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Abstract

We characterize metric spaces whose Lipschitz free space is isometric to
ℓ1. In particular, we show that the Lipschitz free space over an ultrametric
space is not isometric to ℓ1(Γ) for any set Γ. We give a lower bound for the
Banach-Mazur distance in the finite case.

1 Introduction

An R-tree (T, d) is a metric space which is geodesic (i.e. for every pair of points
x, y ∈ T there is an isometry φ : [0, d(x, y)] → T with φ(0) = x and φ(d(x, y)) = y)
and satisfies the 4-point condition:

∀ a, b, c, d ∈ T d(a, b) + d(c, d) ≤ max {d(a, c) + d(b, d), d(b, c) + d(a, d)} .

A space which satisfies just the 4-point condition is called 0-hyperbolic. Clearly,
a subset of an R-tree is 0-hyperbolic. The converse is also true [4, 7], so we will
use terms “0-hyperbolic” and “subset of an R-tree” interchangeably. Moreover,
for every 0-hyperbolic M there exists a unique (up to isometry) minimal R-tree
which contains M, we will denote it conv(M). Thus one can define the Lebesgue
measure λ(M) of M which is independent of any particular tree containing M.
We will say that M is negligible if λ(M) = 0. A. Godard [9] has proved that a
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metric space M is 0-hyperbolic if and only if F (M), the Lipschitz free space over M
(see the definition in the next section), is isometric to a subspace of some L1(µ).
In this paper we are interested in metric spaces whose free space is isometric to
(a subspace of) ℓ1. By the above, such spaces must be 0-hyperbolic, and it is also
easy to see that they must be negligible (if not the free space will contain L1).

So let M be a separable negligible complete metric space which is a subset of
an R-tree. One can ask two questions:

• When is F (M) isometric to ℓ1?

• When is F (M) isometric to a subspace of ℓ1?

Concerning the first question, the results of A. Godard point to the relevance
of branching points of conv(M). We recall that a point b ∈ T is a branching
point of a tree T if T \ {b} has at least three connected components. A sufficient
condition for F (M) ≡ ℓ1 is that M contain all the branching points of conv(M)
[9, Corollary 3.4]. The main result of this paper (Theorem 5) claims that this is also
a necessary condition. We give two different proofs – one is based on properties
of the extreme points of BF (M) and the other on properties of the extreme points
of BLip0(M) (Theorem 4).

For certain finite 0-hyperbolic spaces M we have a third proof which also
allows to compute a simple lower bound for the Banach-Mazur distance between

F (M) and ℓ
|M|−1
1 (Proposition 9).

As far as the second question is concerned, it is obviously enough that M be
a subset of a metric space N such that F (N) ≡ ℓ1. We will show that this is the
case when M is compact, 0-hyperbolic and negligible (Proposition 8). We do not
know whether one can drop the assumption of compactness in general.

This paper is an outgrowth of a shorter preprint in which we have shown
that for any ultrametric space M, the free space F (M) is never isometric to ℓ1

(Corollary 6) answering a question posed by M. Cúth and M. Doucha in a draft
of [5]. In the meantime, this question has been independently answered in [5].

2 Preliminaries

As usual, for a metric space M with a distinguished point 0 ∈ M, the Lips-
chitz free space F (M) is the norm-closed linear span of {δx : x ∈ M} in the space
Lip0(M)∗, where the Banach space Lip0(M) =

{
f ∈ R

M : f Lipschitz, f (0) = 0
}

is equipped with the norm ‖ f‖L := sup

{
f (x)− f (y)

d(x, y)
: x 6= y

}
. It is well known

that
F (M)∗ = Lip0(M) isometrically. More about the very interesting class of Lip-
schitz-free spaces can be found in [10].

To prove that a Lispchitz-free space is not isometric to ℓ1, we will exhibit two
extreme points of its unit ball at distance less than one. For this purpose we will
use the notion of peaking function at (x, y), x 6= y, which is a function f ∈ Lip0(M)

such that
f (x)− f (y)

d(x,y)
= 1 and for every open set U of {(x, y) ∈ M × M, x 6= y}
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containing (x, y) and (y, x), there exists δ > 0 with

(z, t) /∈ U ⇒
| f (z)− f (t)|

d(z, t)
≤ 1 − δ.

This definition is equivalent to:
f (x)− f (y)

d(x,y)
= 1 and if (un)n∈N, (un)n∈N ⊂ M, then

lim
n→+∞

f (un)− f (vn)

d(un, vn)
= 1 ⇒ lim

n→+∞
un = x and lim

n→+∞
vn = y.

Moreover in [11, Proposition 2.4.2], the following is proved:

Proposition 1. Let (M, d) be a complete metric space and x 6= y in M. If there is a

function f ∈ Lip0(M) peaking at (x, y), then
δx−δy

d(x,y)
is an extreme point of the unit ball

of Lip0(M)∗. In particular, it is an extreme point of the unit ball of F (M).

Given an R-tree (T, d) and x, y ∈ T, the segment [x, y] is defined as the range
of the unique isometry φx,y from [0, d(x, y)] ⊂ R into T which maps 0 to x and
d(x, y) to y.

We recall that for every 0-hyperbolic space M, there exists an R-tree T such
that M ⊂ T. The set

⋃
{[x, y] : x, y ∈ M} ⊂ T is then also an R-tree. It is clearly a

minimal R-tree containing M; it is unique up to an isometry and will be denoted
conv(M). Simple examples show that conv(M) does not have to be complete
when M is. This does not present any difficulty in what follows.

A point b ∈ T is said to be a branching point if there are three distinct points
x, y, z ∈ T\{b} with [x, b]∩ [y, b] = [x, b]∩ [z, b] = [y, b]∩ [z, b] = {b}. We say that
the branching point b is witnessed by x, y, z. The set of all branching points of T
is denoted Br(T). If M is 0-hyperbolic, the set of all branching points of conv(M)
is denoted Br(M).

A subset A of T is measurable if φ−1
x,y(A) is Lebesgue-measurable, for every x

and y in T. For a segment S = [x, y] in T and A measurable, we denote λS(A) :=
λ(φ−1

x,y(A)), with λ the Lebesgue measure on R. Let R be the set of subsets of

T that can be written as a finite union of disjoint segments. For R =
r⋃

k=1

Sk ∈

R, define λR(A) :=
r

∑
k=1

λSk
(A) and finally, set λT(A) := sup

R∈R

λR(A). If M is

0-hyperbolic, we put simply λ(M) := λconv(M)(M). We say that M is negligible if

λ(M) = 0.

Given two points x and y in T, we will denote πxy : T → [x, y] the metric
projection onto the segment [x, y]. It is well known and easily seen that πxy is
non-expansive (see [1, 3]).

Finally, we recall that a metric space (M, d) is ultrametric if d(x, y) ≤
max {d(x, z), d(y, z)} for any x, y, z ∈ M.
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3 Isometries with ℓ1

Let us start by characterizing precisely when there exists a function peaking at
(x, y) for points x, y ∈ M ⊂ T.

Proposition 2. Let (M, d) be a complete subset of an R-tree and x, y ∈ M, x 6= y. The
following assertions are equivalent

(i) There is f ∈ Lip0(M) peaking at (x, y).

(ii) M ∩ [x, y] = {x, y} and for every p ∈ {x, y},

lim inf
u,v→p

d(πxy(u), u) + d(πxy(v), v)

d(πxy(u), πxy(v))
> 0,

(with the convention that
α

0
= +∞). (1)

(iii) M ∩ [x, y] = {x, y} and for every p ∈ {x, y},

lim inf
u→p

d(πxy(u), u)

d(πxy(u), p)
> 0, (with the convention that

α

0
= +∞). (2)

Proof. (ii) ⇒ (i) Let us first suppose that x, y satisfy (1) and [x, y]∩ M = {x, y}. For

any u ∈ M we define f (u) = d(y, πxy(u)). Then
f (x)− f (y)

d(x, y)
= 1 and ‖ f‖L = 1.

Consider (xn)n∈N, (yn)n∈N ⊂ M such that lim
n→+∞

f (xn)− f (yn)

d(xn, yn)
= 1. We thus

have for n large enough

d(y, πxy(xn)) = f (xn) > f (yn) = d(y, πxy(yn)). (3)

It follows

1 = lim
n→+∞

f (xn)− f (yn)

d(xn, yn)
=

lim
n→+∞

d(πxy(xn), πxy(yn))

d(xn, πxy(xn)) + d(πxy(xn), πxy(yn)) + d(πxy(yn), yn)

and in particular

lim
n→∞

d(xn, πxy(xn)) + d(πxy(yn), yn)

d(πxy(xn), πxy(yn))
= 0. (4)

Since lim
n→+∞

d(xn, πxy(xn)) = lim
n→+∞

d(yn, πxy(yn)) = 0, the sets of cluster points of

the sequences ((πxy(xn), πxy(yn)))n∈N ⊂ [x, y]2 and ((xn, yn))n∈N ⊂ M2

coincide. By compactness of [x, y]2 there exists such a cluster point (u, v) ∈ [x, y]2.
Since the space M is complete, (u, v) ∈ M2, and therefore (u, v) ∈ {(y, x), (x, x),
(y, y), (x, y)}. Clearly, (3) implies (u, v) 6= (y, x), and (1) together with (4) imply
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that (u, v) 6= (x, x) and (u, v) 6= (y, y). We thus get that (xn) converges to x and
(yn) converges to y which proves that f is peaking at (x, y).

(i) ⇒ (iii) If there is z ∈ M ∩ (x, y), then
δx−δy

d(x,y)
is a convex combination of δx−δz

d(x,z)

and
δz−δy

d(z,y)
so by Proposition 1, there cannot be a peaking function at (x, y).

Next assume that [x, y] ∩ M = {x, y} but there is a sequence (un)n∈N ⊂ M
converging to x and

lim
n→+∞

d(πx,y(un), un)

d(πx,y(un), x)
= 0.

Let f ∈ SLip0(M) be such that
f (x)− f (y)

d(x,y)
= 1. Let f̃ be a 1-Lipschitz extension of f

to [x, y]. Then

| f (x)− f (un)| ≥ | f (x)− f̃ (πxy(un))| − | f̃ (πxy(un))− f (un)|

= d(x, πxy(un))− | f̃ (πxy(un))− f (un)|

≥ d(x, πxy(un))− d(πxy(un), un)

≥ d(x, un)− 2d(πxy(un), un)

It follows that

lim
n→+∞

| f (x)− f (un)|

d(x, un)
= 1

and f is not peaking at (x, y).
(iii) ⇒ (ii) Finally, since

d(u, πxy(u)) + d(v, πxy(v))

d(πxy(u), πxy(v))
≥ min

{
d(πxy(u), u)

d(πxy(u), p)
,

d(πxy(v), v)

d(πxy(v), p)

}

we get

lim inf
u→p

d(πxy(u), u)

d(πxy(u), p)
= 0

if the liminf in (1) is 0 for some p ∈ {x, y}.

For the dual version of the proof we will need the following simple lemma
which is valid in any metric space (see also [8] for a different proof).

Lemma 3. Let (M, d) be any metric space and suppose that 0 ∈ A ⊂ M.

If f ∈ ext
(

BLip0(A)

)
, then fS, f I ∈ ext

(
BLip0(M)

)
where

fS(x) := sup
z∈A

f (z)− d(z, x) and f I(x) := inf
z∈A

f (z) + d(z, x)

for x ∈ M.

Note that fS resp. f I above are the smallest resp. the largest 1-Lipschitz exten-
sions of f (which basically gives the proof).
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Proof. Let us give a proof for fS. The proof for f I is similar. Clearly fS(x) = f (x)
for x ∈ A and fS is 1-Lipschitz as a supremum of 1-Lipschitz functions. Let

fS =
p+q

2 , p, q ∈ BLip0M. If x ∈ A, then p(x) = q(x) = f (x) as f ∈ ext
(

BLip0 A

)
. If

x ∈ M \ A, then ∀ z ∈ A:

f (z)− p(x) = p(z) − p(x) ≤ d(z, x).

Thus

fS(x) = sup
z∈A

f (z)− d(z, x) ≤ p(x).

By the same argument fS(x) ≤ q(x). So fS(x) = p(x) = q(x) for all x ∈ M.

We are now ready to state and prove a statement about extreme points of the
ball in F (M) and Lip0(M) when M is 0-hyperbolic.

Theorem 4. Let M be a complete subset of an R-tree. If there is b ∈ Br(M) \ M then

a) there exist µ 6= ν ∈ ext
(

BF (M)

)
such that ‖µ − ν‖ < 2.

b) there exist f 6= g ∈ ext
(

BLip0(M)

)
such that ‖ f − g‖L < 2.

Since the Lipschitz free space over the completion of M is isometric to the
Lipschitz free space of M, the above completeness hypothesis is not restrictive.

Proof. a) Let the points x′, y′, z′ ∈ M witness that b ∈ Br(M). For p′ ∈ {x′, y′, z′}

we denote Mp′ =
{

w ∈ M : πbp′(w) ∈]b, p′]
}

. Then Mp′ is closed in M as πbp′

is continuous and b is isolated from M. Notice that p ∈ Mp′ satisfies (2) if there
is α > 0 such that d(w, πbp(w)) ≥ αd(p, πbp(w)) for all w ∈ Mp′ . We will show

that for every 0 < α < 1 such a point p exists. Indeed let 1−α
1+α =: β > 0 and set

f (w) := d(b, w). Then Ekeland’s variational principle [6] ensures the existence of
a point p ∈ Mp′ such that f (p) ≤ f (w) + βd(p, w) for all w ∈ Mp′ . It follows that

d(b, πbp(w)) + d(πbp(w), p) ≤ d(b, πbp(w)) + d(πbp(w), w) + βd(p, w)
=⇒ d(πbp(w), p) ≤ d(πbp(w), w) + β(d(πbp(w), w)

+d(πbp(w), p))

=⇒
1−β
1+β d(p, πbp(w)) ≤ d(w, πbp(w)).

Thus, we see that we can find x, y, z ∈ M such that (iii) in Proposition 2 is
satisfied for the segments [p, q] where p 6= q ∈ {x, y, z}. Proposition 1 then yields

that
δp−δq

d(p,q)
is an extreme point of the unit ball of F (M). Assuming, as we may,
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that d(x, z) ≤ d(z, y) ≤ d(x, y), we obtain
∥∥∥∥

δx − δy

d(x, y)
−

δz − δy

d(y, z)

∥∥∥∥
F (M)

=

∥∥∥∥
1

d(x, y)

[
(δx − δz) + (δz − δy)

]
−

δz − δy

d(y, z)

∥∥∥∥
F (M)

=

∥∥∥∥
[

1

d(x, y)
−

1

d(y, z)

]
(δz − δy) +

δx − δz

d(x, y)

∥∥∥∥
F (M)

≤ d(z, y)

[
1

d(y, z)
−

1

d(x, y)

]
+

d(x, z)

d(x, y)

= 1 +
d(x, z)− d(z, y)

d(x, y)
≤ 1.

In conclusion, µ :=
δx−δy

d(x,y)
and ν :=

δz−δy

d(y,z)
are two extreme points of the unit ball of

F (M) at distance less than or equal to 1.
b) We denote δ := inf {d(w, b) : w ∈ M}. Let x, y, z be 3 points witnessing

the fact that b is a branching point. Two pointed metric spaces which differ only
by the choice of the base point have isometric free spaces. This trivial observa-
tion allows us to assume that x = 0 and that, for a fixed 0 < ε < 1, we have
d(b, z) < (1 + ε)δ. Let Mz = {w ∈ M : πzb(w) ∈ (b, z]}. Let us consider the
closed nonempty set F = {w ∈ Mz : d(b, z) ≤ (1 + ε)δ}. Given 0 < α < 1 and
using Ekeland’s variational principle as above, we may assume that z satisfies
d(w, πzb(w)) ≥ αd(z, πzb(w)) for all w ∈ F. Clearly d(w, πzb(w)) ≥ αd(z, πzb(w))
for all w ∈ Mz \ F.

We define f (·) := d(0, ·) on M and then g2(·) := d(0, ·) on M \ Mz, g1 := (g2)S

on (M \ Mz) ∪ {z} and finally g := (g1)I on M. Both f , g ∈ ext
(

BLip0(M)

)
by

Lemma 3. The fact that M is a subset of an R-tree helps to write g explicitly:

g(w) =

{
d(0, w), w ∈ M \ Mz,

d(0, b)− d(b, z) + d(z, w), w ∈ Mz.

It follows that f (w)− g(w) = 0 for w ∈ M \ Mz and f (w)− g(w) = 2d(b, πzb(w))
otherwise. We have

‖ f − g‖L = max

{
sup

w1∈Mz,w2 /∈Mz

2d(b, πzb(w1))

d(w1, w2)
,

sup
w1,w2∈Mz

2 |d(w1, πzb(w1))− d(w2, πzb(w2))|

d(w1, w2)

}

≤ max

{
2(1 + ε)δ

2δ
,

2

1 + α

}
< 2

Theorem 5. Let (M, d) be a complete metric space. The Lipschitz free space over M is
isometric to ℓ1(Γ) if and only if M is of density |Γ| − 1 and is negligible subset of an
R-tree T which contains all the branching points of T.

Proof. The sufficiency follows from [9, Theorem 3.2]. Conversely, let us assume
that F (M) ≡ ℓ1(Γ). Then M is of density |Γ| − 1 and it must be 0-hyperbolic



398 A. Dalet – P. L. Kaufmann – A. Procházka

by [9, Theorem 4.2]. In this case T = conv(M). If λT(M) > 0, there is a set
A ⊂ [0, 1] of positive measure such that A embeds isometrically into M. Then
L1 ≃ F (A) ⊂ F (M) ≡ ℓ1(Γ) which is absurd. Since the extreme points of the
ball (resp. dual ball) and their distances are preserved by bijective isometries we
get by Theorem 4 a) (resp. b)) that Br(M) ⊂ M.

Corollary 6. Let M be an ultrametric space of cardinality at least 3. Then F (M) is not
isometric to ℓ1(Γ) for any Γ.

Proof. The completion of M stays clearly ultrametric. Thus it can be isometrically
embedded into an R-tree [4]. However ultrametric spaces do not contain the
interior of any segment, much less branching points.

4 Isometries with subspaces of ℓ1

We shall now deal with the second question, i.e. when is F (M) isometric to a
subspace of ℓ1.

Lemma 7. Let M be a compact subset an R-tree such that λ(M) = 0. Then

λconv(M)(Br(M)) = 0 where the closure is taken in conv(M).

Proof. Clearly λconv(M)(Br(M)∩ M) = 0. Assume that λconv(M)(Br(M) \ M) > 0.

Then Br(M) \ M is uncountable. Hence there is some δ > 0 such that Br(M) ∩
{x ∈ T : dist(x, M) ≥ δ} is uncountable and thus the set Br(M) ∩{

x ∈ T : dist(x, M) ≥ δ
2

}
is infinite. We conclude that there is an infinite δ-separa-

ted family in M. This is absurd as M was supposed to be compact.

Proposition 8. Let M be a compact subset of an R-tree such that λ(M) = 0. Then
F (M) is isometric to a subspace of ℓ1.

Proof. Since M is compact, conv(M) is compact and thus separable. Indeed, the
mapping Φ : M × M × [0, 1] → conv(M) defined by Φ(x, y, t) := φxy(td(x, y)) is
continuous by [3, Theorem II.4.1]. Now

F (M) ⊆ F (Br(M) ∪ M) ≡ ℓ1

by [9, Corollary 3.4] as λconv(M)(Br(M) ∪ M) = 0 by the previous lemma.

We do not know if the above proposition is valid when M is supposed to be
proper.
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5 Banach-Mazur distance to ℓn
1

In the case of finite subsets of R-trees we get the following quantitative result.

Proposition 9. Let M = {x0, x1, . . . , xn}, n ≥ 2, be a subset of a R-tree. Let x0 = 0 be
the distinguished point. Let us suppose that

0 < sep(M) :=
1

2
inf {d(x, y) + d(x, z)− d(y, z) : x, y, z ∈ M distinct} .

Then

dBM(F (M), ℓn
1 ) >

(
1 −

sep(M)

4 diam(M)

)−1

.

The condition sep(M) > 0 implies immediately that for each x 6= y ∈ M we
have [x, y] ∩ M = {x, y}. For the proof we will need the following lemmas. The
first one is inspired by [2, Lemma 2.3].

Lemma 10. Let X be a Banach space. Let C =
⋂n

i=1 x∗−1
i (−∞, 1) where x∗i ∈ X∗. Let

A ⊂ X \ C have the following property: for every x 6= y ∈ A, we have
x + y

2
∈ C. Then

the cardinality |A| of A is at most n.

Proof. For x ∈ A let ϕ(x) := i for some i ∈ {1, . . . , n} such that x∗i (x) ≥ 1. Since

1 > x∗ϕ(x)

(
x + y

2

)
it follows that x∗

ϕ(x)(y) < 1 for every y ∈ A, y 6= x. Thus ϕ is

injective and the claim follows.

Lemma 11. Let f1, . . . , f2n+1 ∈ SY such that
∥∥∥ fi+ f j

2

∥∥∥ ≤ 1 − ε for some ε > 0 and all

1 ≤ i 6= j ≤ 2n + 1. Then dBM(Y, ℓn
∞) > (1 − ε)−1.

Proof. Let T : Y → ℓn
∞ such that ‖ f‖ ≤ ‖T f‖∞ ≤ (1+ ε) ‖ f‖. Then ‖T fi‖ ≥ 1 and∥∥∥ T fi+T f j

2

∥∥∥ < 1, i 6= j, which is in contradiction with the previous lemma as BO
ℓn

∞
is

the intersection of 2n halfspaces.

Proof of Proposition 9. Given 0 ≤ i 6= j ≤ n, we will denote πij := πxixj
the metric

projection onto [xi, yj]. Further we define the function fij : M → R as fij(z) :=
d(xj, πij(z)) for z ∈ M. Observe that since sep(M) > 0, this is the function

peaking at (xi, xj) from the proof of Proposition 2. It is clear that
∣∣∣ fij(x)− fij(y)

d(x,y)

∣∣∣ = 1

if and only if {x, y} =
{

xi, xj

}
. We further have that

∣∣∣∣
fij(x)− fij(y)

d(x, y)

∣∣∣∣ ≤
d(x, y)− sep(M)

d(x, y)
≤ 1 −

sep(M)

diam M

for any other couple x 6= y ∈ M. Hence
∥∥∥ fij+ fkl

2

∥∥∥
L

≤ 1 −
sep(M)

2 diam M for each

(i, j) 6= (k, l). Since n ≥ 2, we have that (n + 1)n ≥ 2n + 1 and the result
follows by Lemma 11.

Remark 12. Note that the lower bound given in Proposition 9 is not optimal. This
can be seen when M = {0, x1, x2} is equilateral. We also don’t know if this result
extends to infinite subsets of R-trees.
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