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Abstract

We characterize metric spaces whose Lipschitz free space is isometric to
{1. In particular, we show that the Lipschitz free space over an ultrametric
space is not isometric to ¢1(T') for any set I'. We give a lower bound for the
Banach-Mazur distance in the finite case.

1 Introduction

An R-tree (T,d) is a metric space which is geodesic (i.e. for every pair of points
x,y € T thereisanisometry ¢ : [0,d(x,y)] — Twith¢(0) = xand ¢(d(x,y)) =)
and satisfies the 4-point condition:

Vabc,deT d(ab)+d(c,d) <max{d(a,c)+d(bd),db,c)+d(ad)}.

A space which satisfies just the 4-point condition is called 0-hyperbolic. Clearly,
a subset of an R-tree is 0-hyperbolic. The converse is also true [4, 7], so we will
use terms “0-hyperbolic” and “subset of an R-tree” interchangeably. Moreover,
for every 0-hyperbolic M there exists a unique (up to isometry) minimal R-tree
which contains M, we will denote it conv(M). Thus one can define the Lebesgue
measure A(M) of M which is independent of any particular tree containing M.
We will say that M is negligible if A(M) = 0. A. Godard [9] has proved that a
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metric space M is 0-hyperbolic if and only if F (M), the Lipschitz free space over M
(see the definition in the next section), is isometric to a subspace of some Li ().
In this paper we are interested in metric spaces whose free space is isometric to
(a subspace of) /1. By the above, such spaces must be 0-hyperbolic, and it is also
easy to see that they must be negligible (if not the free space will contain Ly).

So let M be a separable negligible complete metric space which is a subset of
an R-tree. One can ask two questions:

e When is (M) isometric to ¢1?
e When is F (M) isometric to a subspace of ¢1?

Concerning the first question, the results of A. Godard point to the relevance
of branching points of conv(M). We recall that a point b € T is a branching
point of a tree T if T \ {b} has at least three connected components. A sufficient
condition for (M) = /¢; is that M contain all the branching points of conv(M)
[9, Corollary 3.4]. The main result of this paper (Theorem 5) claims that this is also
a necessary condition. We give two different proofs — one is based on properties
of the extreme points of Br(y;) and the other on properties of the extreme points
of Byjp, (m) (Theorem 4).

For certain finite 0-hyperbolic spaces M we have a third proof which also
allows to compute a simple lower bound for the Banach-Mazur distance between
F(M) and E‘IM‘_l (Proposition 9).

As far as the second question is concerned, it is obviously enough that M be
a subset of a metric space N such that F(N) = /1. We will show that this is the
case when M is compact, 0-hyperbolic and negligible (Proposition 8). We do not
know whether one can drop the assumption of compactness in general.

This paper is an outgrowth of a shorter preprint in which we have shown
that for any ultrametric space M, the free space F (M) is never isometric to ¢;
(Corollary 6) answering a question posed by M. Cath and M. Doucha in a draft
of [5]. In the meantime, this question has been independently answered in [5].

2 Preliminaries

As usual, for a metric space M with a distinguished point 0 € M, the Lips-
chitz free space F (M) is the norm-closed linear span of {Jy : x € M} in the space
Lip,(M)*, where the Banach space Lip,(M) = {f € RM : f Lipschitz, f(0) = 0}

is equipped with the norm || ||, := sup {% tx F y}. It is well known
that ,

F(M)* = Lipy(M) isometrically. More about the very interesting class of Lip-
schitz-free spaces can be found in [10].

To prove that a Lispchitz-free space is not isometric to ¢, we will exhibit two
extreme points of its unit ball at distance less than one. For this purpose we will
use the notion of peaking function at (x,y), x # y, which is a function f € Lip,(M)

such that %’yf)(y) = 1 and for every open set U of {(x,y) € M x M,x # y}
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containing (x,y) and (y, x), there exists 6 > 0 with

(z,t)¢U:%§1—5.

This definition is equivalent to: % = 1and if (uy)yeN, (tn)nen C M, then

lim flun) = f(on) =1= lim u,=xand lim v, =yv.
n—+oo  d(uy,vy) n—+o00 n—+o00

Moreover in [11, Proposition 2.4.2], the following is proved:

Proposition 1. Let (M, d) be a complete metric space and x # y in M. If there is a
function f € Lip,(M) peaking at (x,y), then Z’Ex;jg is an extreme point of the unit ball
of Lip,(M)*. In particular, it is an extreme point of the unit ball of F (M).

Given an R-tree (T,d) and x,y € T, the segment [x,y] is defined as the range
of the unique isometry ¢, from [0,d(x,y)] C R into T which maps 0 to x and
d(x,y) toy.

We recall that for every 0-hyperbolic space M, there exists an R-tree T such
that M C T. The set U{[x,y] : x,y € M} C T is then also an R-tree. It is clearly a
minimal R-tree containing M; it is unique up to an isometry and will be denoted
conv(M). Simple examples show that conv(M) does not have to be complete
when M is. This does not present any difficulty in what follows.

A point b € T is said to be a branching point if there are three distinct points
x,y,z € T\{b} with [x,b] N[y, b] = [x,b]N[z,b] = [y,b]N[z,b] = {b}. Wesay that
the branching point b is witnessed by x, y, z. The set of all branching points of T
is denoted Br(T). If M is 0-hyperbolic, the set of all branching points of conv(M)
is denoted Br(M).

A subset A of T is measurable if ¢, ;(A) is Lebesgue-measurable, for every x
and y in T. For a segment S = [x,y| in T and A measurable, we denote Ag(A) :=
Moy, ;(A)), with A the Lebesgue measure on R. Let R be the set of subsets of

r

T that can be written as a finite union of disjoint segments. For R = [ J S €
k=1
R, define AR(A) = i As (A) and finally, set Ar(A) := sup Ag(A). If M is
k=1 ReER

0-hyperbolic, we put simply A(M) := Agny(m) (M). We say that M is negligible if
A(M) = 0.

Given two points x and y in T, we will denote 7y, : T — [x,y] the metric
projection onto the segment [x,y]. It is well known and easily seen that 77, is
non-expansive (see [1, 3]).

Finally, we recall that a metric space (M,d) is ultrametric if d(x,y) <
max {d(x,z),d(y,z)} for any x,y,z € M.
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3 Isometries with /;

Let us start by characterizing precisely when there exists a function peaking at
(x,y) for points x,y € M C T.

Proposition 2. Let (M, d) be a complete subset of an R-tree and x,y € M, x # y. The
following assertions are equivalent

(i) Thereis f € Lipy(M) peaking at (x,y).
(ii) M N [x,y| = {x,y} and for every p € {x,y},

liming Ty (1), 1) +d(7y (v), )
u,0—p d(nxy(u), ﬂxy(v))

>0,

(with the convention that % = +00). (1)

(iii) M N[x,y] = {x,y} and for every p € {x,y},
d
li{le i;lf % > 0, (with the convention that % = +o00). (2)

Proof. (ii) = (i) Let us first suppose that x, y satisfy (1) and [x, y] "M = {x,y}. For

any u € M we define f(u) = d(y, 7ty (u)). Then J%ny)(y) =1land |f||, = 1.

. o fxn) = f(yn) _
Consider (x,)neN, (Yn)nen € M such that nl_l)l’_{loo o) 1. We thus

have for n large enough

d(y, ey (xn)) = f(xn) > f(yn) = d(Y, Txy(Yn))- 3)

It follows

1= lim f(xn)_f(yn) —

n—too  d(Xp,Yn)

lim d(7txy (Xn), Ty (Yn))
n—+c0 d(xp, Ty (X)) + d(7y (xn), ey (Yn)) + d(7Txy (Yn), Yn)

and in particular

lim d(xn, Ty (xn)) + d(70xy (Yn), Yn)
n—oo d(7tey (2Xn), Ty (Yn))

= 0. (4)

Since nEToo d(xn, ey (xn)) = ) 1_1>r£100 d(Yn, txy(yn)) = 0, the sets of cluster points of

the sequences ((”xy(xn)r ﬂxy(]/n)))nelN C [x, ]/]2 and ((xu,Yn))neNn C M?
coincide. By compactness of [, y]? there exists such a cluster point (1, v) € [x, y]>.
Since the space M is complete, (1,v) € M?, and therefore (1,v) € {(y,x), (x,x),
(v,y), (x,y)}. Clearly, (3) implies (u,v) # (y,x), and (1) together with (4) imply
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that (1,v) # (x,x) and (u,v) # (y,y). We thus get that (x,) converges to x and

(yx) converges to y which proves that f is peaking at (x, ).

(i) = (iii) If thereisz € M N (x,y), then o I 5) is a convex combination of ‘S’E pres ‘Z%

and Z( (ys) so by Proposition 1, there cannot be a peaking function at (x, y).
Next assume that [x,y] "M = {x,y} but there is a sequence (u,),en C M

converging to x and
lim d(7tx,y (Un), tn)

n—+oo d(70yy (Un), x) =0

Let f € Spjp (m) be such that fx 2 ; )( Y = 1. Let f be a 1-Lipschitz extension of f
to [x,y]. Then

[f(x) = flun)| = [f(x) _J?(foy(”nlﬂ — | f (7ray (un)) — £ (1)
= d(x, TTxy (un)) — | f (70xy (un)) — f (un)|

> d(x, ey (un)) — d(7Txy (Un), Un)
> d(x,uy) — 2d (7T (Un), tn)

It follows that

o L = fn)l

n—+eo  d(x,uy)

and f is not peaking at (x,y).
(iii) = (ii) Finally, since

d(u, ey (1)) +d (0, Ty (0)) > min {d(”xy(”)r”) d(7txy(v),0) }

A(7txy (1), 7Ty (0)) d(7xy (), p)" d(7xy (0), p)
we get
if the liminf in (1) is 0 for some p € {x,y}. ]

For the dual version of the proof we will need the following simple lemma
which is valid in any metric space (see also [8] for a different proof).

Lemma 3. Let (M,d) be any metric space and suppose that 0 € A C M.
If f € ext (BLipo(A))’ then fs, f1 € ext (BLipO(M)) where

fo(x) i=sup f(z) —d(z,x) and fi(x) = inf f(z) +d(z, %)

zEA
for x € M.

Note that fs resp. f; above are the smallest resp. the largest 1-Lipschitz exten-
sions of f (which basically gives the proof).
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Proof. Let us give a proof for fs. The proof for f; is similar. Clearly fs(x) = f(x)
for x E A and fs is 1-Lipschitz as a supremum of 1-Lipschitz functions. Let

fS — T,p,q € BLipym- If x € A, then p(x) = g(x) = f(x) as f € ext (BLip0A>-If
M\ A, thenVz € A:

Thus
fs(x) = sup f(z) —d(z,x) < p(x).

z€A

By the same argument fs(x) < g(x). So fs(x) = p(x) = g(x) forall x € M. u

We are now ready to state and prove a statement about extreme points of the
ball in (M) and Lip,(M) when M is 0-hyperbolic.

Theorem 4. Let M be a complete subset of an R-tree. If there is b € Br(M) \ M then

a) there exist y # v € ext (BJ-:(M)> such that ||ju —v|| < 2.

b) there exist f # g € ext (BLipO(M)) such that || f — g||; < 2.

Since the Lipschitz free space over the completion of M is isometric to the
Lipschitz free space of M, the above completeness hypothesis is not restrictive.

Proof. a) Let the points x/,y/,z" € M witness that b € Br(M). For p’ € {x',y/,2'}
we denote M,y = {w € My (w) €]0, p’]}. Then M,y is closed in M as 71
is continuous and b is isolated from M. Notice that p € M, satisfies (2) if there
is & > 0 such that d(w, 7y, (w)) > ad(p, 7, (w)) for all w € M . We will show

that for every 0 < a < 1 such a point p exists. Indeed let =: B > 0 and set
f(w) := d(b,w). Then Ekeland’s variational principle [6] ensures the existence of
a point p € M,y such that f(p) < f(w) + pd(p,w) for all w € M,,. It follows that

d(b, Tty (w)) + (75 (w), p) < d(b, 7T (w)) + d (74, (w), w) + Bd(p, w)
— d(rtyy(w),p) < d(7y,(w), w) + B(d (7, (w), w)

+d(7 (w), p))
— TEd(p, myp(w) < d(w, myp(w).

Thus, we see that we can find x,y,z € M such that (iii) in Proposition 2 is
satisfied for the segments [p, q] where p # g € {x,y,z}. Proposition 1 then yields

that & ( 3) is an extreme point of the unit ball of F(M). Assuming, as we may,
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thatd(x,z) < d(z,y) < d(x,y), we obtain

’ ilx(x_,;; - ZZ(};:)y Fo Hﬁ [0 =02) £ (2 = 0y)] = ilz(};j)y F(M)
| laww ) @+ i
<46 |70~ ) + ey
14 d(x,f;)(; ;)(z,y) <1

In conclusion, y := 7% and v := 2 are two extreme points of the unit ball of

F (M) at distance less than or equal to 1.

b) We denote ¢ := inf{d(w,b) : w € M}. Let x,y,z be 3 points witnessing
the fact that b is a branching point. Two pointed metric spaces which differ only
by the choice of the base point have isometric free spaces. This trivial observa-
tion allows us to assume that x = 0 and that, for a fixed 0 < ¢ < 1, we have
db,z) < (1+¢). Let M; = {w € M: m(w) € (b,z]}. Let us consider the
closed nonempty set F = {w € M; :d(b,z) < (1+¢)d}. Given0 < a < 1 and
using Ekeland’s variational principle as above, we may assume that z satisfies
d(w, i (w)) > ad(z, 7, (w)) for allw € F. Clearly d(w, ., (w)) > ad(z, 7, (w))
forallw € M, \ F.

We define f(-) := d(0,-) on M and then >(+) :=d(0,-) on M\ Mz, g1 := ($2)s
on (M \ M;) U{z} and finally ¢ := (g1); on M. Both f,g € ext (BLiPo(M)) by
Lemma 3. The fact that M is a subset of an IR-tree helps to write g explicitly:

B d(O,ZU), (VRS M\MZ/
g(w) = {d(O,b) —d(b,z) +d(z,w), w€E M.

It follows that f(w) — g(w) = 0forw € M\ M; and f(w) — g(w) = 2d(b, 7t,5(w))
otherwise. We have

2d b, TC1 W
Hf_gHL = max sup t(i(w zb( 1))
w1 EMz,wr &M, 1/ wZ)

sup
w1, wrEM;,

2(1+¢)0 2
<
_max{ % ,1+[X}<2

2 |d(wq, 700 (w1)) — d(wo, Tz (w2))|
d(wy, ws)

Theorem 5. Let (M, d) be a complete metric space. The Lipschitz free space over M is
isometric to £1(T') if and only if M is of density |I'| — 1 and is negligible subset of an
R-tree T which contains all the branching points of T.

Proof. The sufficiency follows from [9, Theorem 3.2]. Conversely, let us assume
that (M) = ¢1(T). Then M is of density |I'| — 1 and it must be 0-hyperbolic
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by [9, Theorem 4.2]. In this case T = conv(M). If Ar(M) > 0, there is a set
A C [0,1] of positive measure such that A embeds isometrically into M. Then
Ly ~ F(A) ¢ F(M) = ¢1(T) which is absurd. Since the extreme points of the

ball (resp. dual ball) and their distances are preserved by bijective isometries we
get by Theorem 4 a) (resp. b)) that Br(M) C M. ]

Corollary 6. Let M be an ultrametric space of cardinality at least 3. Then F (M) is not
isometric to ¢1(T') for any T.

Proof. The completion of M stays clearly ultrametric. Thus it can be isometrically
embedded into an R-tree [4]. However ultrametric spaces do not contain the
interior of any segment, much less branching points. n

4 Isometries with subspaces of /;

We shall now deal with the second question, i.e. when is F (M) isometric to a
subspace of /;.

Lemma 7. Let M be a compact subset an R-tree such that A(M) = 0. Then

Aconv (M) (Br(M)) = 0 where the closure is taken in conv(M).

Proof. Clearly Acony(a)(Br(M) N M) = 0. Assume that A.ony () (Br(M) \ M) > 0.

Then Br(M) \ M is uncountable. Hence there is some é > 0 such that Br(M) N
{x € T:dist(x, M) >} is wuncountable and thus the set Br(M) N

x € T:dist(x, M) > %} is infinite. We conclude that there is an infinite -separa-

ted family in M. This is absurd as M was supposed to be compact. n

Proposition 8. Let M be a compact subset of an R-tree such that A(M) = 0. Then
F (M) is isometric to a subspace of {1.

Proof. Since M is compact, conv(M) is compact and thus separable. Indeed, the
mapping ® : M x M x [0,1] — conv(M) defined by ®(x,y,t) := ¢y (td(x,y)) is
continuous by [3, Theorem II.4.1]. Now

F(M) C F(Br(M)UM) = ¢,
by [9, Corollary 3.4] as A¢ony(ar)(Br(M) U M) = 0 by the previous lemma. u

We do not know if the above proposition is valid when M is supposed to be
proper.
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5 Banach-Mazur distance to /7

In the case of finite subsets of IR-trees we get the following quantitative result.

Proposition 9. Let M = {x, x1,...,Xn}, n > 2, be a subset of a R-tree. Let xo = 0 be
the distinguished point. Let us suppose that

0 < sep(M) := %inf {d(x,y) +d(x,z) —d(y,z) : x,y,z € M distinct} .

Then

do (FOM), 1) > (1 5P )7
BM 1 4 diam (M) '
The condition sep(M) > 0 implies immediately that for each x # y € M we
have [x,y] "M = {x,y}. For the proof we will need the following lemmas. The
tirst one is inspired by [2, Lemma 2.3].

Lemma 10. Let X be a Banach space. Let C = (\'_y x; ' (—o0, 1) where x} € X*. Let

i

A C X\ C have the following property: for every x # y € A, we have a _2|_ Y € C. Then
the cardinality |A| of A is at most n.

Proof. For x € Alet ¢(x) :=ifor somei € {1,...,n} such that x/(x) > 1. Since

1> xg XT—H/) it follows that x7, (y) < 1lforeveryy € A,y # x. Thus ¢ is
injective and the claim follows. n
Lemma 11. Let fy,..., foy+1 € Sy such that ’ fi;f" < 1 — ¢ for some ¢ > 0 and all

1<i#j<2n+1 Thendppy(Y, %) > (1—¢)~ L.

Proof. Let T : Y — (% such that ||f|| < ||Tfl, < (14¢) | f]l- Then ||Tf;|| > 1and

Tfi+Tf; e - . . .
H # ‘ < 1,i # j, which is in contradiction with the previous lemma as B?M is

the intersection of 21 halfspaces. n

Proof of Proposition 9. Given 0 < i # j < n, we will denote Tij 1= Tlx;x; the metric
projection onto [x;,y;]. Further we define the function f;; : M — R as f;j(z) :=
d(xj, mij(z)) for z € M. Observe that since sep(M) > 0, this is the function

fij(x)_fij(]/)’ -1
d(xy)

peaking at (x;, x;) from the proof of Proposition 2. It is clear that
if and only if {x,y} = {x;, x;}. We further have that

i) —ﬁ;-(y)) _dxy) —sep(M) _ | sep(M)

d(x,y) d(x,vy) = diamM
for any other couple x # y € M. Hence M . <1- ;gﬁ(fg/f for each

(i,j) # (k/1). Since n > 2, we have that (n + 1)n > 2n+ 1 and the result
tollows by Lemma 11. n

Remark 12. Note that the lower bound given in Proposition 9 is not optimal. This
can be seen when M = {0, x1, x2} is equilateral. We also don’t know if this result
extends to infinite subsets of R-trees.
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