Structures Associated with Real Closed Fields
and the Axiom of Choice

Merlin Carl

Abstract

An integer part I of a real closed field K is a discretely ordered subring of
K with minimal positive element 1 such that, for every x € K, thereisi € I
with i < x < i+ 1. Mourgues and Ressayre showed in [MR] that every real
closed field has an integer part. Their construction implicitly uses the Axiom
of Choice. We show that AC is actually necessary to obtain the result by con-
structing a transitive model of ZF which contains a real closed field without
an integer part. Then we analyze some cases where the Axiom of Choice is
not necessary for obtaining an integer part. On the way, we demonstrate that
a class of questions containing the question whether the Axiom of Choice
is necessary for the proof of a certain ZFC-theorem is algorithmically unde-
cidable. We further apply the methods to show that it is independent of ZF
whether every real closed field has a value group section and a residue field
section. This also sheds some light on the possibility to effectivize construc-
tions of integer parts and value group sections which was considered e.g. in
[DKKL] and [KL].

1 Introduction

A real closed field (RCF) K is a field in which —1 is not a sum of squares and
every polynomial of odd degree has a root. Equivalently, it is elementary equiv-
alent to the field of real numbers in the language of rings. We assume familiarity
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with the basic notions and theorems connected with RCFs and refer the reader
to [CK] otherwise. A field K is formally real if —1 is not a sum of squares in K.
K is orderable if there is a linear ordering < of K that respects the addition and
multiplication of K. If K is formally real, then there is a real closed algebraic field
extension K’ of K, called real closure of K, which is unique when K is orderable,
in which case we will denote it by K. By [L], the existence of real closures for
formally real fields depends on the Axiom of Choice, while the existence of real
closures for ordered fields is known to follow from ZF alone (see [San]). If K is
a real closed field, X C K and Ky is the smallest subfield of K containing X as a
subset, then K is also a subfield of K.

Definition 1. Let K be an RCF. Then I C K is an integer part of K iff I is a
discretely ordered subring of K such that 1 is the minimal positive element of I
and, for every x € K, thereisi € [ withi <x <i+1.

The idea here is that I is in a relation to K similar to the relation of Z to R.
Integer parts of real closed fields are especially interesting as they are known to
coincide with models of a certain natural fragment of Peano Arithmetic, namely
Open Induction (see [S]).

In [MR], Mourgues and Ressayre showed that every real closed field has an
integer part. Their construction uses the Axiom of Choice (in the form of Zorn’s
lemma) implicitly at least in the proof of the crucial Corollary 4.2. There has re-
cently been some interest in the complexity of such a construction, see e.g. [DKL]
or [DKKL]. For this purpose, a well-ordering of the real closed field is assumed
to be given. This motivates us to ask whether this ingredient is actually neces-
sary, i.e. whether there is a way to ‘construct” an integer part from the real closed
field alone. Furthermore, there are other structures associated with real closed
fields that are used in the Mourgues-Ressayre construction, namely value group
sections and residue field sections. The usual arguments for their existence uses
Zorn’s Lemma, and the question whether their construction can be effectivized
has been studied in the countable case in [KL]. Here we ask the same question:
Is the Axiom of Choice necessary to prove the existence of value group sections
and residue field sections for real closed fields?

As we show in section 3 as a side note, such questions are in general difficult to
answer: We observe a general theorem that in particular implies that the question

whether a given ZFC-theorem can be proved in ZF alone is not algorithmically
decidable.

Concerning the theorems mentioned above, the Axiom of Choice turns out
to be indeed necessary: In section 4, we construct transitive models of Zermelo-
Fraenkel set theory without the Axiom of Choice (ZF) containing a real closed
field K, but no integer part of K. Letting ¢;p denote the statement that every
real closed field has an integer part, this shows that ¢;p is independent of ZF. In
section 5, we give some extra conditions on real closed fields under which the
Axiom of Choice is not necessary for obtaining an integer part. Furthermore, we
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construct models of ZF containing real closed fields without value group sec-
tions and residue field sections. In section 4.2, we lay bare the combinatorial core
of these constructions, proving two rather general statements about subsets of
models of o-minimal theories that provably exist under ZF. In section 6, we ob-
tain as a consequence that the existence of integer parts, value group sections and
residue field sections is indeed highly non-constructive: To be precise, we show
that none of them is realizable via primitive recursive set functions. In section
7, we give an upper estimate on the amount of choice necessary to show that a
real closed field possesses these substructures, showing in ZF that well-orderable
real closed fields have value group sections. Section 8 then briefly discusses some
open questions and topics for further work.

2 Preliminaries

We briefly summarize some notions from set theory that are necessary to under-
stand the central tool for constructing a choice-free universe with an RCF without
an integer part, namely Lemma 3] below, originally used by Hodges to show the
dependence of several algebraic constructions on the Axiom of Choice ([H1]). ZF
is Zermelo-Fraenkel set theory, ZFC is ZF together with the Axiom of Choice, see
e.g. Chapter 1 of [JI]. A model of ZF(C) is transitive iff x € M whenever y € M
and x € y. The rough idea is to start with a given countable transitive model M
of ZFC (the existence of such models is known to be consistent with ZFC unless
ZFC itself is not) containing a certain algebraic object A and then build a model
N(A) of ZF that contains an isomorphic copy A’ of A (i.e. in the real world V,
there is an isomorphism between A and A’ - for our purposes, we can identify A
and A’), but only those subsets of A that are respected by all automorphisms that
fix some finite subset of A. It is important to note that ‘all automorphisms” here is
to be understood with respect to the set-theoretical universe V, in particular not
relativized to the model N(A).

Most of our notation is standard. If f is a map and X is a subset of its domain, then
we denote by f[X] the image of X under f; if @ = (a4, ...,a,) and b= (by, ..., by)
are finite subsets of the domain and the range of f, respectively, then we write
f(@) = b to mean that f(a;) = b; foralli € {1,..,n}. When we write (ZF) be-
fore a theorem statement, we mean that the statement is provable in ZF alone,
i.e. without the Axiom of Choice. When 2 is a structure and ¥ C 2l is a finite
sequence of elements of 2, then tpy (¥) denotes the type of X in 2, where the sub-
script 2 is dropped when the structure is clear from the context. For a set X and
a transitive M with X C M = ZF, $M(X) denotes the power set of X in M, i.e.
the set of subsets of X contained in M.

Definition 2. Let M |= ZF, and let R € M be a ring. Then R is M-symmetric
iff, for every X € M (R), there is a finite sy C R such that 7[X] = X for every
automorphism 7t of R which fixes sx pointwise, i.e. tx(a) = a for every a € s. In
this case, s is called a support for X.

Remark: Note that, if R is an RCF, then 7t must preserve the canonical order-
ing of R so that for finite s, 77 fixes s pointwise iff 77[s] = s.
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Lemma 3. Let L be a countable first-order language and 2 be a countable
L-structure. Then there is a transitive model N(2) of ZF which contains an
N (2()-symmetric isomorphic copy of .

Proof. This is Lemma 3 of [H1] and also Lemma 3.7 of [H2], where it is proved. =

That N(2l) contains an isomorphic copy 2’ of 2 is in general not enough to
show an independence from ZF - one must also know that the relevant properties
of A still hold for 2" in N (). Some properties, as e.g. countability, will in general
not be preserved. However, every notion relevant for our purposes is absolute
between transitive models of ZF (see section 4 for the definitions of a value group
section and a residue field section):

Lemma 4. Let K and R be sets. The following statements are absolute between all
transitive models of ZF containing K (or K and R, where relevant):

e (a) K is a real closed field

e (b) Ris a subring of K

e (¢) R is a dense subset of K

e (d) Ris an integer part of K

e (e) R is a value group section of K
e (f) R is a residue field section of K

Proof. Recall that a formula in the language of set theory is Ay if all of its quan-
tifiers are restricted. By Lemma 12.9 of [J1], Ap-formulas are absolute between
transitive classes. It is easy to see that (b)-(f) are expressable with quantifiers re-
stricted to K and R, so that (b)-(f) are in fact absolute between arbitrary transitive
classes containing K and R.

It remains to see that (a) is Ap-expressable in a transitive model of ZF. This is
obvious for the axioms of ordered fields. We need to say that —1 is not a sum of
squares in K and that every polynomial of odd degree with coefficients in K has
a root in K. Denoting by <“X the set of finite sequences of elements of a set X,
this is easily expressable with quantifiers bounded by <“(w U K). But <“(w UK)
exists and is absolute for every transitive model of ZF containing K. m

Remark: In order for some of our statements to make sense, we note that the
value group and the residue field of a real closed field K, being definable over K,
exist in plain ZF. Hence e.g. a model of ZF with an RCF K without a value group
section will contain the value group O of K, but no embedding from O into K.

3 A Remark on the Decidability of the Necessity of Axioms

We take the opportunity to remark that there is no general procedure to
decide whether or not the Axiom of Choice is needed in the proof of a certain
ZFC-theorem. In fact, there are various places in mathematical logic where one
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is concerned with the necessity of certain axioms for the proof of a theorem; in
set theory, typical questions are about the necessity of the Axiom of Choice and
large cardinal assumptions. In arithmetic, one is interested in the minimal degree
of induction necessary for the proof of some statement. Generally, it is hard to
determine the answer. This suggests that these problems may be undecidable.
We show that this is indeed the case for all the cases mentioned and in fact many
more. The proof is quite easy; to the best of our knowledge, however, this has so
far not been written down.

Theorem 5. Let T be a first-order theory and ¢ a statement such that T + —¢
is undecidable. Then there is no effective procedure to decide whether, given a
proof in T + ¢ of some statement 1, the statement ¢ is provable in T; that is, there
is no program P such that P, when run on the Godel code of a T + ¢-provable
formula v, stops with output 1 iff ¢ is provable in T, stops with output 0 iff ¢ is
not provable in T and does not stop when run on the Godel code of a formula not
provable in T + ¢.

Proof. Let T and ¢ be as in the assumptions of the theorem. Assume for a contra-
diction that P is a program as described and let i be an arbitrary formula. Clearly,
T + ¢ proves ¢ ift T proves ¢ — 1. Now ¢ V ¢ is clearly provable in T + ¢ for ev-
ery ¢. Hence, we can use P to decide whether for a given formula ¢, the formula
¢V ¢pis provablein T. But ¢ V ¢ is provable in T iff 1 is provable in T + —¢. Thus
P can be used to decide T + —¢, which contradicts the assumption that T + —¢ is
undecidable. m

Remark: This result can also be obtained as a consequence of a theorem of
Ehrenfeucht and Mycielski which states that, if T 4+ -« is undecidable, then there
is no recursive function f such that Wr(¢) < f(Wri4(¢)) holds for all theorems
¢ of T; here, Ws is a measure for the complexity of the shortest proof of formula
in the theory S. For a precise notion of a complexity measure and a proof, see
[EM].

We note some particularly interesting special cases. (We assume that PA and
ZFC are consistent.)

Corollary 6. 1. There is no effective procedure to decide whether a ZFC-theo-
rem is provable in ZF alone.

2. Assuming the consistency of some large cardinal hypothesis H, there is no
effective procedure to decide whether a ZFC + H-theorem is provable in
ZFC alone

3. There is no effective procedure that maps PA-theorems ¢ to the degree of
induction necessary for their proof, i.e. the smallest n such that I3, - ¢

Proof. For (1) and (2), this follows from the observation that every consistent
recursive extension of ZF is undecidable.

Concerning (3), assume for a contradiction that P is a program that, given a (code
for) a PA-theorem 1, outputs the smallest n such that 1 is provable in I%,; (and
does not halt when the input is not provable in PA). We use the definability
of bounded truth predicates in arithmetic to write the induction axioms for X,
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formulas as a single formula ¢, for each n € w. Now, every recursive consis-
tent extension of I%; (i.e. PA™ + ¢) is undecidable. Since ¢, is not implied by
I3, PA™ 4 ¢1 + —¢y is consistent and hence undecidable. But, as IX-theorems
are PA-theorems, P would allow us to decide whether some theorem ¢ of I, is
provable in I3, a contradiction to Theorem [

4 Real Closed Fields without Integer Parts

We now construct a transitive M = ZF such that, for some K € M, M satisfies
that K is a real closed field that has no integer part. Our method is that used
by Hodges in [H1] and [H2] to construct choicefree counterexamples to some
algebraic theorems.

Definition 7. If K is a real closed field, then X C K is bounded in K iff there is
y € K such that y > x for every x € X. An RCF K is unbounded iff for every
finite @ C K, the real closure RC(@) of 7 in K is bounded in K. K is w-homogenous
iff, for all finite @,b C K, tp(d) = tp(E) implies that for every c € K, thereisd € K
such that tp(@,c) = tp(b, d).

The point behind the following lemma is that, if K is an RCF, @ C K is finite
and x € K, then tp(x,d) only depends on the place of x in the ordering of RC(7).
For a direct proof of this, see Lemma 5.4.3 of [CK].

Lemma 8. Let K be an RCF, a C K finite such that RC(a) is bounded in K
and x > RC(a). Then there is ¢ > 0 in K such that tp(a,x) = tp(a,y) for all
ye (x—egx+e).

In particular, if I is an integer part of K, then there are i € I, r € K\ I such that
tp(a,i) = tp(a,r).

Proof. By the claim in the proof of Theorem 3.4 of [DKS], if r ¢ RC(@), then tp(r, @)
is realized by all elements of an interval C containing r.

The other statement follows easily as RC(a) is bounded in K, while I is
unbounded and so I \ RC(a) # @. Hence we can pick some i € I bigger than all
elements of RC(#@), pick ¢ < 1 asin the first statement and take r € (i —¢,i+¢) \ K.
Then i and r are as desired. n

Lemma 9. Let M be homogenous, n € N, ibe M", tp(d) = tp(l;). Then there is

an automorphism 7t of M such that (@) = b. In particular, this holds when M is
countable and w-homogenous.

Proof. See Proposition 4.2.13 of [Mal. m

Lemma 10. Let K be a countable, unbounded, w-homogenous real closed field, let
d C K be finite, and let I be an integer part of K. Then there is an automorphism
7t of K such that 7t fixes 4 pointwise and there are x € I, y € K\ I such that
n(x) = y. In particular, 4 is not a support for I.

Proof. As K is unbounded, RC(7@) is bounded in K. Hence, by Lemma 8] there are
i € I,r € K\ Isuch that tp(d,i) = tp(d,r). By Lemma[9 there is an automor-
phism 77 of K such that 77 is the identity on @ and 7(i) = r.

Hence 7 fixes @, but I # {7t(j)|j € I}. ]
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Corollary 11. If K is a countable, unbounded, w-homogenous real closed field,
then no integer part I of K has a support.

Proof. Immediate, as Lemma [10is true for all integer parts I of K and all finite
i C K. ]

Theorem 12. Let K be a countable, unbounded, w-homogenous RCF. Then there
exists M |= ZF containing an isomorphic copy of K such that K has no integer
partin M.

Proof. By LemmalI0] no integer part of K can have a support. Hence we can apply
Lemma 3 to get a model M of ZF containing an isomorphic copy K’ of K which
is M-symmetric. Suppose that M contains an integer part I for K. Then I is in
particular a subset of K’ contained in M and hence has a support 4. But this con-
tradicts Corollary [I1](mind our remarks on the meaning of ‘every automorphism’
preceding Definition [2)). [

Corollary 13. There are transitive models of ZF which contain an RCF without
an integer part. Consequently, ¢;p is independent of ZF.

Proof. Let I = PA be countable and nonstandard, and let K be the real closure
of its fraction field. By Proposition 3.3 of [DKS], K is unbounded. Certainly, K is
countable. By Theorem 5.1 of [DKS], K is recursively saturated. By a Theorem
of Barwise and Schlipf (see [BS]), countable recursively saturated structures are
resplendent, and by Theorem 2.4 (ii) of the same paper, resplendent structures
are w-homogenous. Hence, by Theorem [12] there is a transitive M = ZF such
that M contains an isomorphic copy K’ of K without an integer part in M. By
Lemma [, K’ is an RCF in M. Assume for a contradiction that M ="K’ has an
integer part’, and let I’ € M such that M thinks that I’ is an integer part of K’. By
Lemma M again, I’ is then an integer part of K’ in the real world contained in M,
a contradiction. Hence M believes that K’ is a real closed field without an integer
part. Thus ¢;p is not provable in ZF.

On the other hand, ZFC is shown to imply ¢;p in [MR]. As ZFC is consistent
relative to ZF (see e.g. Theorem 3.5 of []J]), ¢1p is consistent with ZF. Thus ¢;p is
independent of ZF. m

4.1 Valuation-theoretical consequences

As a byproduct of the considerations above, we get two consequences for the
valuation theory of real closed fields. We start by recalling some definitions. For
more background on valuation theory, we refer the reader to [Kul.

Definition 14. Let G be a totally ordered abelian group. Then x,y € G are
archimedean equivalent iff there is n € IN such that x < ny and y < nx. If K
is a real closed field, then x,y € K are called archimedean equivalent, written
x ~ y, iff they are archimedean equivalent as elements of the totally ordered
abelian group (K, 4). On the set A of archimedean equivalence classes of K*, we
can define the operator + via [a] 4 [b] = [a -k b]. (A, +) is then the value group
of K. The mapping 0 sending each x € K* to its equivalence class [x] is called the
natural valuation on K.
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Definition 15. Let K be a real closed field with value group 0(K*). A value group
section of K is the image of a group embedding f : 8(K*) — K>? from the value
group of K to its multiplicative group of positive elements that intersects each
~-equivalence class in exactly one element.

It was proved in [Ka] (Theorem 8) that every real closed field has a value
group section with respect to the standard valuation. Moreover, it was shown
in [KL] that the construction of value group sections is AJ in K for countable real
closed fields K and that this bound is strict. The proof in [Ka] uses Zorn’s Lemma.
We show that this is actually a necessary ingredient.

Proposition 16. Let K be a non-archimedean real closed field, and let G C K be a
value group section of K with respect to the natural valuation with corresponding
embedding t : 6(K*) — K. Then for each x € K, thereis y € G with y > x and
for eachy € G, thereis e € Ksuch that (y — ¢,y +¢) NG = {y}.

Proof. Let x € K be arbitrary. Assume without loss of generality that x is infinite.
Then x? is greater than all elements of INx, hence the image of 6(x?) under ¢ is
greater than x.

Now let y € G. Let e = 4. Then all elements of (y — ¢,y + ¢) are archimedean
equivalent and hence have the same image v under 6. As t is injective, y is the
only pre-image of v under t, so im(¢) N (y — ¢,y + €) is as desired. ]

Corollary 17. Let M, K and K’ be as in the proof of Corollary[13] Then M = ‘K’ is
an RCF and K’ has no value group section with respect to the standard valuation’.

Proof. By Lemma 3} it suffices to show that no value group section of K can have
a support. To see this, let G be a value group section of K and let 4 C M be
finite. As K is unbounded by assumption and by Proposition [16] there is ¢ € G
greater than all elements of RC(@). By Lemmal§] there is 6 € K such that tp(a, x)
is the same for all x € (g — 6,g + 6). By Proposition [16} there is ¢ € K such that
(y—ey+e)NG = {y}. Lete = min(e,é) and pickz € (g—¢€,¢+¢)\ {g}
be arbitrary. Applying Lemma [ to (7,g) and (4,z) and as ¢ < ¢, there is an
automorphism 7t of K that fixes 7 and sends g to z. As ¢’ < ¢, it follows that z is
not an element of G. Hence 7 witnesses that @ is not a support for G. As G and @
were arbitrary, no value group section of K has a support. Hence M contains no
value group section for K. By Lemma ] the claim follows. n

Corollary 18. It is independent of ZF whether each real closed field has a value
group section with respect to its natural valuation.

We now turn to another structure commonly associated with a real closed
field, namely residue field sections. Roughly, a residue field section of a real
closed field contains the real numbers in that field; the residue field section forms
a maximal archimedean subfield and is hence isomorphic to a subfield of the
reals. The relevant facts about residue field sections can be found e.g. in [KL].
Here is the formal definition:

Definition 19. Let K be an RCF, let F be the set of its finite elements (i.e.
{x € K: 3dneZ|x| < n-1}, usually called the ‘valuation ring’ of K) and let
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u be the set of infinitesimal elements of K (ie. {x € K: Vn € N|x| < 1}). 1t
is easy to see that y is a maximal ideal of the ring F and hence that the quotient
R := F/p is a field, called the residue field of K. For x,y € K, let us write x ~, y
if and only if x —y € pu. A residue field section is the image of an embedding
7 : R — F that intersects each ~,-equivalence class of an element of F in exactly
one element.

It is easy to prove using Zorn’s Lemma that every RCF has a residue field
section (see e.g. Theorem 8 of [Ka]). We will now see that Zorn’s Lemma is
actually necessary.

Lemma 20. Let K be a countable, unbounded, w-homogenous real closed field
such that the residue field R of K has infinite transcendence degree over Q. Then
no residue field section of K has a support.

Proof. Let S be a residue field section of K, and suppose that 7 C K is a support
for S. As K is unbounded, it contains an infinitesimal element «; by definition of
a residue field section, if r € S, then (r —a,r +a) NS = {r}, i.e. S is discrete in K.
As R has infinite transcendence degree over Q and 7 is finite, S is not a subset of
RC(Q(d)): For S, being isomorphic to R, also has infinite transcendence degree
over Q, while RC(Q(#)) has finite transcendence degree over Q. Now, if we had
S C RC(Q(d)), then S would be a subfield of infinite transcendence degree over
Q of a field of finite transcendence degree over Q, a contradiction.

Soletr € S\ RC(Q(d)). As in the proof of Lemma (8] there is ¢ > 0 such that
for all elementszof [ := (r —¢,r+¢), tp(d,r) = tp(d,z). We may assume without
loss of generality thate € psothat INS = {r}. Letz € I\ {r}. Then there is, by
w-homogenity, an automorphism 7t of K that fixes @ and sends r to z. Asz ¢ S by
the choice of z, a is not a support for S. n

Theorem 21. There is a transitive model M of ZF containing a real closed field K’
without a residue field section. Consequently, ZF does not prove that every real
closed fields has a residue field section.

Proof. By Lemma[20land Lemmal3) it suffices to construct a countable, unbounded,
w-homogenous RCF whose residue field has infinite transcendence degree over
Q. This can be achieved with an elementary chain argument: Let Ky be a sub-
field of R with infinite transcendence degree over Q. By compactness, let Uy be
a countable elementary extension of Ky containing an element greater than every
element of K. By Proposition 4.3.6 of [Ma], let Hy be a countable w-homogenous
elementary extension of Up. If Hyp is unbounded, then it is as desired. otherwise
we set Ky := Hj and iterate the construction to obtain a sequence (K;|i € IN) of
w-homogenous real closed fields whose residue field has infinite transcendence
degree over Q, where K; contains an element greater than every element of K;
for j > i. Then K := {J;e Will be a real closed field (see e.g. Proposition 2.3.11
of [Ma]), it will be w-homogenous as a countable union of an elementary chain
of countable w-homogenous models, it will be countable as a countable union
of countable sets and it will have infinite transcendence degree over Q as this
already holds for the subset Ky. Hence K is as desired. m
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4.2 Generalizations

Definition 22. Let (M, <) be an ordered structure. X C M is unbounded iff for
every x € M, thereisy € X such thaty > x. X C M is discrete iff, for every
x € X, there are a,b € M such thata < x < band (a,b) N X = {x}.

Definition 23. Let £ be a first-order language and let 9t be an £-structure. x € 9
is definable in 9 iff there is an £-formula ¢(v) in one free variable v such that x is
the only element v of 9 such that M = ¢(v). If A C M, then x € M is definable
from A iff there exist an £-formula ¢ (v, @) and a finite sequence @ C A such that
x is the unique element v of M with M |= ¢ (v, 4). The set of all elements definable
from A in 91 is called the definable closure of A in 9, denoted dclyy(A), where
the 91 is usually dropped when the relevant structure is clear from the context.

Remark: If K is a real closed field, X C K, then dcl(A) in K will be the relative
algebraic closure of Q(A) in K, i.e. RC(A).

Lemma 24. Let M be an o-minimal structure and A C M. Let B be the set of all
elements above dcl(A) (i.e. strictly larger than all elements of dcl(A)). Then every
two elements in B have the same type over A.

Proof. Assume without loss of generality that A = dcl(A). Leta,b € B. It
suffices to show that for every formula ¢(x) with one free variable with pa-
rameters from A, either both a and b satisfy ¢(x), or they both satisfy —¢(x).
By o-minimality, ¢(x) defines a finite union of points (in A) and intervals (with
endpoints in {£oco} U A). If the rightmost point of Sy := {x € M|M = ¢(x)} is
an element of A, then, by assumption, both 4, b satisfy —¢(x). If not, then Sy has
a rightmost interval (c, o) with ¢ € A and, again by assumption, both a and b

satisfy ¢(x). ]

Theorem 25. Let T be a countable, consistent and o-minimal theory. Then there
is a transitive model N of ZF such that N contains a model M |= T with no
unbounded discrete subset.

Proof. As T is countable and consistent, there is a countable model M of T by the
Lowenheim-Skolem theorem. We will build an elementary chain (M;|i € w) of
countable models of T with My = M. Then we will set M := Uicw Mi. Every M;
will be w-homogenous, hence the same will hold for M as a union of a countable
elementary chain of countably homogenous models is countably homogenous.
We will have M |= T by Proposition 2.3.11 of [Ma]]. As a countable union of
countable sets, M will be countable.

The construction will be arranged in such as way that for every finite seta C M;,
the definable closure of a2 in M, will be bounded. Thus, if a C M is finite, the
definable closure of a will be bounded in M.

Let X C M be discrete and unbounded, and let 2 C M be finite. As X is
unbounded, let x € X be larger than the definable closure of a in M. As T is o-
minimal and x is not in the definable closure of a, there is an interval
J = (x — & x +¢) around x such that tp(a,y) = tp(a, x) for all y € J. By discrete-
ness of X, choose e € M small enough such that X N ] = {x} and lety € ] \ {x}.
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Then by w-homogenity there is an automorphism 77, x of M that fixes a but sends
x to y. Hence X has no support and as X was arbitrary, no discrete unbounded
subset of M has a support. Consequently, by Lemma 3] there is a countable tran-
sitive model N of ZF containing an isomorphic copy of M, but no discrete un-
bounded subset of X. As being a model of T and being a discrete unbounded
subset is absolute, N |= ‘There is a model of T without a discrete unbounded
subset’, as desired.

Now for the construction: Starting with My = M, there is, (by compactness) a
countable elementary extension M, of M|, containing an element xy bigger than
all elements of My. We now use Proposition 4.3.6 from [Mal] to construct a count-
able elementary w-homogenous extension M; of Mj,. If M; is unbounded (i.e.
the definable closure of a is bounded for every finite a C M;), we let M = My;
otherwise, we repeat the construction step. This creates a potentially infinite
elementary sequence (M;|i € w) with the desired properties. ]

This, of course, gives both Corollary [18 and Corollary [13as special cases. But
we get much more:

Corollary 26. It is consistent with ZF that there is a model of Ry, the elemen-
tary theory of the real numbers with addition, multiplication and exponentiation
without an integer part, a value group section and a residue field section. Further-
more, it is consistent with ZF that there is a model of R, the elementary theory
of the real numbers with addition, multiplication and restricted analytic func-
tions (see [DMM]) without an integer part, a value group section and a residue
field section.

Proof. It is shown in [Wi] and [DMM] that R.r, and IR, are o-minimal. Now we
can apply Theorem m

Remark: Similarly, the same holds for real closed fields with finite Pfaffian
chains, Pfaffian functions etc.

Corollary 27. Let T be, provably in ZFC, a countable, consistent and o-minimal
theory. Let P be a property of discrete, unbounded subsets of models M of T
which is expressible as ¢(M, x), where ¢(y,z) is a Ap-formula. Assume further
that ZFC proves that for each M |= T, there is some X C M with ¢(M, X). Then
ZFC does not prove that X is unique.

Proof. In [C], the following general theorem is proved: If ZFC proves Vx3ly¢
(where ¢ is Ag), then already ZF proves Vx3!y¢ (here 3! denotes ‘there is a unique’,
as usual). As ZF does not prove existence, ZFC does not prove uniqueness
here. m

The consequence of Theorem 25 can be further strengthened:

Corollary 28. Let a countable theory T be consistent and o-minimal. Then there
is a transitive model N of ZF containing a model M of T such that, for any
unbounded subset S C M, S contains a final segment of M (i.e. for some x € M,
{yeM:y>x} CS).
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Proof. Construct M as in the proof of Theorem 25| Let S be an unbounded subset
that does not contain a final segment of M; that is, the _complement of S in M is
also unbounded in M. Assume that the finite set a C M is a support for S. Now
dcl(a) is bounded in M, so let x € S, y € M \ S both be greater than all elements
of dcl(a). As in the proof of Theorem 25, we have tp(a, x) = tp(a, y), hence there
is an automorphism 7t of M fixing a such that 77(x) = y. Hence a is not a support
for S, a contradiction. This suffices by Lemma 3l n

Similarly, we can re-use the idea of Theorem 21]to considerably strengthen the
conclusion:

Corollary 29. There is a transitive model of ZF containing a real closed field K
with infinite transcendence degree over Q, but no discrete subset of infinite tran-
scendence degree over Q.

Proof. It suffices to observe that discreteness and infinite transcendence degree
are the only properties of a residue field section used in the proof of Theorem 21l
m

5 When supports suffice

In this section, we consider the converse question suggested by our results above:
Namely conditions under which if, in the real world, K is an RCF with an integer
part I with a support g, there is an integer part of K in any transitive model of ZF
containing K.

Definition 30. An RCF K is supported iff its transcendence degree over Q is fi-
nite, i.e. iff there is a finite  C K such that K = RC(a).

It is easy to see that being supported is Ayp and hence absolute between transi-
tive models of ZF. We start with some easy observations:

Proposition 31. If K is supported, then every integer part of K has a support.
Furthermore, the only automorphism 7 : K — K with 7t(a) = a is the identity.

Proof. Leta C K be as in the definition of being supported. Then a is obviously a
support for every subset of K, including every integer part. The second statement
is also obvious. m

This excludes the above construction for eliminating integer parts from being
applied to a supported K. In fact, it follows from ZF that every supported real
closed fields has an integer part:

Lemma 32. (ZF) Let K be supported. Then K has an integer part.

Proof. Let a C K be finite, K = RC(a). Then K is in itself the Skolem hull of a
(with respect to formulas in the language of ordered rings). As the formulas of
the language of ordered rings are easily explicitely well-orderable in ordertype
w, so is K. Hence it is provable in ZF that every supported RCF is well-orderable
in ordertype w and hence countable. By Theorem 4.1 of [KL], it has a residue
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field section (in ZF). Now [DKKL] shows that the construction of IPs for count-
able RCFs is constructible given a residue field section and a well-ordering of
K. Hence, a supported RCF K has an IP in every M = ZF such that K € M.
By absoluteness of supportedness for IPs, every model of ZF believes that every
supported RCF has an IP, so this is provable in ZF. m

Lemma 33. Let K be a homogenous RCF, I an integer part of K, a2 C K a support
for I. Then K’ := RC(a) is dense in K.

Proof. We start by observing that K’ must be unbounded in K. If not, then there
arei € I withi > K’ and j € K\ I with j > K’ such that tp(a,i) = tp(a,j) and we
can proceed as in Lemma[I0/to show that a is not a support for I, a contradiction.
Now assume that K’ is not dense in K and let (x,y) be an interval of K such that
K'N(x,y) = @. Withous loss of generality, we assume that 0 < x < y. Now, as
K’ is unbounded in K, there is d € K’ such that |dx — dy| > 1. If z € K’ N (dx, dy),
then zd~! € K' N (x,y), a contradiction - thus K’ N (dx, dy) = @. As |dx —dy| > 1,
thereisi € I N (dx,dy). Letr € (dx,dy) \ I be arbitrary. Then, as in the proof of
Lemma 8 above, tp(a,r) = tp(a,i). Hence, there is an automorphism 7 of K such
that 71(a) = a and 7t(i) = r. So a is not a support for I, a contradiction. ]

Corollary 34. Under the assumptions of Lemma [33] every integer part of RC(a)
is also an integer part of K.

Proof. Let I be an integer part of RC(a). Clearly, I C RC(a) C K, I is a subring
of K with minimal element 1 and hence discretely ordered. We need to show that
each element of K can be rounded down to some element of I. So let x € K. By
density of RC(a), let x’ € RC(a) such that |[x — x’| < 1,and leti+ 1 € I such that
i+1<x <i+2 Theni <x' —1<x <x'+1 < i+ 3. Consequently, we have
xe (i,i+1]U(i+1,i+2]JU(i+2,i+3),sothereisj € Isuchthatj < x <j+1.
As x was arbitrary, I is an integer part of K. n

Remark: Note that Lemma[33/and the Corollary were proved in ZF.

The following theorem shows that, in the homogenous case, supports are ex-
actly what is needed to ensure that integer parts also exist in choice-free uni-
verses.

Theorem 35. Let K be a homogenous RCF with an integer part I which has a
support a. Then every transitive model of ZF which contains K also contains an
integer part of K.

Proof. Let M = ZF be transitive, K € M. Work in M, noting that, by our re-
mark above, everything we use is provable in ZF alone and hence holds in M.
By Lemma B3] RC(a) is dense in K. Obviously, RC(a) is supported. Hence, by
Lemma[32, RC(a) has an integer part J. By Lemma[34] | is also an integer part of
K. Hence K has an integer part in M. |

The proof actually gives us the following:
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Corollary 36. (ZF) Let K be an RCF, a C K finite such that RC(a) is dense in
K. Then K has an integer part. In particular, if there is a finite 2 C K such that
RC(a) contains an integer part of K in any transitive model of ZFC, then K has an
integer part in every model of ZF containing K.

Proof. Let M |= ZF be transitive such that K € M. Then <“K € M, and hence
a € M. The subfield k of K generated by a exists and is ordered in M, so
RC(a) € M. By absoluteness of density (see Lemma [4), RC(a) is dense in K
also in M. Hence, by Theorem [35, M believes that K has an integer part. [ ]

In the countable case, we can summarize these results as follows:

Theorem 37. Let K be a countable, w-homogenous RCF. Then K has an integer
part in any transitive M = ZF with K € M iff there is an integer part of K which
has a support.

Proof. The ‘if’ part is Theorem [35 the ‘only if” part is a direct application of
Lemma 3l m

6 Remarks on Effectivity

In [H2], W. Hodges analyzes certain field constructions in terms of ‘effectivity’,
where effectivity is taken in a weaker sense than Turing computability; instead,
he uses the primitive recursive set functions of Jensen and Karp as his underlying
model of effectiveness. In this sense, our results above allow us to argue that the
construction of an integer part for a real closed field is not effective.

An account of primitive recursive set functions can be found in [JK]. We recall
here the definition from [JK]:

Definition 38. A function F is primitive recursive, written Prim, iff it lies in the set
consisting of the following basic functions (1)-(4) and closed under the following
operations (i)-(iii):

Basic functions:

1. The projections P, ; taking n-tuples to their ith components (1 <i < n)
2. F(x) =0

3. Flx,y) = xU {y}

4. C(x,y,u,v) = xif u € v and otherwise = y

Operations:

i (Substitution 1) F(%,7)
and m,n € w

G(X,H(X),y), where X = (x1, ..., Xn), ¥ = (Y1, -, Ym)

ii (Substitution 2) F(X,1) = G(H(X,)) (with X, i/ as above)

iii (Recursion) F(z,X) = G(U{F(u,X)|u € z},2,X), X = (x1,..., Xn), N € w
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This definition is obviously analogous to the classical definition of primitive
recursion when formulated for hereditarily finite sets. Restricting primitive recur-
sive set functions to the ordinals leads to the class of ordinal recursive functions,
which have been linked with machine models of transfinite computations e.g. in
[IS] and turned out to have a considerable amount of conceptual stability, as one
would expect to be the case for a sensible notion of transfinite computability. The
proposal motivated in the first section [H2] which we follow here is to model the
intuitive concept of an effective construction via primitive recursive set functions.

Lemma 39. Primitive recursive set functions are absolute between transitive mod-
els of ZF: Le., if ¢(x,y) is the defining formula for a Prim function F, M1, M, are
transitive models of ZF and x,y € Mj; N My, then F(x) = y holds in M; iff it
holds in M5,. Moreover, transitive models of ZF are closed under Prim functions.

Proof. See Remark 2.3, part (4) of [JKI. [

Theorem 40. (1) There is no primitive recursive set function that maps each RCF
K to an integer part of K.

(2) There is no primitive recursive set function that maps each RCF K to a value
group section of K.

(3) There is no primitive recursive set function that maps each RCF K to a residue
tield section of K.

Proof. (1) Take a model M in which there is some RCF K without an IP. If such
a function f existed, it would be absolute by Lemma [39, so we would have
f(K) = fM(K) € M. As being an IP is absolute between transitive models of
ZF, f(K) would be an IP for K inside M, which contradicts the choice of M.

(2) and (3) now follow by similar arguments, using the results of section 4.1. m

Theorem 40 can be seen as complementing the results of [DKKL] and [KL] on
the effectivity of integer parts and value group sections. They show that the exis-
tence of integer parts and value group sections is highly nonconstructive unless
the necessity of choice is eliminated by extra information. The results of [DKKL]
and [KL] show, in contrast, that the existence becomes highly constructive once
this is done.

7 Well-orderable real closed fields

How much choice is actually necessary for obtaining value group sections, residue
tield sections and integer parts for a real closed field K? In this section, we give
a partial answer by observing that ZF suffices to show that each well-orderable
real closed field has a value group section. To this end, we generalize the argu-
ments from [KL] dealing with the case of countable real closed fields to higher
cardinalities.

Lemma 41. (ZF) Let K be a real closed field and < a well-ordering of K. Then K
has a residue field section S.
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Proof. This is a slight adaption of the proof of Theorem 3.1 from [KL], which we
include for the sake of completeness. Let K be a real closed field, K = (x|t < «),
where « is an ordinal and where xy = 1. We define a sequence (G, < x) of
divisible abelian subgroups of (K~Y, -) via transfinite recursion on ; as the trans-
finite recursion principle is provable in ZF, this will give the desired conclusion
in ZF. Let Gg := {1}. If a is a limit ordinal, then G, := U,.,G.. If B = a +11is
a successor ordinal, then Gg = Gu iff some element of G, is archimedean equiv-
alent to x,. If this is not the case, we let Gg be the subgroup of (K-, -) generated

by G, U {x]|g € Q}. (Here x# denotes the nth root of x™ in K. Note that all x,
considered here are positive, so that these roots must exist by the fact that K is
real closed.) In any case, G, is easily seen to be a divisible abelian group. Finally,
welet G := |J,.« G,. As an increasing union of divisible abelian groups, G is a di-
visible abelian group. We show that G contains a unique representative for each
archimedean equivalence class of K. Let x € K be arbitrary and suppose that no
element of G is archimedean equivalent to x. There is ¢ < « such that x = x,. As
no element of G is archimedean equivalent to x by assumption, the same holds for
every element of G, C G, hence x, € G,;1 C G by definition of G,1, a contradic-
tion. Assume now that x,y € G are archimedean equivalent. Suppose first that
x,y entered G simultaneously at stage ¢ of the construction and that ¢ is the mini-
mal stage after which we have two archimedean equivalent elements in G. Hence
there are a,b € G, different from 0 and g1, g, € Q such that x = ax/' and y = bx>.
If g1 = g2 = g, then ax] and bx] are archimedean equivalent, hence so are 2 and b,
which contradicts the minimality of ¢. So let q; # g2, and assume without loss of

generality that g, > go. Then x/' " and ba~! € G, are archimedean equivalent,
hence so are x, and (ba~!)%2791, s0 no new element would have entered G at stage
1, which again contradicts the minimality of ;. Assume now that x enters at stage
11 and y enters at stage 1, where 11 # 1, and assume without loss of generality
that 1, > 11. Then there are a € G,, and 0 # g € Q such that x and y = ax], are

1
archimedean equivalent; consequently, so are x,, and (xa=1)7 € G,,, so no new
element would have entered at stage G,,, once again contradicting the choice of
L. |

Remark: The proof of Theorem 4.1 of [KL] showing that some residue field
section of a countable real closed field K is I1J in K can be adapted in a similar
manner to show that for an arbitrary K, a residue field section of K is constructible
in K and a well-ordering of K, i.e. it is provable in ZF that, if < is a well-ordering
of K, then there is a residue field section S of K. The case of integer parts is consid-
erably more involved; careful inspection of the proofs of [DKKL] will probably
allow one to show that an integer part of a real closed field K is constructible rela-
tive to a well-ordering, a value group section and a residue field section of K, and
hence relative to a well-ordering of K alone by Theorem (41| and the first part of
this remark, but we will not pursue this further here.
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8 Conclusion, Open Questions and Further Work

We have seen that there are examples of real closed fields that have neither an
integer part nor a value group section or a residue field sections in some transi-
tive model of ZF containing them. This shows in particular that in the analysis
of ‘effective’ methods for constructing integer parts, value group sections and
residue field sections of given real closed fields as in [DKL] or [DKKL], it is in-
deed necessary in general, as is done there, to cancel out the use of AC by e.g.
tixing a well-ordering of the real closed field. In contrast, we also showed that
this additional assumption is unnecessary when the field in question has finite
transcendence degree over Q.

We do not know how strong a choice principle ¢;p (or the existence of value
group sections or residue field sections) for real closed fields really is. In particu-
lar, we do not know whether ¢;p actually implies AC, (though we conjecture that
it does not) or some weakening of AC and how much of AC is necessary for ¢;p.
Moreover, it would be interesting to see whether e.g. ZF + AD (i.e. ZF with the
axiom of determinacy, see e.g. [J1]) implies ¢;p.
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