, RR)
as A-R-bimodules (by a theorem of Morita [39]).

Lemma 2.2. Suppose T : MR
∼

−→ MA is an equivalence of categories given by
T(X) = X ⊗R PA. Then the categories RMR and AMA are tensor equivalent via
F(RYR) = P∗ ⊗R Y ⊗R P.

Proof. The proof follows from F(X ⊗R Y) = P∗ ⊗R X ⊗R Y ⊗R P ∼=

P∗ ⊗R X ⊗R R ⊗R Y ⊗R P ∼= P∗ ⊗R X ⊗R P ⊗A P∗ ⊗R Y ⊗R P ∼= F(X) ⊗A F(Y).

Also F(R RR) ∼= A AA. The functor F is an equivalence with inverse functor
F−1(AZA) = P ⊗A Z ⊗A P∗.

In a tensor category (M,⊗, 1M), one says (B, m, u) is an algebra in M if the
multiplication m : B ⊗ B → B, a morphism in M, satisfies a commutative pen-
tagon [41, 3.9] w.r.t. associativity isomorphism αA,A,A and “the unit” u : 1M → A,
a morphism in M, satisfies two commutative rectangles [41, 3.10] w.r.t. the nat-
ural isomorphisms ℓA, rA in the notation of Subsection 2.1. (Coalgebra (B, ∆, ε)
is defined dually by coassociative comultiplication ∆ : B → B ⊗ B and counit

ε : B → 1M satisfying the counit diagrams.) That B⊗(n) | B⊗(n+1) for n ≥ 1 fol-
lows from using the multiplication epi, split by the unit (e.g., see commutative
diagram [41, (3.10)]), or the counit splitting the comultiplication monomorphism.

Definition 2.3. Let B be an algebra (or coalgebra) in a tensor category M. Define

B to have depth 1 if B ∼ 1M. Define B to have depth 2n + 1 (n ≥ 1) if B⊗(n+1) | q ·

B⊗(n) for some q ∈ N (⇔ B⊗(n) ∼ B⊗(n+1)) ; in this case, B also has depth
2n + 3, 2n + 5, . . . by tensoring repeatedly by −⊗ B. If there is a finite n ∈ N like
this, let d(B,M) denote the minimum depth (an odd number); otherwise, write
d(B,M) = ∞.

Example 2.4. Let A be a ring, with tensor category of bimodules AMA. An al-
gebra B (or monoid) in AMA has unit mapping u : A → B and multiplication
B ⊗A B → B satisfying associativity and unital axioms as usual. This is equiva-
lently a ring extension. The depth just defined is the minimum odd depth; i.e.,
d(B, AMA) = dodd(A, B), which is obvious from Definition 1.6 (with role rever-
sal).
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Remark 2.5. The reference [41, 3.8] also sketches the definition of modules and
bimodules over such algebras, as well as Morita equivalence between two such
algebras. For example, a left module over algebra A in tensor category BMB is
an A-B-bimodule N as an exercise in applying these ideas. The category AMB is
equivalent to the category AM of left modules over A. If A′ is another algebra
in BMB Morita equivalent in the sense of [41], then A′MB is equivalent to AMB.
This is the case if the ring extensions B → A and B → A′ are Morita equivalent
in the sense of Section 5, cf. Diagram (34).

Example 2.6. Let B = C be an A-coring; i.e., a coalgebra (or comonoid) in the ten-
sor category AMA. Dual to algebra, there is a comultiplication ∆ : C → C ⊗A C
and counit ε : C → A, both A-A-bimodule homomorphisms, satisfying coasso-
ciativity and counit diagrams [5]. The definition of minimum depth d(C, AMA)
coincides with the depth d(C, A) of corings defined in [16, 2.1]: d(C, AMA) =
d(C, A).

Let A ⊇ B be a ring extension, and C = A ⊗B A its Sweedler A-coring, with

comultiplication simplifying to A⊗B(2) → A⊗B(3), a1 ⊗B a2 7→ a1 ⊗B 1 ⊗B a2, and
counit εC : A ⊗B A → A, a1 ⊗B a2 7→ a1a2 (a1, a2 ∈ A). Comparing with Defini-
tion 1.6 and applying cancellations of the type X ⊗A A ∼= X, we see that coring
depth of C recovers h-depth of the ring extension: d(C, AMA) = dh(B, A).

Suppose k is a field, the ground field below for all algebras, coalgebras, mod-
ules and unadorned tensor products in finite tensor categories (including the ten-
sor category of finite-dimensional vector spaces, Vectk).

Example 2.7. Let H be a finite-dimensional Hopf k-algebra; its category of finite-
dimensional modules MH is a finite tensor category [12]. The tensor ⊗ = ⊗k

is defined by the diagonal action, where V ⊗ W: (v ⊗ w) · h = vh(1) ⊗ wh(2).
The unit module is kε where ε : H → k is the counit. An algebra A in MH is
a right H-module algebra, which the reader may check satisfies the (measuring)
axioms (ab).h = (a.h(1))(b.h(2)) and 1A.h = 1Aε(h) for all a, b ∈ A and h ∈ H. A

coalgebra C in MH is a right H-module coalgebra (C, ∆, εC) satisfying

∆(ch) = c(1)h(1) ⊗ c(2)h(2), εC(ch) = εC(c)ε(h) (3)

for all c ∈ C, h ∈ H.

The depth d(A,MH) and d(C,MH) is a linear rescaling of the minimum
depth of any object in MH defined in [31, 15, 16], not an important difference,
though slightly more convenient in formulas given below.

Example 2.8. Continuing with H, the category of right H-comodules MH is a
tensor category, where X, Y ∈ MH has tensor product X ⊗ Y as linear space with
comultiplication x⊗ y 7→ x(0)⊗ y(0)⊗ x(1)y(1). The unit module is k with coaction

1k 7→ 1H. An algebra A in MH has multiplication m : A⊗ A → A and unit k → A
right H-comodule morphisms. This condition is equivalent to the coaction of A,
ρA : A → A ⊗ H, being an algebra homomorphism (w.r.t. the tensor algebra).
Thus A is a right H-comodule algebra. See for example [36].
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3 Entwining structures

In this section we summarize the equalities and inequalities obtained in [16] and
[15] between depths of entwined corings and factorisable algebras on the one
hand (in the “difficult” tensor bimodule category) and depth of an H-module
coalgebra or algebra on the other hand (in a more manageable finite tensor cate-
gory [12]). We study the quotient module Q of a finite-dimensional Hopf subal-
gebra pair R ⊆ H in terms of core Hopf ideals, duals and Frobenius extensions,
and under conditions of semisimplicity, relative or not.

Recall that an entwining structure of an algebra A and coalgebra C is given
by a linear mapping ψ : C ⊗ A → A ⊗ C (called the entwining mapping) sat-
isfying two commutative pentagons and two triangles (a bow-tie diagram on
[5, p. 324]). Equivalently, (A ⊗ C, idA ⊗ ∆C, idA ⊗ εC) is an A-coring with respect
to the A-bimodule structure a(a′ ⊗ c)a′′ = aa′ψ(c ⊗ a′′) (or conversely defining
ψ(c ⊗ a) = (1A ⊗ c)a) (details in [5, 32.6] or [9, Theorem 2.8.1]).

In more detail, an entwining structure mapping ψ : C ⊗ A → A ⊗ C takes
values usually denoted by ψ(c ⊗ a) = aα ⊗ cα = aβ ⊗ cβ, suppressing linear sums
of rank one tensors, and satisfies the axioms: (for all a, b ∈ A, c ∈ C)

1. ψ(c ⊗ ab) = aαbβ ⊗ cαβ;

2. ψ(c ⊗ 1A) = 1A ⊗ c;

3. aα ⊗ ∆C(c
α) = aαβ ⊗ c(1)

β ⊗ c(2)
α

4. aαεC(c
α) = aεC(c),

which is equivalent to two commutative pentagons (for axioms 1 and 3) and two
commutative triangles (for axioms 2 and 4), in an exercise.

3.1 Doi-Koppinen entwinings [5, 9]

Let H be a finite-dimensional Hopf algebra. Suppose A is an algebra in the ten-
sor category of right H-comodules, equivalently, A is a right H-comodule alge-
bra. Moreover, let (C, ∆C, εC) be a coalgebra in the tensor category MH, right
H-module coalgebra as noted in the example above in Section 2. Of course, if
H = k is the trivial one-dimensional Hopf algebra, A may be any k-algebra and
C any k-coalgebra.

Example 3.1. The Hopf algebra H is right H-comodule algebra over itself, where
ρ = ∆. Given a Hopf subalgebra R ⊆ H the quotient module Q defined as
Q = H/R+H. Note that Q is a right H-module coalgebra. So is (H, ∆, ε) trivially
a right H-module coalgebra. The canonical epimorphism H → Q denoted by

h 7→ h is an epi of right H-module coalgebras. The module QH is cyclic with
generator 1H.

The mapping ψ : C ⊗ A → A ⊗ C defined by ψ(c ⊗ a) = a(0) ⊗ ca(1) is an
entwining (the Doi-Koppinen entwining [5, 33.4], [9, 2.1]). From the equivalence of
corings with entwinings, it follows that A ⊗ C has A-coring structure

a(a′ ⊗ c)a′′ = aa′a′′(0) ⊗ ca′′(1) (4)
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which defines the bimodule A(A ⊗ C)A. The coproduct is given by idA ⊗ ∆C and
the counit by idA ⊗ εC.

Note that Eq. (4) above, and Eq. (5) below, exhibit the category MA as a mod-
ule category over MH [12].

Proposition 3.2. [16, Prop. 4.2] The depth of the A-coring A ⊗ C (of a Doi-Koppinen
entwining) and the depth of the H-module coalgebra C are related by d(A⊗C, AMA) ≤
d(C,MH).

Proof. One notes that (A ⊗ C)⊗A(n) ∼= A ⊗ C⊗(n) as A-A-bimodules via cancella-
tions of the type X ⊗A A ∼= X. Keeping track of the right A-module structure on

A ⊗ C⊗(n), one shows that it is given by

(a ⊗ c1 ⊗ · · · ⊗ cn)b = ab(0) ⊗ c1b(1) ⊗ · · · ⊗ cnb(n). (5)

If d(C,MH) = n, then C⊗(n) ∼ C⊗(n+1) in the finite tensor category MH. Apply-

ing an additive functor, it follows that A ⊗ C⊗(n) ∼ A ⊗ C⊗(n+1) as A-bimodules.
Then applying the isomorphism just above and Definition 2.3 obtains the inequal-
ity in the proposition.

For example, if A = H, and C a right H-module coalgebra, the Doi-Koppinen
entwining mapping ψ : C ⊗ H → H ⊗ C is of course ψ(c ⊗ h) = h(1) ⊗ ch(2).
The associated H-coring H ⊗ C has coproduct idH ⊗ ∆C and counit idH ⊗ εC with
H-bimodule structure: (x, y, h ∈ H, c ∈ C)

x(h ⊗ c)y = xhy(1) ⊗ cy(2) (6)

Corollary 3.3. [16, Prop. 3.2] The depth of the H-coring H ⊗ C and the depth of the
H-module coalgebra C are related by d(H ⊗ C, H) = d(C,MH).

Proof. This follows immediately from the proposition, but the proof reverses as

follows. If d(H ⊗ C, HMH) = 2n + 1, so that H ⊗ C⊗(n) ∼ H ⊗ C⊗(n+1) as
H-H-bimodules, apply the additive functor k ⊗H − to the similarity and ob-

tain the similarity of right H-modules, C⊗(n) ∼ C⊗(n+1). Thus d(C,MH) ≤
d(H ⊗ C, HMH) as well.

The corollary applies as follows. Let K ⊆ H be a left coideal subalgebra of a
finite-dimensional Hopf algebra; i.e., ∆(K) ⊆ H ⊗ K. Let K+ denote the kernel of
the counit restricted to K. Then K+H is a right H-submodule of H and a coideal
by a short computation given in [5, 34.2]. Thus Q := H/K+H is a right H-module
coalgebra (with a right H-module coalgebra epimorphism H → Q given by

h 7→ h + K+H := h). The H-coring H ⊗ Q has grouplike element 1H ⊗ 1H; in fact,
[5, 34.2] together with [46] shows that this coring is Galois:

H ⊗K H
∼=

−→ H ⊗ Q (7)

via x ⊗R y 7→ xy(1) ⊗ y(2), an H-H-bimodule isomorphism. That HK is faithfully
flat follows from Skryabin’s Theorem [46] that K is a Frobenius algebra and HK

is free. Note that an inverse to (7) is given by x ⊗ z 7→ xS(z(1)) ⊗K z(2) for all
x, z ∈ H.

From Proposition 3.3, Eq. (7) and Example 2.6 we note the first statement
below. The second statement is proven similarly as shown in [31].
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Corollary 3.4. [16, Corollary 3.3][31, Theorem 5.1] The h-depth of K ⊆ H is related to
the depth of Q in MH by

dh(K, H) = d(Q,MH). (8)

If R is a Hopf subalgebra of H, the following holds:

deven(R, H) = d(Q,MR) + 1 (9)

The following is of use to computing depth graphically from a bicolored graph
in case R and H are semisimple C -algebras. Let U denote the functor of restriction-

induction, i.e., U = IndH
R ResH

R : MH → MH.

Proposition 3.5. The depth d(Q,MH) = 2n + 1 is the least n for which Un(k) ∼
Un+1(k).

Proof. Recall that Q ∼= k ⊗R H and for any module MH, U(M) ∼= M ⊗ Q (tensor

in MH) [31]. It follows by induction that Q⊗(n) ∼= Un(k).

Note that decomposing Q into its projective-free direct summand Q0 and pro-
jective summand Q1, such that Q = Q0 ⊕ Q1, leads to the following from the fact
that projectives form an ideal in the Green ring of H.

Proposition 3.6. The depth of the Hopf subalgebra, dh(R, H) < ∞ if and only if the
module depth d(Q0,MH) < ∞.

Proof. For the statement and proof of this proposition, we apply the extended
definition of module depth of any finitely generated module X ∈ MH in terms

of the depth n condition, Tn(X) ∼ Tn+1(X) where Tn(X) = X ⊕ · · · ⊕ X⊗(n)

[31]. Since Tn(X) | Tn+1(X), any projective module Y has finite depth, as there are
a finite number of isoclasses of projective indecomposables. But Y ⊗ M is pro-

jective as well for any M ∈ MH. Then Q⊗(n) = Q
⊗(n)
0 ⊕ Q

⊗(n)
1 ⊕ mixed terms

of Q0, Q1, which are all projective. Thus dh(R, H) < ∞ ⇔ Q⊗(n) ∼ Q⊗(n+1)

as H-modules for some n ∈ N , which implies that the summand Q0 has finite
depth by [31, Lemma 4.4]. Conversely, if Tn(Q0) ∼ Tn+1(Q0) as H-modules, from

Ti(Q) | Ti+1(Q), we obtain that Tn+m(Q) ∼ Tn+m+1(Q), equivalently Q⊗(n+m) ∼

Q⊗(n+m+1), where m is the number of distinct isoclasses of projective indecom-
posables.

3.2 Semisimple and separable extensions

Recall that any ring extension A ⊇ B is said to be a right semisimple extension if
any right A-module N is relative projective, i.e., N | N ⊗B A as A-modules. More
strongly, a ring extension A ⊇ B is said to be a separable extension if for any right
A-module M, the multiplication epimorphism µM : M ⊗B A → M splits [19],
which also generalizes the straightforward notion of left semisimple extension.
The following theorem is a relative Maschke theorem characterizing semisimple
extensions of finite-dimensional Hopf algebras R ⊆ H. We freely use the notation
Q = H/R+H and ground field k developed above.
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Theorem 3.7. The Hopf subalgebra pair R ⊆ H is a right (or left) semisimple extension
⇔ kH | QH ⇔ kH is R-relative projective ⇔ there is q ∈ Q such that εQ(q) 6= 0 and
qh = qε(h) for every h ∈ H ⇔ ∃ s ∈ H : sH+ ⊆ R+H and ε(s) = 1 ⇔ H is a
separable extension of R.

Proof. The counit of Q, given by εQ(h) = ε(h) for h ∈ H, is always R-split by

1 7→ 1H. If all modules are relative projective, it follows that εQ H-splits, so kH is
isomorphic to a direct summand of QH. Conversely, if QH

∼= kH ⊕ Q′
H, then any

H-module N satisfies by [31, Lemma 3.1]

N ⊗R H ∼= N. ⊗ Q.
∼= N ⊕ (N. ⊗ Q′

.)

since N. ⊗ k.
∼= NH. Thus, N and all H-modules are relative projective.

If εQ : Q → k is split by an H-module mapping kH → QH, where 1 7→ q under
this mapping, then q satisfies the integral-like condition of the theorem as well as
εQ(q) = 1. Moreover, q = s 6= 0, satisfies ε(s) = 1 and sh − sε(h) ∈ R+H for all
h ∈ H, but all elements of H+ are of the form h − ε(h)1H .

If an element s ∈ H exists satisfying the conditions of the theorem, for any
H-module M, the epi µM : M ⊗R H → M is split by m 7→ mS(s(1)) ⊗R s2. This

is also seen from a commutative triangle using M ⊗R H
∼=

−→ M. ⊗ Q. and the
mappings in [31, Lemma 3.1]. Note that S(s(1)) ⊗R s2 is a separability element,

for given any h ∈ H, sh = ε(h)s − ∑i xihi for some xi ∈ R+, hi ∈ H. Applying
π(S ⊗ id)∆ (where π : H ⊗ H → H ⊗R H is the canonical epimorphism) to this
equation: S(h(1))S(s(1))⊗R s(2)h(2) =

ε(h)S(s(1))⊗R s(2) − ∑
i

S(hi (1))S(xi (1))⊗R xi(2)hi(2)

= ε(h)S(s(1))⊗R s(2).

Then hS(s(1)) ⊗R s2 = S(s(1)) ⊗R s(2)h for all h ∈ H follows from a standard

application of h(1)S(h(2))⊗ h(3) = 1 ⊗ h.

Note that if R = k1H , the theorem recovers the extended Maschke’s theorem
for Hopf algebras (e.g., [39, Ch. 2]), since R+ = {0}, Q = H and q or s are integral

elements of H with nonzero counit. For example, if Q⊗(n) is projective as an
H- or R-module for any n ∈ N, it follows from this theorem that R is semisimple,

since kR | Q | · · · | Q⊗(n).
Let tR, tH denote nonzero right integrals in R, H, respectively, for the proof of

the corollary below.

Corollary 3.8. Suppose H ⊇ R is a semisimple extension of finite-dimensional Hopf
algebras. Then

1. the modular functions of H and R satisfy mH|R = mR;

2. the Nakayama automorphisms of H and R satisfy ηH |R = ηR;

3. the extension H ⊇ R is an ordinary Frobenius extension.
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Proof. Suppose s ∈ H satisfies the conditions of the theorem, ε(s) = 1 and
sH+ ⊆ R+H. By [31, Lemma 3.2]. the quotient module

Q
∼

−→ tR H,

which sends q = s 7→ tRs. Then tRsH+ ∈ tRR+H = {0}, i.e., tRs is a nonzero
integral in H. Without loss of generality, set tH = tRs. Then for all r ∈ R,

mH(r)tH = rtH = rtRs = mR(r)tH ,

from which it follows that mH restricts on R to the modular function of R, mR.
Recall that finite-dimensional Hopf subalgebra pairs such as H ⊇ R are

β-Frobenius extensions (Fischman-Montgomery-Schneider) with

β(r) = r ↼ mH ∗ m−1
R = ηR(η

−1
H (r)).

See [24] or [45] for textbook coverages of the full details. Consequently, ηH(r) =
ηR(r), mH(r) = mR(r) and β(r) = r for all r ∈ R.

The hypothesis of semisimplicity that removes the twist in the Frobenius
extension of Hopf algebra substantially uncomplicates the associated induction
theory.

3.3 Depth of Hopf subalgebras from right or left quotient modules

Let R ⊆ H be a Hopf subalgebra pair where H is finite-dimensional, and R+ =
ker ε ∩ R. The right quotient H-module Q := H/R+H controls induction of right
H-module restricted to R-modules as follows: ∀ M ∈ MH,

M ⊗R H
∼=

−→ M. ⊗ Q., m ⊗R h 7→ mh(1) ⊗ h(2) (10)

with inverse mapping given by m ⊗ h 7→ mS(h(1)) ⊗R h(2) where S : H → H
denotes the antipode of H. At the same time, the k-dual of the left quotient
H-module Q := H/HR+ controls the coinduction of right H-modules restricted
to R-modules in a somewhat similar way: ∀ M ∈ MH,

M. ⊗Q∗
.

∼=
−→ Hom (HR, MR), m ⊗ q∗ 7→ (h 7→ mh(1)q

∗(h(2))) (11)

Both Eqs. (10) and (11) are first recorded in [47, Ulbrich]; we use the notation for

cosets h for both coset spaces Q and Q.
The following is then a consequence of Eqs. (10) and (11). As mentioned

above, H ⊇ R is always a twisted (“beta”) Frobenius extension, with a twist
automorphism β : R → R given by a relative modular function or a relative
Nakayama automorphism. If the twist is trivially the identity on R, the Hopf
subalgebra is an ordinary Frobenius extension: see subsection 5.1 of this paper
for the definition. This hypothesis on H ⊇ R allows us to prove the following.
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Proposition 3.9. If H ⊇ R is a Frobenius extension, then Q∗ ∼= Q as right H-modules.

Proof. This follows from the characterization of Frobenius extension: for each
right R-module N,

N ⊗R H ∼= Hom (HR, NR). (12)

Now apply this and the display equations above to N = M = kε.

Recall that H and R are Frobenius algebras: let A be any Frobenius algebra.
Then there are one-to-one correspondences of right ideals with left ideals of A via
the correspondence I 7→ ℓ(I) := {a ∈ A : aI = 0} for every right ideal I of A,
and inverse correspondence J 7→ r(J) := {a ∈ A : Ja = 0} for every left ideal
J of A. The following comes from the basic fact that ℓ(I) ∼= Hom ((A/I)A , AA)
and r(J) ∼= Hom (A(A/J), A A). See [34, Lam II].

Proposition 3.10. Let tR denote a nonzero right integral in R, a Hopf subalgebra of H
as above. Then ℓ(R+H) = HtR,

Hom (H(H/HtR), H H) ∼= R+H

and Hom (QH, HH) ∼= HtR. If H is a symmetric algebra, the k-duals Q∗ ∼= HtR and
Q∗ ∼= tR H.

Proof. Note that HtRR+H = 0. From [31, 3.2] Q ∼= tR H and dim Q =
dim H/ dim R. By definition of Q, dim Q = dim H − dim R+H; similarly

dim HtR = dimQ = dim H/ dim R.

For a Frobenius algebra A, we know that dim ℓ(I) = dim A − dim I [34].
Setting A = H, it follows from dimensionality that HtR = ℓ(R+H). The next
two isomorphisms are applications of r(ℓ(I) = I and ℓ(r(J) = J. The last state-
ment follows from

Hom (MA, AA) ∼= M∗

as left A-modules, for every A-module M, for a symmetric algebra A (and a sim-
ilar statement for left A-modules, see [34]).

The equivalent problems in Section 1 have a third equivalent formulation
based on elementary considerations using Eq. (1):

Problem 3.11. Is there an n ∈ N such that the composition

Hom (Q⊗(n), Q⊗(n+1))⊗End Q⊗(n) Hom (Q⊗(n+1), Q⊗(n)) −→ End Q⊗(n+1)

is surjective?

Either R-modules or H-modules suffice above. If we assume that H ⊇ R is an
ordinary Frobenius extension however, the following interesting isomorphisms
of Hom-groups over H exist. Note that for any H-module M, there is a subring
pair End MH ⊆ End MR.
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Proposition 3.12. There are End Q
⊗(n)
H := E-module isomorphisms,

Hom (Q
⊗(n)
H , Q

⊗(n+1)
H ) ∼= End Q

⊗(n)
R

∼= Hom (Q
⊗(n+1)
H , Q

⊗(n)
H )

(right and left E-modules respectively).

Proof. The second isomorphism follows from Eq. (10) and the hom-tensor adjoint
isomorphism [1, 20.6]. The first isomorphism requires additionally the fact for
any Frobenius extension H ⊇ R with modules MH and NR:

Hom (MH , N ⊗R HH) ∼= Hom (MR, NR) (13)

which follows from a natural isomorphism Hom (HR, NR) ∼= N ⊗R H as right
H-modules, and the hom-tensor adjoint isomorphism.

It is worth remarking that the tensor powers of Q are also H-module coalgebra

quotients, since they are pullbacks via ∆n : H → H⊗(n) of the quotient module

of the Hopf subalgebra pair R⊗(n) ⊆ H⊗(n), which is isomorphic to Q⊗(n) as

H⊗(n)-modules.

3.4 Core Hopf ideals of a Hopf subalgebra pair

Let R ⊆ H be a finite-dimensional Hopf subalgebra pair. We continue the study
begun in [15] relating the depth of a quotient module Q to its descending chain
of annihilator ideals of its tensor powers:

Ann Q ⊇ Ann (Q ⊗ Q) ⊇ · · · ⊇ Ann Q⊗(n) ⊇ · · · . (14)

The chain of ideals are either contained in R+ or H+ depending on whether
Q is considered an R-module or H-module (as in Corollary 3.4). By classical

theory recapitulated in [15, Section 4], for some n ∈ N we have Ann Q⊗(n) =

Ann Q⊗(n+m) for all integers m ≥ 1: this ideal I is a Hopf ideal, indeed the max-
imal Hopf ideal contained in Ann Q. Let ℓQ denote the least n for which this
stabilization of the descending chain of annihilator ideals takes place; call ℓQ the
length of the annihilator chain of tensor powers of the quotient module. This may
be nuanced by ℓQR

or ℓQH
depending on which module Q is being considered:

since for any module MH we have Ann MR = Ann MH ∩ R, it follows that

ℓQR
≤ ℓQH

. (15)

Let S1, . . . , St be the simple composition factors of Q or one of its tensor
powers; by elementary considerations with the composition series of Q⊗i, we
note that

I ⊆ ∩t
j=1Ann Sj, (16)

in particular, if some Q⊗i contains all simples (of R or H), I ⊆ Jω, the (Chen-Hiss
[8]) Hopf radical ideal, since Jω is the maximal Hopf ideal in the radical which is
the intersection of the annihilator ideals of all simples. If one simple is projective,
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the corresponding Jω = 0 by a result in [8], whence Q is conditionally faithful,

i.e., Q⊗(n) is faithful for some n ∈ N [15].
Recall that the core of a subgroup U ≤ G is N := ∩g∈G gUg−1, and is the

maximal normal subgroup of G contained in U.

Proposition 3.13. Suppose H is a group algebra kG and R is a group algebra kU, where
U ≤ G is a subgroup pair. Then I is determined by the core N as follows: IH = kN+H
and IR = kN+R.

Proof. Note that kN+H = HkN+ is a Hopf ideal since N is normal in G. An
arbitrary element in Q is the coset Ug annihilated by 1 − n for any n ∈ N, since
N ⊆ U. Then KN+H ⊆ I, since I is maximal Hopf ideal in the annihilator of
Q. Conversely, the Hopf ideal I = kÑ+H for some normal subgroup Ñ ⊳ G by
a result in [43]. Since 1 − ñ annihilates each Ug, it follows that Ñ ⊆ U, whence
Ñ = N by maximality.

Due to the proposition, we propose calling the pair of Hopf ideals

I = Ann Q⊗ℓQH and I ∩ R = Ann Q⊗ℓQR the core Hopf ideals of the Hopf subal-
gebra R ⊆ H.

Note that [15, Prop. 4.3] is equivalent to the inequality

2ℓQR
+ 1 < deven(R, H), (17)

true without further conditions on H and R, since the even depth of Q, deter-
mined from similarity of tensor powers of Q as R-modules, results in equal anni-
hilator ideals: see the first statement in Proposition 1.4. Similarly, considering the
H-module Q and h-depth instead, we note that

2ℓQH
+ 1 ≤ dh(R, H) (18)

Now we make use of the second statement in Proposition 1.4:

Theorem 3.14. Suppose R is a semisimple Hopf algebra, then

deven(R, H) = 2ℓQR
+ 2.

If moreover H is semisimple, then dh(R, H) = 2ℓQH
+ 1.

Proof. Semisimple rings satisfy the equal-annihilator-similar-module condition in
Proposition 1.4. The definition 2.3 of depth of Q depends on similarity of tensor
powers of Q and involves a rescaling of 1 plus a factor of 2 with respect to ℓQ.
The rest follows from the inequalities (17) and (18); see also [31, Theorem 5.1] for
deven(R, H) = d(Q,MR) + 1.

For a semisimple Hopf subalgebra pair, also note the equalities that follow
from Def. 2.3 and Prop. 1.4:

d(Q,MH) = 2ℓQH
+ 1 (19)

d(Q,MR) = 2ℓQR
+ 1. (20)
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For semisimple Hopf algebra-subalgebra pairs, these formulas put the length
ℓQ of the annihilator chain of tensor powers of Q in close relation to diameter of
same colored points in the bicolored graph [7] as well as the base size or minimal
number of “conjugates” of the Hopf subalgebra intersecting in the core, cf. [14, 7].

A general finite-dimensional Hopf subalgebra pair R ⊆ H may sometimes
reduce to the hypothesis of the previous theorem via the following proposition,
which extends [16, Corollary 4.13] from the core of a subgroup-group algebra
pair.

Proposition 3.15. Suppose I denotes the maximal Hopf ideal in the annihilator ideal
of Q = H/R+H; let J = R ∩ I denote the restricted Hopf ideal in R. Then h-depth
dh(R, H) = dh(R/J, H/I). Similarly, minimum even depth satisfies deven(R, H) =
deven(R/J, H/I).

Proof. Note that dh(R, H) = d(Q,MH) by Corollary 3.4, and d(Q,MH) =
d(Q,MH/I) by [16, Lemma 1.5]. Note that R/J →֒ H/I is a Hopf subalgebra
pair with quotient module isomorphic to Q by a Noether isomorphism theorem.
Then dh(R/J, H/I) = d(Q,MH/I).

3.5 Quotient module for the permutation group series

It is interesting at this point to compute the quotient module Q for the inclusion
C Sn ⊆ C Sn+1 of permutation group algebras. Notice that the proposition below
implies that the character χQ = χ1 + χt, where χ1 is the principal character and
χt is the character of the standard irreducible representation (n, 1).

Proposition 3.16. The quotient module Q = C [Sn/Sn+1] is isomorphic to the standard
representation of Sn+1 on C n+1.

Proof. Recall the Artin presentation of Sn+1 with generators σi = (i i + 1) for
i = 1, . . . , n and relations

σiσi+1σi = σi+1σiσi+1, σiσj = σjσi, σ2
i = 1

for all |i − j| ≥ 2. Note that σ1, . . . , σn−1 ∈ Sn. An ordered basis for Q is given by

〈Snσnσn−1 · · · σ1, Snσn · · · σ2, . . . , Snσn, Sn〉

This ordered basis maps onto the ordered basis 〈e1, . . . , en+1〉 of the Sn+1 represen-
tation space C n+1 via the canonical order-preserving mapping. This mapping is
an Sn+1-module isomorphism, since σi exchanges ei and ei+1 as it does Snσn · · · σi

and Snσn · · · σi+1, respectively, (here we use σ2
i = 1), and it leaves the other

basis elements fixed, since σi commutes with σi+2 and/or σi−2 (here we also use
σiσi−1σi = σi−1σiσi−1) etc. while σi ∈ Sn for i < n. In more detail, note that

(Snσn · · · σiσi−1)σi = Snσn · · · σi+1σi−1σiσi−1 = Snσn · · · σi−1

The rest of the proof is routine. (A second proof follows from Q ∼= U(1) ∼=

Ind
Sn+1

Sn
1 and Young diagram branching rule of adding a box.)



Algebra depth in tensor categories 737

Since Sn ⊆ Sn+1 is corefree, i.e., the core of the subgroup is trivial, it follows
that the character χQ is faithful (equivalently, the annihilator idea of Q does not
contain a nonzero Hopf ideal ⇔ the representation of C G restricted to G has triv-
ial kernel) [31, 4.2]. The Burnside-Brauer Theorem [22, p. 49] implies for the char-
acter χQ that each irreducible character of Sn+1 is a constituent of its powers up to
χn

Q, since dim Q = n + 1. This implies that d(Q,MSn+1
) ≤ n by reasoning along

the lines of Example 1.3. Indeed d(Q,MSn+1
) = n follows from Corollary 3.4 and

the graphical computation dh(Sn, Sn+1) = 2n + 1 in [31].
We mention the theorem in [37], that hooks generate the Green ring of a per-

mutation group, as the full picture to the discussion above.

Theorem 3.17. [37, Marin] The representation ring A(C Sn+1) is generated by the
representations ΛkC n+1 for 0 ≤ k ≤ n.

Remark 3.18. Recall the notion of order of a module VH over a semisimple Hopf

algebra H. The order ord(V) is the least natural number n such that V⊗(n) has

nonzero invariant subspace, i.e., dim(V⊗(n))H 6= 0. For example, ord(QSn+1
) =

1 since χQ = χ1 + χt. For general semisimple Hopf subalgebra pairs H ⊇
R with quotient Q, one might conjecture that ord(Q) ≤ ℓQ, since order of Q
and ℓQ are both bounded above by the degree d of the minimal polynomial of

χQ in the character ring of H (or H/J-modules where J = Ann Q⊗ℓQ see [32,
chs. 4,5, p. 37] and [7, 2.3], respectively). However, [32, p. 32] computes the
order of a certain induced module V over the semidirect product group algebra
H = C [Z 11]#C [Z 5] to be ord(V) = 3: with R = C [Z q], in fact V ∼= QH. We
deduce that d(Q,MH) = 3, since dh(R, H) = 1 forces R = H by [31, Cor.
3.3]), and ℓQH

= 1, since R is a normal Hopf subalgebra in H: so in general
ord(Q) 6≤ ℓQ.

4 Factorisable algebras

An algebra factorisation of a unital (associative) algebra C into two unital sub-

algebras A and B occurs when the multiplication mapping B ⊗ A
∼

−→ C is a
B-A-bimodule isomorphism [5, 9]. Conversely, the algebra C may be constructed
from B and A as a twisted tensor product (denoted by B ⊗R A) as follows: linearly
C = B ⊗ A with multiplication given by the structure mapping R : A ⊗ B →
B ⊗ A, values denoted by R(a ⊗ b) = br ⊗ ar or bR ⊗ aR, where summation over
more than one simple tensor is suppressed. In this case, the multiplication in
B ⊗ A is given by

(b1 ⊗ a1)(b2 ⊗ a2) = b1br
2 ⊗ ar

1a2 (21)

In order for C to be associative, R must satisfy two pentagonal commutative dia-
grams, equationally given by

R(µA ⊗ B) = (B ⊗ µA)(R ⊗ A)(A ⊗ R) (22)

(where µA denotes multiplication in A), and

R(A ⊗ µB) = (µB ⊗ A)(B ⊗ R)(R ⊗ B) (23)
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in Hom (A ⊗ B ⊗ B, B ⊗ A). These equations are satisfied if and only if C is
associative. Additionally, the structure map R satisfies two commutative trian-
gles given equationally by R(A ⊗ 1B) = 1B ⊗ A and R(1A ⊗ B) = B ⊗ 1A. It
follows that A → C, a 7→ 1B ⊗ a and B → C, b 7→ b ⊗ 1A are algebra monomor-
phisms.

Example 4.1. Let B be an algebra in HM, where A = H is a Hopf algebra as
before. Let R : B ⊗ H → H ⊗ B be given by R(b ⊗ h) = h(1).b ⊗ h(2). Then

B ⊗R H = B#H, the smash product of H with a left H-module algebra B.

Proposition 4.2. [15, Theorem 5.2] The minimum odd depth of H embedded canonically
in the smash product B#H satisfies

dodd(H, B#H) = d(B, HM) (24)

Proof. Via cancellations of the type X⊗H H ∼= X, one establishes an H-H-bimodule
isomorphism,

(B#H)⊗Hn ∼= B⊗(n) ⊗ H, (25)

where the left H-module structure on B⊗(n) ⊗ H is given by the diagonal action:

x.(b1 ⊗ · · · ⊗ bn ⊗ h) = x(1).b1 ⊗ · · · ⊗ x(n).bn ⊗ x(n+1).h

If B⊗(n+1) | q · B⊗(n) in HM for some q ∈ N , then tensoring this by −⊗ H yields

(B#H)⊗H(n+1) | q · (B#H)⊗Hn as H-H-bimodules. Thus the minimum odd depth
dodd(H, B#H) ≤ d(B, HM) by Definition 1.6.

Conversely, if (B#H)⊗H(n+1) | q · (B#H)⊗H n as H-H-bimodules, then B⊗(n+1)⊗

H | q · B⊗(n) ⊗ H, to which one applies − ⊗ Hk, obtaining B⊗(n+1) | q · B⊗(n) in

HM. Therefore d(B, HM) ≤ dodd(H, B#H).

Using the notation developed in Section 3 for a finite-dimensional Hopf sub-
algebra pair R ⊆ H with quotient right H-module coalgebra Q, we note that its
k-dual Q∗ becomes a left H-module algebra via 〈hq∗, q〉 = 〈q∗, qh〉. Yet another
equivalent formulation of the fundamental problem in Section 1 follows easily
from the proposition since d(Q∗, HM) = d(Q,MH) [31, 15].

Problem 4.3. Is d(H, Q∗#H) < ∞ or d(R, Q∗#R) < ∞?

Example 4.4. Suppose B and H are a matched pair of Hopf algebras (see [36, 7.2.1]
or [33, IX.2.2]). I.e., H is a coalgebra in MB with action denoted by h ⊳ b, and B is
coalgebra in HM with action denoted by h ⊲ b satisfying compatibility conditions
given in [36, (7.7)-(7.9)]. A twisting R : H ⊗ B → B ⊗ H is given by

R(h ⊗ b) = h(1) ⊲ b(1) ⊗ h(2) ⊳ b(2), (26)

which defines an algebra structure on B ⊗R H = B ⊲⊳ H; moreover, this is a Hopf
algebra, called the double cross product, where H and B are canonically Hopf
subalgebras [36].
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For example, H and its dual Hopf algebra (with opposite multiplication)
B = Hop∗ are a matched pair via ⊲, the left coadjoint action of H on H∗,

h ⊲ b = b(2)〈(Sb(1))b(3), h〉, (27)

and ⊳ the analogous left coadjoint action of H∗ on H. This defines the Drinfeld
double D(H) as a special case of double cross product, D(H) = Hop∗ ⊲⊳ H.

Proposition 4.5. Let B and H be a matched pair of finite-dimensional Hopf algebras with
A = B ⊲⊳ H their double cross product. Then the minimum h-depth and even depth of
the Hopf subalgebra B in A is given by the depth of H in the finite tensor category MB

(w.r.t. ⊳ in Example 4.4): dh(B, A) = d(H,MB) and deven(B, A) = d(H,MB) + 1.
Similarly, the Hopf subalgebra H has depth in A given by dh(H, A) = d(B, HM) (w.r.t.
⊲) and deven(H, A) = d(B, HM) + 1.

Proof. This follows from Cor. 3.4 if we show that the quotient module

QB
∼= (HB, ⊳). Note that Q = B ⊲⊳ H/B+(B ⊲⊳ H) ∼= H via b ⊲⊳ h 7→ εB(b)h,

and

hb = (1B ⊲⊳ h)(b ⊲⊳ 1H) = h(1) ⊲ b(1) ⊲⊳ h(1) ⊳ b(2) = εB(h(1) ⊲ b(1))h(2) ⊳ b(2)

= h ⊳ b, where we use axiom (3) for B, a left H-module coalgebra.

For example, if B = Hop∗ and B ⊲⊳ H = D(H), suppose H is cocommutative.
From the formula for coadjoint action, it is apparent that HB

∼= (dim H) · k, so
d(H,MB) = 1 and d(H∗, D(H)) ≤ 2. Indeed, it is known that D(H) ∼= H∗#H in
case H is quasitriangular [36, Majid, 1991, 7.4]), but a smash product is a Hopf-
Galois extension of its left H-module algebra (which has depth 2).

Example 4.6. A study of the 8-dimensional small quantum group H8 (see for
example [31, Example 4.9] for its Hopf algebra structure) and its quantum dou-
ble D(H8) indicates that minimum depth satisfies 3 ≤ d(H8, D(H8)) ≤ 4. The
method is to compute D(H8) in terms of generators and relations, compute the
quotient Q as an 8-dimensional H8-module, then decompose it into its inde-
composable summands (twice each simple, and two 2-dimensional indecompos-
ables), compute the tensor products between these indecomposables, noting that
Q ∼ Q ⊗ Q as H8-modules, and using Eq. (9). Since both algebras have infi-
nite representation type, we cannot otherwise predict a finite depth from known
results [31, 17].

Let adH denote the adjoint action of H on itself, given by h.x = h(1)xS(h(2))
for all h, x ∈ H.

Corollary 4.7. [15, Cor. 5.4] Let G be a finite group and D(G) its Drinfeld double as a
complex group algebra. Then d(C G, D(G)) = d(adC G, C GM).

Proof. From the remark about cocommutativity just above, the double D(G) =
H∗#H (with H = C G) is a smash product to which Proposition 4.2 applies: thus
dodd(C G, D(G)) = d(H∗, C GM). The smash product multiplication formula for
g, h ∈ G, pg, ph ∈ H∗ one-point projections, is given by

(px#g)(py#h) = px pgyg−1#gh (28)
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which visibly demonstrates that H H∗ ∼= adH∗ ∼= adC G.
It remains to show that deven(C G, D(G)) = 1 + dodd(C G, D(G)). Note that

S(px) = px−1 ,

∆2(px) = ∑
z,y∈G

pz ⊗ pz−1y ⊗ py−1x

whence using Eq. (27)

h ⊲ px = ∑
z,y∈G

pz−1y〈pz−1 py−1x, h〉 = ∑
z,y∈G

〈pz−1 , h〉〈py−1 x, h〉pz−1y = phxh−1 ,

the adjoint action of h on px . Use Proposition 4.5 to conclude the proof.

5 Morita equivalent ring extensions

In this section we continue a study of Morita equivalence of ring extensions in
[38, 21, 48], though with an emphasis on functors and categories. We will briefly
provide the classical background theory, and prove that depth, relative cyclic
homology as well as the bipartite graphs of a semisimple complex subalgebra
pair are all Morita invariant properties of a ring or algebra extension. In addition,
we note a natural example of Morita equivalence in towers of Frobenius exten-
sions.

Define two ring extensions A | B and R | S to be Morita equivalent if there are addi-
tive equivalences P : RM → AM and Q : SM → BM satisfying a commutative
rectangle (up to a natural isomorphism) with respect to the functors of restriction
from R-modules into S-modules, and from A-modules into B-modules.

RM
∼

P
✲

AM

SM

ResR
S

❄ ∼

Q
✲

BM

ResA
B

❄

(29)

The requirement then is that there be a natural isomorphism QResR
S

∼
→ ResA

BP .
One shows in an exercise that this is an equivalence relation on ring extensions
by using operations on natural transformation by functors.

From ordinary Morita theory we know that P(RR) = AP, a progenerator such
that End AP ∼= R, so that P is in fact an A-R-bimodule with P(RX) = P ⊗R X for
all RX. The dual of P is unequivocally P∗ = Hom (PR, RR), an R-A-bimodule,
since Hom (AP, A A) ∼= P∗ as R-A-bimodules by [39, Theorem 1.1]. Then P∗ ⊗A

− : AM → RM is an inverse equivalence to P : one has bimodule isomorphisms
P∗ ⊗A P ∼= RRR and P ⊗R P∗ ∼= AAA.

Similarly there is an invertible Morita bimodule BQS, a left and right pro-
generator module, such that Q(SY) = BQ ⊗S Y. The condition that the rectan-
gle above commutes applied to R ∈ RM becomes BQ ⊗S R ∼= BP, also valid as
B-R-bimodules due to naturality, noted as an equivalent condition in the propo-
sition below.
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Example 5.1. Given a ring extension R ⊇ S, let A = Mn(R) ⊇ B = Mn(S). Of
course, A and R are Morita equivalent via P = n · R, also B and S are Morita
equivalent via Q = n · S. Note that

BQ ⊗S RR
∼= n · R = BPR.

Thus, as one would expect, the ring extensions R ⊇ S and A ⊇ B are Morita
equivalent.

Example 5.2. Suppose B ⊆ A and S ⊆ R are ring extensions with ring isomor-

phism ψ : A
∼
→ R restricting to a ring isomorphism η : B

∼
→ S. Defining bimod-

ules APR := ψRR and BQS := ηSS, one shows in an exercise that the two ring
extensions are Morita equivalent.

The proposition below characterizes Morita equivalence of ring extensions in
many equivalent ways, condition (2) being the definition in [38, 21, 48].

Proposition 5.3. The following conditions on ring extensions A ⊇ B and R ⊇ S are
equivalent:

1. A ⊇ B and R ⊇ S are Morita equivalent;

2. there are Morita bimodules APR and BQS satisfying BQ ⊗S RR
∼= BPR [38];

3. there are Morita bimodules APR and BQS satisfying RR ⊗S Q∗
B
∼= RP∗

B;

4. there are Morita bimodules APR and BQS satisfying A A ⊗B QS
∼= APS;

5. there are Morita bimodules APR and BQS satisfying SQ∗ ⊗B AA
∼= SP∗

A;

6. the following rectangle, with sides representing the induction functors, commutes
up to a natural isomorphism,

RM
∼

P
✲

AM

SM

IndR
S

✻

∼

Q
✲

BM

IndA
B

✻

(30)

7. the following rectangle, with sides representing the coinduction functors, commutes
up to a natural isomorphism,

RM
∼

P
✲

AM

SM

CoIndR
S

✻

∼

Q
✲

BM

CoIndA
B

✻

(31)
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8. any of the conditions above stated identically with right module categories MR,
MA, MS, and MB replacing the corresponding left module categories.

Proof. (1) ⇒ (2) is sketched above. (2) ⇔ (3) follows from the computation

RP∗
B
∼= RHom (PR, RR)B

∼= RHom (Q ⊗S RR, RR)B
∼= RHom (QS, RS)B

∼= RR ⊗S Q∗
B using adjoint theorems in [1, pp. 240, 243]. This shows (2) ⇒

(3). This argument reverses by using the reflexive property of progenerators
(AHom (RP∗, RR)R

∼= APR).
(3) ⇒ (4) and (8). The following rectangle is commutative up to a natural

isomorphism:

MR
∼

−⊗R P∗
✲ MA

MS

ResR
S

❄ ∼

−⊗S Q∗
✲ MB

ResA
B

❄

since for any module XR one has

X ⊗R P∗
B
∼= X ⊗R R ⊗S Q∗

B
∼= X ⊗S Q∗

B.

To the natural isomorphism identifying the sides of this rectangle, apply the func-
tor − ⊗B Q from the left and the functor − ⊗A P from the right to obtain the
following commutative rectangle up to natural isomorphism:

MA
∼

−⊗A P
✲ MR

MB

ResA
B

❄ ∼

−⊗B Q
✲ MS

ResR
S

❄

(4) now follows from applying the rectangle to AA. (4) ⇒ (5). The same type of
argument as in (2) ⇒ (3) above shows that

SP∗
A
∼= SHom (AP, A A)A

∼= SHom (BQ, BB)⊗B AA
∼= SQ∗ ⊗B AA.

(4) ⇒ (6). By using (4), compute for any module SY,

A A ⊗B Q ⊗S Y ∼= AP ⊗S Y ∼= AP ⊗R R ⊗S Y,

which shows the rectangle (6) is commutative up to a natural isomorphism. The
converse (6) ⇒ (4) follows from applying the rectangle to SS ∈ SM as well as
naturality.

(5) ⇒ (7) For any module SW, it suffices to show that P ⊗R Hom (SR, SW) ∼=
Hom (B A, BQ ⊗S W) using natural isomorphisms in [1, 20.6, 20.11, exercise 20.12]
and (5):

AP ⊗R Hom (SR, SW) ∼= AHom (SP∗, SW) ∼= AHom (SQ∗ ⊗B A, SW)
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∼= AHom (B A, BHom (SQ∗, SW)) ∼= AHom (B A, BQ ⊗S W)

The rest of the proof is similar and left as an exercise.

In the following proposition, we note some different, quick proofs for certain
results in [21], while building up results which show that depth and bipartite
graphs are Morita invariants of ring extensions.

Proposition 5.4. Suppose A | B and R | S are Morita equivalent ring extensions. In the
notation of the previous proposition, it follows that

1. if the extension A ⊇ B is a separable, then R ⊇ S is a separable extension [21];

2. if the extension A ⊇ B is QF, then R ⊇ S is a QF extension [21];

3. if the extension A ⊇ B is Frobenius, then R ⊇ S is a Frobenius extension [21];

4. if B ⊆ A is a semisimple complex subalgebra pair, then so is S ⊆ R with identical
inclusion matrix and bipartite graph;

5. the following diagram of tensor categories and functors commutes up to natural
isomorphism:

RMR
∼

F
✲

AMA

SMS

ResRe

Se

❄ ∼

G
✲

BMB

ResAe

Be

❄

(32)

where F(RXR) := AP ⊗R X ⊗R P∗
A and G(SYS) := BQ ⊗S Y ⊗S Q∗

B define
tensor equivalences;

6. G(R⊗S(n)) ∼= A⊗B(n) as B-B-bimodules and F(R⊗S(n)) ∼= A⊗B(n) as A-A-bimodules
for each n ∈ N ;

7. the centralizers are isomorphic: AB ∼= RS [21];

8. the ring extensions A | B and R | S have the same minimum depth and h-depth.

Proof. 1. Let 0 → V → W → U → 0 be a short exact sequence in AM that
is split exact when restricted to BM. By Rafael’s characterization [44] of
separability, the short exact sequence splits in AM. The rest of the proof
follows from applying the commutative rectangle (29).

2. Suppose AV is (A, B)-projective (or “relative projective”), i.e., AV | AA⊗B V
(or the multiplication epi A ⊗B V → V splits as an A-module map). By
the relative Faith-Walker theorem for QF extensions [40], V is also (A, B)-
injective: i.e., the canonical A-module monomorphism V →֒ Hom (B A, BV)
splits. In fact the class of relative projectives coincides with the class of
relative injectives for QF extensions. It is clear from the commutative di-
agram (30) that the equivalence P sends relative projectives into relative
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projective; similarly, it is clear from the commutative rectangle (31) that
relative injectives are sent by an equivalence into relative injectives. The
rest of the proof is then an application of the relative Faith-Walker charac-
terization of QF extension.

3. The proof is an application of the commutative rectangles (30) and (31) and
the characterization of Frobenius extensions as having naturally isomorphic
induction and coinduction functors. Suppose R ⊇ S is Frobenius. Then

IndA
BQ

∼= PIndR
S
∼= PCoIndR

S
∼= CoIndA

BQ.

Since Q is an equivalence, it follows that IndA
B and CoIndA

B are naturally
isomorphic functors, whence A ⊇ B is Frobenius.

4. Let V1, . . . , Vs be the simples of S (up to isomorphism). Then Ui := Q ⊗S Vi

are representatives of the simple isoclasses of B by Morita theory. Induce
each Vi to an R-module, expressing this uniquely up to isomorphism as a
sum of nonnegative multiples of the simples of R, W1, . . . , Wr:

R ⊗S Vi
∼= ⊕r

j=1rijWj.

The s × r matrix is the inclusion matrix K0(S) → K0(R) of the semisimple
complex subalgebra pair S ⊆ R. This matrix determines the bipartite graph
of the inclusion, an edge connecting black dot i with white dot j in case the
(i, j)-entry is nonzero.

Since A and R Morita equivalent rings, both are semisimple complex al-
gebras; the same is true of B and S. Moreover, their centers are isomor-
phic, thus A and R each have r distinct simples, and B, S each have s pair-
wise nonisomorphic simples. Denote the simples of A by X1, . . . , Xr where
Xi

∼= P ⊗R Wi for each i. Suppose the inclusion matrix of B ⊆ A is given by
A ⊗B Ui

∼= ⊕r
j=1bijXj. Since

A ⊗B Ui
∼= A ⊗B Q ⊗S Vi

∼= P ⊗R R ⊗S Vi
∼= ⊕r

j=1rijXj

this implies by Krull-Schmidt that the inclusion matrices (bij) and (rij) are
equal. Thus the bipartite graphs are equal.

5. The functors F and G are tensor equivalences according to Lemma 2.2.

Let RXR be a bimodule. Note that ResAe

Be (F(X)) = BP ⊗R X ⊗R P∗
B
∼=

BQ ⊗S R ⊗R X ⊗R R ⊗S Q∗
B

∼= G(ResRe

Se (X)) by applying (2) and (3) in
Proposition 5.3. Whence the rectangle is commutative.

6. From the commutative rectangle just established it follows that G(SRS) ∼=

B AB and from the tensor functor property of G that G(R⊗S(n)) ∼= B A⊗B(n)
B.
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A computation similar to the one in (4) of this proof shows that the follow-
ing rectangle is commutative:

RMR
∼

F
✲

AMA

SMS

IndRe

Se

✻

∼

G
✲

BMB

IndAe

Be

✻

where IndRe

Se (SZS) := RR⊗S Z ⊗S RR. Since F preserves tensor category unit
objects, F(RRR) ∼= AAA. Starting with SSS ∈ SMS, the rectangle shows that

F(RR ⊗S RR) ∼= A A ⊗B AA. Starting with R⊗S(n) ∈ SMS in the rectangle,
we note that for n ≥ 1,

F(R R⊗S(n+2)
R) ∼= IndAe

Be (A⊗B(n)) = A A⊗B(n+2)
A.

7. Note the equivalence of bimodule categories H : SMR → BMA given by
H(SWR) := BQ ⊗S W ⊗R P∗

A. We claim that H(SRR) ∼= B AA; moreover,

H(SR⊗S(n)
R) ∼= B A⊗B(n)

A (33)

for all n ≥ 1. This follows from the diagram below, commutative up to
natural isomorphism.

RMR
∼

F
✲

AMA

SMR

ResR
S

❄ ∼

H
✲

BMA

ResA
B

❄

(34)

which is established by a short computation using (2) in Prop. 5.3. Applied

to R⊗S(n) ∈ RMR, we obtain Eq. (33).

Note that the centralizer RS = {r ∈ R : ∀s ∈ S, rs = sr} is isomorphic to
End (SRR) ∼= RS via f 7→ f (1). Recall that an equivalence H satisfies

End (SRR) ∼= End (H(SRR)) ∼= End (B AA) ∼= AB.

8. Similarly to Eq. (33), we establish that the equivalence of bimodule
categories given by H′ : RMS → AMB, RVS 7→ P ⊗R V ⊗S Q∗ satisfies

H′(R⊗S(n)) ∼= AA⊗B(n)
B (35)

Of course, equivalences preserve similarity of modules since they are ad-

ditive. Suppose R⊗S(n) ∼ R⊗S(n+1) as R-S-bimodules, i.e., R | S has right
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depth 2n. Applying H′, one obtains A⊗B(n) ∼ A⊗B(n+1) as A-B-bimodules,
i.e., A | B has right depth 2n. Similarly for left depth 2n using the equiva-
lence H. Similarly, if R | S has depth 2n + 1, applying G we obtain that A | B
has depth 2n + 1. Going in the reverse direction using G−1, H−1, we obtain
d(S, R) = d(B, A). Using F we likewise show that dh(S, R) = dh(B, A).

5.1 Example: tower above Frobenius extension

A Frobenius extension A ⊇ B is characterized by any of the following four
conditions [24]. First, that AB is finite projective and B AA

∼= Hom (AB, BB).
Secondly, that B A is finite projective and AAB

∼= Hom (B A, BB). Thirdly, that coin-
duction and induction of right (or left) B-modules into A-modules are naturally
isomorphic functors. Fourth, there is a Frobenius coordinate system
(E : A → B; x1, . . . , xm, y1, . . . , ym ∈ A), which satisfies (∀a ∈ A)

E ∈ Hom (B AB, BBB),
m

∑
i=1

E(axi)yi = a =
m

∑
i=1

xiE(yia). (36)

These equations may be used to show that ∑i xi ⊗ yi ∈ (A ⊗B A)A.

By [30, Lemma 4.1], a Frobenius extension A ⊇ B has both AB and B A genera-
tor modules if and only if the Frobenius homomorphism E : A → B is surjective:
although most Frobenius extensions in the literature are generator extensions,
there is a somewhat pathological example in [24, 2.7] of a matrix algebra Frobe-
nius extension with a non-surjective Frobenius homomorphism.

A Frobenius extension A ⊇ B enjoys an endomorphism ring theorem, which
states that A2 := End AB ⊇ A is itself a Frobenius extension, where the ring
monomorphism A → A2 is the left multiplication mapping λ : a 7→ λa ,
λa(x) = ax. It is worth noting that λ is a left split A-monomorphism (by evalua-
tion at 1A) so A A2 is a generator. It is an exercise to check that A2

∼= A ⊗B A via
f 7→ ∑i f (xi)⊗B yi; the induced ring structure on A⊗B A is the “E-multiplication,”
given by

(a ⊗B c)(d ⊗B e) = aE(cd) ⊗B e. (37)

The identity is given 1 = ∑i xi ⊗B yi. The Frobenius coordinate system for
A2 ⊇ A1 is given by E2(a ⊗B c) = ac (always surjective!) with dual bases
{xi ⊗B 1} and {1 ⊗B yi}.

The tower of a Frobenius extension is obtained by iteration of the endomor-
phism ring and λ, obtaining a tower of Frobenius extensions; with the notation
B := A0, A := A1 and defining An+1 = End An An−1

, we obtain the tower,

A0 →֒ A1 →֒ A2 →֒ · · · →֒ An →֒ An+1 →֒ · · · (38)

By transitivity of Frobenius extension or QF extension [42], all sub-extensions

Am →֒ Am+n in the tower are also Frobenius extensions. Note that An
∼= A⊗B(n):

the ring, module and Frobenius structures in the tower are worked out in [30].
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Theorem 5.5. Suppose A ⊇ B is a Frobenius extension with the tower and data notation
given above. Then An−1 ⊇ An−2 is Morita equivalent to An+1 ⊇ An for all integers
n > 1. Also A ⊇ B is Morita equivalent to A3 ⊇ A2 if the Frobenius homomorphism is
epi.

Proof. It suffices to assume E : A → B is surjective, let S = A2 = End AB, R = A3,
and show that B →֒ A is Morita equivalent to A2 →֒ A3. Since A is a Frobenius
extension of B with surjective Frobenius homomorphism, it follows that the mod-
ule AB is a progenerator; since A2 = End AB, it follows that B and A2 are Morita
equivalent rings. Similarly, A and A3

∼= End A ⊗B AA are Morita equivalent
rings.

In the notation of Proposition 5.3 (exchanging R with A, B with S), note that
Q = A and P = A ⊗B A. Thus SQ ⊗B AA

∼= SPA, the condition in the proposition
for Morita equivalent ring extensions.

The theorem states in other words that the tower above a Frobenius extension
has up to Morita equivalence period two. Note that consecutive ring extensions
in the tower are almost never Morita equivalent: in [30, Example 1.12], the depth
is d(S3, S4) = 5, but of its reflected graph, the depth is d(A, A2) = 6 (where
A = C S4, using the graph-theoretic depth calculation in [7, Section 3]).

5.2 Relative cyclic homology of ring extensions is Morita invariant

We extend a result in [23] that relative cyclic homology of a ring extension
R ⊇ S and of its n × n-matrix ring extension Mn(R) ⊇ Mn(S) are isomorphic
via a Dennis trace map adapted to this set-up. The relative cyclic homology (or
any of its several variant homologies) is computed from cyclic modules

Zn(R, S) := R ⊗Se R⊗S(n),

which has the effect of considering tensor products of the natural bimodule SRS

with itself over S n + 1 times arranged in a circle (in place of a line). For each
n ≥ 0, there are n + 1 face maps are given by di : Zn(R, S) → Zn−1(R, S) de-
fined from tensoring n − 1 copies of the id

SRS
with one copy of the multiplication

µ ∈ Hom (SR ⊗S RS, SRS) at the ith position, there are n + 1 degeneracy map-
pings sj : Zn(R, S) → Zn+1(R, S) by tensoring n copies of id

SRS
with one copy of

the unit mapping η ∈ Hom (SSS, SRS) in the ith position, and a cyclic permuta-
tion tn : Zn(R, S) → Zn(R, S) of order n + 1 (see [23] for the Connes cyclic object
relations [10] and the textbook [35] for further details).

Suppose ring extensions R ⊇ S and A ⊇ B are Morita equivalent, and as-
sume the same structural bimodules and module equivalences with notation as
in this section. Now recall from the diagram (32) that the tensor equivalence
G : SMS → BMB, defined by G(X) = Q ⊗S X ⊗S Q∗, sends SRS into B AB. We
note the following commutative diagram,
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SMS × SMS
∼

G × G
✲

BMB × BMB

AbS

−⊗Se −

❄ ∼

Ĝ
✲ AbB

−⊗Be −

❄

(39)

where AbB denotes BMB ⊗Be BMB, a subcategory of abelian groups (and simi-
larly for AbS), from a computation with X, Y ∈ SMS:

G(X)⊗Be G(Y) ∼= X ⊗S Q∗ ⊗B Q ⊗Se Q∗ ⊗B Q ⊗S Y

∼= X ⊗S S ⊗Se S ⊗S Y ∼= X ⊗Se Y.

It follows that Zn(R, S)
∼=

−→ Zn(A, B) via Ĝ (restricted to the cyclic modules) as
abelian groups for each n ≥ 0. Now Ĝ commutes with face maps since the functor
G sends the multiplication of R ⊇ S,

µ ∈ Hom (SR ⊗S RS, SRS) 7→ µ ∈ Hom (B A ⊗B AB, B AB),

the multiplication of the ring extension A ⊇ B. That Ĝ : Zn(R, S) → Zn(A, B)
commutes with the degeneracy maps follows from the functor G sending the
unit η ∈ Hom (SSS, SRS) into the unit η ∈ Hom (BBB, BAB). That Ĝ : Zn(R, S) →
Zn(A, B) commutes with the cyclic group action generator tn follows from G × G
commuting with simple exchange X × Y 7→ Y × X. We have sketched the proof
of the next proposition.

Proposition 5.6. If R ⊇ S and A ⊇ B are Morita equivalent ring extensions, then
their cyclic modules, cyclic chain complexes and cyclic homology groups are isomorphic:
HCn(R, S) ∼= HCn(A, B), all n ∈ N .

The isomorphism is given by a generalized Dennis trace mapping as follows.

Suppose the S-bimodule isomorphism Q∗ ⊗B Q
∼=

−→ S sends ∑
r
i=1 q∗i ⊗ qi 7→ 1S.

Then an isomorphism of cyclic modules Zn(A, B)
∼=

−→ Zn(R, S) is given by

a0 ⊗ · · · ⊗ an 7→
r

∑
i0,...,in=1

qi0 ⊗ a0 ⊗ q∗i1 ⊗ qi1 ⊗ · · · ⊗ qin
⊗ an ⊗ q∗i0 (40)

In the matrix example 5.1 of Morita equivalent ring extensions, where each ai

denotes an n × n-matrix, this expression simplifies to the classical Dennis trace
isomorphism of cyclic modules noted in [23],

a0 ⊗Be a1 ⊗B · · · ⊗B an 7→
r

∑
i0,...,in=1

ai0i1
0 ⊗Se ai1i2

1 ⊗S · · · ⊗S aini0
n .
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