On the simplicity of induced modules for
reductive Lie algebras®

Chaowen Zhang

1 Introduction

Let G be a reductive algebraic group defined over an algebraically closed field F
of positive characteristic p, and let g be the Lie algebra of G. In [3, 5.1], Friedlander
and Parshall asked to find necessary and sufficient conditions for the simplicity
of a g-module with p-character x € g* that is induced from a simple module for
a parabolic subalgebra of g. This question has been answered (by V. Kac) when
g is of type Aj (see [3, Example 3.6] and [9]), and also when g is of type A3 (see
[11]). When g is of type A;, B,, Cy, or D, and when (x is of standard Levi form,
the question is partially answered in [12], in which a sufficient condition is given
for the simplicity of above-mentioned g-modules. In this paper we study the
simplicity of these induced g-modules under certain assumptions on g and yx.

Following [7, 6.3] we make the following hypotheses:

(H1) The derived group DG of G is simply connected;

(H2) The prime p is good for g;

(H3) There exists a G-invariant non-degenerate bilinear form on g.

Let T be a maximal torus of G, let h = Lie(T), and let ® be the root system
of G. Let IT = {ay,...,a;} be a base of ® and let @ be the set of positive roots
relative to I1. For each « € ®* let g, denote the corresponding root space of g.
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According to [7, 6.1] we have g = n~ + h +n™, where

nt = Z Ooy N = Z O—a-

acedt aedt

Fix a proper subset I of IT and put ®; = ZIN® and ®] = &; N P*. Define
dr = b+ Lyco, a, as well as

u= Y g W= ) g

nedH\ wedH\df

Then p; = §; + u and p} = §; + v’ are parabolic subalgebras of g, each with Levi
factor §; [7, 10.6]. Throughout the paper we assume that x(n™) = 0. This is
done without loss of generality due to [7, Lemma 6.6]. Our method requires the
additional assumption that x(u') = 0, which we make throughout,

For any restricted Lie subalgebra L of g, we denote by u, (L) the x-reduced
enveloping algebra of L, where we continue to use x for the restriction of x to L
([14, 5.3]). If x = 0O, then u, (L) is referred to as the restricted enveloping algebra
of L, and denoted more simply by u(L). Let L (A) be a simple u,(p;)-module
generated by a maximal vector v, of weight A € h*. Define the induced u, (g)-
module

Z1(A) = uy(9) @y, o) LF ().

The main result of the present paper is Theorem 3.7, which gives a necessary
and sufficient condition for Z{ (1) to be simple; we show that Z}(A) is simple if
and only if A is not a zero of a certain polynomial R[(A). Under our assumption
on X, Theorem 3.7 answers the open question [3, 5.1].

The paper is organized as follows. In Section 2 we introduce the concept of
an extended a-string for any simple root & in an irreducible root system. Then we
investigate extended a-strings for all irreducible root systems (see Proposition
2.1). Using results from Section 2, we prove the main theorem in Section 3, which
says that the simplicity of the induced module Zf (1) is completely determined
by a polynomial Ré()\). In Section 4 we establish the explicit expression of the
polynomial R](A) (see Theorem 4.4). We also use this result to rederive the Kac-
Weisfeiler theorem (see [10, Theorem 2] and [2, Theorem 8.5]).

2 «-strings in a root system

Let IT and ®* be as above. Without loss of generality we assume that @ is irre-
ducible. For each « € ITand B € @ \ a, we denote the a-string through by
Sy B. Define an order on the set 5,8 by

B+gu<B+(@—1a<---<Bp<Pp—-—a<---<B—rua

where g (resp. r) is the largest non-negative integer such that g + qa (resp. f — ra)
in ®*. By [5, 9.4], the length of the string is at most 4. We say that the a-string
through B is isolated if r = q = 0. Note that if Syf is non-isolated, we have
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SuB = Sup’ for any p’ € SyB. To avoid repetitions, we assume in the following
that B +a ¢ O

We call the set ((IN \ 0)B + Za) N O the extended a-string through B, denoted
Sup- Define an order on the extended a-string by

IB+ma<1U'B+ma ifl >1"orl=1butm>m'

Proposition 2.1. Assume that ® is irreducible. Let « € T1, and let B € @ \ a with
Su B non-isolated.

(1) If ® is not of type Gp, then we have either Sy = {B,
B—a}orSyB={B B—w B—2a}, and either Sy = SyBor Suf = {28 —a} US,B.
(2) If ® is of type Gy, then we have either S,p = {B,

B—a}orS.B=1{BB—apB—2a B—3a}, andeither Sy = Sy or Sy = ®+ \ w.
Proof. (1) Set
Qpp= (Za +2Zp) NP, @Zﬁ = (Za +ZB)NDT, P, 5= (Za+Zp)ND".

Then clearly @, 5 = CIDI gUP,gisa subsystem of rank 2. In addition, & € CIDI g is
also a simple root. By assumption, the subsystem ®, 5 can only be of type A; or

B».
If @, g is of type Az, then we have @:ﬁ = {a,B, B — a}, so that
S = Sub = (BB —a}.
If &, g is of type B,, then we have
Dp = {an, a2, 00 + a2, 0 + 202}

with either & = ay or @ = ap. Since S, is non-isolated, in the case & = a1, we
must have 8 = a1 + «ay. It follows that

SuBp=1{BB—u}, Sup={28-a}USp.
In case & = ap, we must have B = a1 + 2a5, so that
SuB = SaP = {B,B — a,p — 20},
(2) We now discuss the case G,. According to [1, Ch. 6, 4.13], we have
ST = {ay, a0, 01 +ap, 2001 + ap, 301 + ap, 301 + 203}, 11 = {ay,as}.

Case 1. @ = «y. For B = 31 + 2ay, the a-string S, is isolated; for B = 3a1 + ay,
we have

Suf = {801 + ap, 201 + ap, 01 +ap, 00} = {B, B —a, p—2ua, p — 3}
and S, = @1\ a.
Case 2. o = ap. For 1 = 3a; + 2ap, we have
SuB1 = SuP1 = {31 + 20,301 + a2} = {B1, B1 — a};

for Bo = 2a1 + ay, the a-string through it is isolated; for f3 = a1 + a3, we have
Suf3 = {w1 + a2, a1} = {B3, B3 —a} and

SuPBs = {3a1 + 20,301 + a0, 201 + a0, a1 +ap, 1} = DT\ o
Note that 81 C S,B3- n
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Let ® be irreducible and let w € I1. If B, B2 € @7 \ a with SuP1 and S both
non-isolated, we have from Proposition 2.1 that Saf1 = SuPror Sy NSuPa =
if @ is not of type Gy, but we can have S B1 S = Sy B2 in the case P is of type Gz

3 Simplicity criterion
In this section, we keep the assumptions as in the introduction. Let
{ea, hgla € @, B € 11}
be a Chevalley basis for g’ = Lie(DG) such that
leasep] = £(r+1)eqrp, if a B, a+ped,

where r is the greatest integer for which f —ra € ® (see [5, Theorem 25.2]).
From the proof of Proposition 2.1, we see that our assumption on p ensures that
(r+1) #0.

For a € &% put f, = —e,. Then we have g, = Fe, and g_, = Ff, for every
a € ®T. For each fixed simple root &, let N, = Zﬁeq)+\,x g-p Then N, is a
restricted subalgebra of g.

Let u(Ny) be the restricted enveloping algebra of N,. For each p € & \ «

with S, B non-isolated, we define ff € u(N,) to be the product of £} e S.B
in the order given in Section 2. For example, if S, = S, = {B, 8 — «}, then

FP= 7y € (N,

Remark: Let o, € & such thata + p € ®F (resp. p—a € ®T). Then we
have

lew,ep] = ceuyp,  [farfp] = —Cfasp (resp. [ew, fg] = cfp—a)

for some ¢ € F\ 0. For brevity, we omit the scalar c¢. This does not affect any of
the proofs in this section.

Lemma 3.1. Let a € I1. Foreach p € 1 \ a with S, non-isolated, we have
lea, fP] = 0.

Proof. We may assume that @ is irreducible. Suppose that ® is not of type G,. By
Proposition 2.1, we need only consider the following cases.

Case 1. $y8 = S = {B,B — a}. Then we have ff = f f ! Since

lea, fgl = fp—ar  lew fp—al =0, [fp—a fp] =0,

and f'g_“ = 0in u(N,), the lemma follows.
Case2. Sy = {28 —u,B,B —a}, SuB = {B, B — a}. In this case we have

o= fs i
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Since

e fap-al =0, lew fpgl = fp-ur  [fp—arfp] = frp-us
and [fg, fop—a] = 0, we get [eq, fF] = 0.
Case 3. Sy = Suf = {B, B — &, B — 2a}. In this case we have

fﬁzf/?_lf f/z sz

Since

[etxzfﬁ] = f/S—zx/ [%uf/%—zx] = f,B—Zou [ezx/f,B—sz] =0, [f/ﬁ—zxrf/%] =0,

and [fg_o4, fg—a] = 0, we have [e,, fF] = 0.
Assume @ is of type G,. In the case « = a1, B = 3a;1 + ap, we have from the
proof of Proposition 2.1 that

f = f3zx1 +2tx2f3zx1 +zx2f21x1 +1x2f1x1 —i—(xz 062

Since [eq,, f3a,+24,] = 0, we have

e‘xlf f31x1 +200 Cay 3p¢1+a2f2a1+p¢2foc1+a2 tx2
(USIng [elxll f3txl+1xz] = fZDcl-HXZ and [fZIXl-HXz/ f30¢1+()¢2] = 0)

31x1 +20c2f31x1+1xz &1 2061+D(2f 1—|—0¢7_ “2
(using [en;, fony +a) = fag+azr [fag+azs fomy+a] = faug+200s
and the fact that f3,, 424, commutes with all fg, B € o)

p—1 ,p—-1
3a1+2a2f3a1+a2f2a1+a2 X1J wy+anp) &2

(using [en;, fay+ay) = fu, AN [fay 4y, fur] = 0)
- f’Bele/
so that [e,, fP] = 0.
Let &« = 3. For B1 = 3a1 + 2a3, we have from the proof of Proposition 2.1 that
Jiid fp 1f/31 _,and hence [e, ff1] = 0 as above. For B3 = a1 + ay, we have

~ p— 1 _
fﬁ?) f3le +20¢2f3041+pc2f20¢1 —szf ) 0‘1

Since [ew,, f3a,+a,) = 0and [ex,, fou; +a,] = 0, itis easy to see that [e,x,f/%] =0. m

Recall from the introduction the notation p I,p’I, u, v/, and §;. Each simple
uy (pr)-module is generated by a maximal vector v, of weight A € h*, denoted
L}(A). Define the induced u, (g)-module

Z;((A) = uy(g) O (pr) L?(/\)-

By the PBW theorem for the x-reduced enveloping algebra u,(g) ([14, Theorem
5.3.1]), we have
ZX(A) = uy (u') @p LY(A)
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as uy (u')-modules. By the assumption on x, we have 1, (u') = u(u’).
Let ®7 \ ® = {B1,B2,...,Bx}, and let vy, ..., v, be a basis of L}(A). Then
Z¥(A) has a basis

flllflzzf,g;@'ojl ogligp—l,i:l,...,k,j=1,...,n-

Using (H3), we can show that u is the nilradical of the parabolic subalgebra p;.
By [14, Corollary 1.3.8], LY (A) is annihilated by u, and hence is a simple 1, (§;)-
module.

Lemma 3.2. For any fixed ordering of Pt d>+ Bi,s - - -, Bi,, there is a nonzero scalar

¢ € Fsuch that f'gil fﬁzk = cf/];j1 f/3 Vinu(),

Proof. Since u(u') is restricted, it is naturally a T-module under the adjoint repre-
sentation. There is a PBW type basis for u(u’) given as:

flll e ff o<, k<p—1 ([2,p.1057)).
b3

The T-weight of each element f[l%11 e fé" is exactly YX_, I;B;.. Write fgl_l e fgk_l
Ik

as a linear combination of the above basis:
p—1 .
iy =).af ﬁll /szk

By comparing the T-weights we see that all coefficients c; must be zero except for
the one for fg‘_l e fg‘_l, which is nonzero, since fgl_l e fgk_l is an element of
gt Ik

another basis for u(u’). This completes the proof. ]

Lemma 3.3. Let a € [, and let B € @ \ @} . If Sop is non-isolated, then
Suf C T\ .

Proof. Since u is an ideal of p; with roots @+ \ @], we have S, C ®* \ @}
Suppose that @ is irreducible and not of type G,. By Proposition 2.1 we have

Sufp =8B or Sip={28—a}US,B.

The statement clearly holds in the case Sy = SyB. So we assume

SuB={2B—a} US,B.

Since Sy C @1\ @], wehave f—a, p € @\ @f; thatis, p — a and B are roots
of u. It follows that eg_ns g € U, and hence, €2p—q € U. Therefore, 2 — a is also a
root of u, implying S, C T\ .

Suppose @ is of type Gy. For I = {a1},leta = ay and p = 3a; + ap. Then we
have by the proof of Proposition 2.1 that

SuB=1{BB—uaB—2apB—3a}, SB={28-3a}USB.
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For I = {ay}, let « = a. By the proof of Proposition 2.1 we have

Sup = Sup ={B,p—a}

for B = 3a1 + 2a, and
SB=0"\a ="\ df
for B = a1 + ay. In each of these cases we have S, C &\ @}

Suppose @ is a disjoint union of irreducible subsystems. Then I is a disjoint
union of the subsets of simple roots in these subsystems. Let a € I and let
B € @\ @] with Sy non-isolated. Then a, B are in the same irreducible sub-
system. Thus, we have by the above discussion that S, C ®* \ &7 . n

Let & € I. By the lemma, we see that the set ®* \ @ is a disjoint union of
all different S, 8 with non-isolated S, and the isolated S,8 = {B}. We order the
elements in T \ ®/ in such a way that all elements in the same S, with S,f
non-isolated are adjacent in the order defined in Section 2, and call it an a-order.

Let & be a subset of ®*. We say that & is a closed subset if x + p € & for any
&, B € G such that a + f € ®F. Therefore, @ \ @] is a closed subset of ®.
We see that G is a closed subset of @7 if and only if s =: Y} ,cs9-« is a Lie
subalgebra of g; it is clear that s is restricted.

Let & be a closed subset of ®. Applying almost verbatim Humphreys's
argument in the proof of [4, Lemma 1.4], we get the following result.

Lemma 3.4. Let (ay,...,an) be any ordering of &. If ht(ay) = h, assume that all
exponents ijin fo - -- fi € u(s) for which ht(a;) > h are equal to p — 1. Then, if f,,
is inserted anywhere into this expression, the result is 0.

Lemma 3.5. Let &\ & = {B4,...,Br}. For fgl_l > -fgk_l € u(u'), we have in
uy(g) that

lew fl 5 =0, [fufh o fh =0
for every o € @ .

Proof. By the remark before Lemma 3.1 it suffices to prove the identities for a € I.
For each a € I, we put the set ®* \ @} in a fixed a-order:

Biy < = Bi.

Then f/f,_l e fg,_l is the product of ff for non-isolated S, and fﬁ_1 with S,
1 Ik

isolated. By Lemma 3.1, ¢, commutes with every f P with S, B non-isolated. It is

also clear that [e,x,fg_l] = 0 if Syp is isolated. Then we have [e,x,f/?_l . -fg_l] =
i 'k

0, and hence [e,,é,fgl_1 . -fgk_l] = 0 by Lemma 3.2.

To prove the second identity, we apply Lemma 3.4. Recall that u is an ideal of
pr with roots T \ ®;. Then for each ; € @'\ ®], we have a + f; € T\ O
if « + B; € @ If [fy, fg,] = O for all i, then it is trivially true that

far f5 - fh71 =0,
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Assume that [fy, fg,] # 0 for some i. Then we have [fy, fg,] = fatp,. Since
ht(a + B;) > ht(B;) for all B; with a + B; € 1, we have by Lemma 3.4 that

fufh o fh 1= ¥ Zf gl ) =00 .

ia+p,edt s=

Lemma 3.6. There is a uniquely determined scalar Ré (A) € F such that
-1 ~1p-1 -1
e e S RI @0y

in ZY (A).

Proof. Let U(g) (resp. U(h)) be the universal enveloping algebra of g (resp. b).
Fix an ordering a1, ..., a; of the positive roots ot By the PBW theorem for U(g),

we have . - .
el e Sh o Sh = f)+ Yuruwlud,
with f(h),u) € U(h) and where each ;" (resp. u;) is of the form

efﬁl elt (resp.  far---fah), 1,s; >0,
with #;” and u;" not both equal to 1. Note that U(g) is naturally a T-module

under the adjoint representation. Let us denote the T-weight of a weight vector
u € U(g) by wt(u). Since

-1 —1 p—1 -1
Wt(ezl o eZk fpl o f,gk ) - 0,

we have wt(u;") = —wt(u; ) # 0 for every i. It follows that };_; I; > 0, for every
u = el,,} - el,,ft
We use for the images of the generators ey, fa, 1, in 1, (g) the same notation as

before in U(g). By our assumption we have

ux(g) = ty (07 uy(h)u(n™).

Then we have in u, (g):
-1 —1 p—1 -1 0~
(*) egl o egk fpl . fpk - f(h) + Zul u?u?"

wheref(h),ﬁ? € uy(h),i; €uy(n), @ €u(n®).

For each u;" = e,l,}l- e,xt € U(g), if Is > p for some s, then ii;” = 0. On the

other hand, if [; < p — 1 for every s, the u = e,l,}l e,xt € uy(g), so ul- # 1 (since
ui” # 1). It follows that ;" v, = 0. Applymg both sides of (x) to 1 ® v, we have
in Z}(A) that

-1 1 p-1 1 _
eheh T i @0y =1 f(h)oy = RY(A) @0,

for some scalar Ré(/\). n
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Theorem 3.7. The iy (g)-module Z} (A) is simple if and only if RE(A) # 0.

Proof. Suppose R{(A) # 0. Using the PBW theorem for the x-reduced enveloping
algebra u,(g) ([14, Theorem 5.3.1]) and our assumption that x(u') = 0, we have
a natural vector space isomorphism

ZY(A) Zup(w) @p LY(A) = u(u') @p LY(A).

Put the elements in @ \ @] in the order of ascending heights: By, ..., Bx. There-
fore, Z;‘(A) has as basis the set {f/él1 . f/é’; ® U]'|0 <Il;<p-1,1<j<n}, where
{vj|1 <j < n}isabasis for LT(A).

Let N be a nonzero submodule of Z}(A). There exists a nonzero element
x € N, which we can write

1 [
x=Laff Moo
1

where the sum is over all tuples | = (I1,...,ly) with 0 < [; < p — 1 and where
¢; € Fand v; € LY(A). By applying appropriate fg's, we get fgl_l . -fgk_l ®v €
N for some nonzero v € L}(A).

It follows from hypothesis (H3) in the introduction that u is the nilradical of
the parabolic subalgebra p;. By [14, Corollary 3.8], L} (A) is annihilated by u, and
is hence a simple i, (§;)-module. Therefore i, (§;)v = L} (A). Then using Lemma
3.5, we have

-1 -1 -1 -1 ~
e o) = 7 e @e
<\ 1 -1
Cuy@fl e e
CN,
so that fgl_l . -fgk_l ® vy € N. By Lemma 3.6,

-1 —1 ,p-1 -1
Ré(/\)@)m:ezl ---ezk fr ---fgk ®uv) €N,

1

and hence 1 ® v, € N, implying N = Z?(A). We conclude that Z) (A) is simple.
Suppose that Z{ (1) is simple Recall the definition of the parabolic subalgebra

p; = g1 +u'. Since fﬁif/?l fp ' = 0for all i, it follows that

L = 7 A e L)

is a u,(p))-module that is isomorphic to L} (A) as vector spaces. The canonical
1y (g)-module homomorphism

¢ 2 ux(9) @y, ) LT(A) — ZF(A)
induced by the embedding L} (A)" C Z7(A) is trivially nonzero, and is therefore

surjective since Z7 (A) is simple. Comparing the dimensions we see that ¢ must
be an isomorphism.
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. -1 -1 -1 -1 .
Now v, is nonzero, so v =: ezl » -egk ® (fp1 » fgk ® v,) is a nonzero

element of 1, (g) ® () LY(A)'. Therefore,

Ux
-1 ~1 p-1 -1
RyM)@oy=ef e fi Sy @oa=g(0) £0,
implying R} (A) # 0. m

Let us look at an application of Theorem 3.7. In [3, 5.1], Friedlander and
Parshall asked the following question: Can one give necessary and sufficient
condition on a simple module for a parabolic subalgebra p; to remain simple
upon induction to g. Clearly under our assumption the question is answered by
the theorem.

4 A formula for R](A)

In this section we determine Ré(/\) using the polynomial defined by Rudakov
([13]). Recall the notation §; in the introduction and g’ at the beginning of
Section 3. Define g; = [§, §1]. Since g’ O [g,g] 2 g; by [6, Corollary 10.5], g;
is spanned by a subset of the Chevalley basis of g'. This ensures the application
of [13, Proposition 8] to g;. For each a« € ®, we shall write « instead of its deriva-
tive da by abuse of notation.

Let x € g* as given earlier. Then x can be written as x = xs + x», with
Xxs(nt +1n7) = 0and x»(h +n*) = 0. For each simple uy, (p;)-module L¥*(A)
(A € b*), define the induced module

ZE (M) = 1y, (8) @y (o) LT ()

Let vy € LY°(A) be a maximal vector of weight A. In a similar way as in the last
section we define the scalar Ré (A)s by

-1 —1 p—1 -1
ezl ...ezk fpl ...fgk Rv) = Ré(/\)sgm)v
Lemma 4.1. RI(A)s = R[(A) forany A € p*.
Proof. From the last section we have in U(g) that
-1 —1 p-1 -1 _
(1) e teeh T = )+ L

where each 1 (resp. ;") is in the form ei}l X -ef)ft (resp. f,)]fll e f,fff ) with

t t
Ii,..., 11, ky, ..., ks € N, Zli>0, Zki>0.
i=1 i=1

In view of the PBW type bases for 1, (g) and u,, (g) (see [14, Theorem 5.3.1]), we
have the isomorphisms of vector spaces

y(8) = 1y, (n7) @ uy () @u(n®),  up(9) = u(n”) @ uy(h) @u(n®).
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Then the images of the elements f(h), ), u;" in (1) are the same in both u,(g) and

uy,(g). Applying the images of (1) to 1 ® v, in Z{(A) and Z{*()) respectively,

we obtain the same element 1 ® f(h)v, € 1® uy,(h)v,. It follows that R[(A)s =

RI(A). m
g

By the lemma, in calculating R[(A), we may assume x = x,. With this as-
sumption, Lemma 3.2 says that any two products egl_ . -eﬁt_l e u(nt)

(or f,fl_l e ,ft_l € u(n7)) in different orders are equal (up to scalar multiple).

For the Borel subalgebra b = h +n™ of g, let Fv, be the 1-dimensional u,, (b)-
module with v, a maximal vector of weight A € h*. Define the induced 1, (g)-
module

Z%(A) = uy,(8) @y, (6) For.

Put all positive roots in ®* in the order of ascending heights:

Kiy s Liny e v v sy Ky

Let hy = [e, fa] for all & € ®T. Then we have by [13, Proposition 8] that

1 1 p—1 -1
el T oy = Ry(h) @y,

iy
where Rg(A) = (~1)'TT_[(A + p) (g, )P~ ~ 1]

Let b; = b N g;. Then by is a Borel subalgebra of g;. Define the induce u,, (g1)-
module uy, (g1) ®,,(o;) Foa, which can be canonically imbedded in ZA*(A). Put
the roots in @ in the order of ascending heights: «;,, ..., a;,. Using [13, Proposi-
tion 8] for g;, we have

-1 -1 p-1 -1 _
en, ey fay o fa, ©@oa = (=1TE[(A+ pr) (hay )P '—1®uo,
in Z%+(\), where p; = 3 Laco: & We denote (—1)°IT:_,[(A + p1) (ha; )P~1 —1] by
REI(/\)'

As A € h* varies, each A(h,) with « € ®T can be viewed as a (linear) polyno-
mial on h* as follows: For the basis 1y, ..., hy, of b, let h;l, e, h;j, be a basis of h*
such that
h;i(h“j) :51']‘ for i,j=1,...,l.

Then each A € h* can be written as A = Zgzl xihy., x; € F, so that A(hy,;) = x; for

i = 1,...,1. For each « € &7, using the property of the Chevalley
basis ([5, Theorem 25.2(c)]) that h, is a Z-linear combination of hy,, ..., h,, say

hy = Zgzl kiha,, we get A(hy) = Zle k;x;. Therefore, Ré (A), Rg(A), and Ry, (M)
are all polynomials in variables xq, ..., x;.

Lemma 4.2.
R{(A)Rq,(A) = cRq4(A), c€F\O.

Proof. Put the elements in @7 in the order ay, ..., a; such that a;_¢,1,...,a; are
positive roots of gy in the order of ascending heights, so that

D\ CID?' ={a1,...,at—s} (denoted {B1, ..., Bx} earlier).
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By Lemma 3.2 and analogous conclusions for u(u), u(n*), and u(n~), there is a
nonzero ¢ € F such that

_ 1 p—1 p—-1 p—=1,p—1 p—1p—1 p—1
Ry (/\) Qoy =en ey Cu gyl Juy o JausJa o fae © 0N
. . —1 -1
By Lemma 3.5, each ¢,,, t — s < i < t, commutes with f,fl . ,fH , S0 we get
_ p1 p—1 p—1 p—1, p—1 p—1 p-1 p—1
CRQ (/\) Uy =€y cclu fay  Jas (efxt—s+1 ol Japgpr Ty ® U/\)

-1 ~1p-1 -1
- 651 " 'egt—s ’fl e ’ftfs Rg, (A) ® 0)
= RQI(A)Ré (A) ® ;.

This completes the proof. n

To prove the next theorem, we need to apply (H3). Let (, ) be the nondegen-
erate bilinear form on g. Define the mapping 6 : g — g* by 6(x) = (—, x) for all
x € g. Let us note that g (resp. g*) is naturally a G-module with the adjoint (resp.
coadjoint) action. Then the G-invariance of (, ) implies that 0 is an isomorphism
of G-modules, so that 6 is also an isomorphism of g-modules by [8, 7.11(3)]. Here
g is a (left) g-module with the g-action given by

ad x(y) = [x,y] for x,y€yg,
whereas the g-action on g*, by [8, 7.11(8)], is defined by
(x-f)(y) = flad (=x)(y)) for x,yecg feg"

Since 6 is a g-module isomorphism, it follows that

for all x,y € g; that s, (, ) is also g-invariant.

According to [7, 6.6], the bilinear form on g is also non-degenerate on . For
each A € b*, lett, € hbe such that A(h) = (h,ty) forall h € h. Define the
bilinear form (, ) on h* by

(Apu) = (ta,ty), Apeb™
Lemma 4.3. Let W be the Weyl group of G and let w € W. Then
(wA, wu) = (A, u) for Auebp”.
Proof. Let g € Ng(T) represent w. Then since
(h, 8 'ter) = (gh,ter) = A(h) = (h,ty)
for all h € b, so that g_ltgA = t,, it follows that, for A, u € b*,
(8A, gn) = (tg/\/ tou)

= (8m)(ts1)
H(g )
u(ta

= (A, ). [



On the simplicity of induced modules for reductive Lie algebras 369

Keep the ordering of the elements of ®* as in the proof of Lemma 4.2. Then
we have the following theorem.

Theorem 4.4.
Ry(A) = cILZ5[(A + o) (o )P~ = 1]

for some nonzero c € F.

Proof. From above we have
Ry(A) = (=1)'TI4 [(A +p) (e, )P 71 = 1]

and
Rg;(A) = (=TT s 4 [(A + o1) (he )P~ = 1],

Since Rg(A), Ri(A), and Ry, (A) are all elements in the polynomial algebra
F[x1,...,x;], which contains no zero divisors, by the cancellation law and Lemma
4.2 it suffices to show that p(hy) = pr(hy) foralla € ®F = {a;_g41,..., 0}
For every a € @7, applying the argument for the proof [5, Proposition 8.3(c)]
we have, for all 1 € b,
(7, ha)

(1, lea, ful)
([, ea], fu)
a(h)(ew, fu)
= (h, ta)(ea, fu)
= (h, (ea, fa)ta),
so that h, = cuty, in which ¢, =: (eq, fa) is nonzero since the bilinear form is

nondegenerate.
If « € I, then we have

(using Lemma 4.3) = cqa(sq(a),s2(0 — p1))

|
)
2
|
&
 —
|
=D
—
~—

implying that p(hs) = p;(hy). For every a € @/, by the property of the Chevalley
basis mentioned before, h, is a Z-linear combination of h,,, «; € I, so we have
p(hy) = p1(hy). This completes the proof. ]

As an application of Theorem 4.4, we give a new proof of the Kac-Weisfeiler
theorem (cf. [2, Theorem 8.5]).

Theorem 4.5. Let g = Lie(G) be a restricted Lie algebra of classical type. Keep the
assumptions from the introduction. Assume that x(hy) # 0 for all x € ® \ @ . Then
the induced module ZY (A) is simple.
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Proof. Recall from the proof of Lemma 4.2 that ®* \ q);r = {ay,...,a;—s}. Since
x(hy) # 0 foralla € T\ @, we have

A+0)(ha )PP =14#£0 for i=1,...,t—s,
so that R[(A) # 0. Thus, Z{ (A) is simple. ]

Assume that x(g_,) # Oforalla € I, x(g—o) = O foralla € T\ I and
X(h+nT) = 0. Then x is referred to as having standard Levi form. Put | = IT\ L.
Define the parabolic subalgebra p; similarly as in the introduction. Then we have
X(pj) = 0. Define the induced u, (g)-module

ZF(A) = ux(g) @u(py) L1(A)

for A € h*, where Lj(A) is a simple u(pj)-module generated by a (unique) maxi-
mal vector of weight A.

Note that in [11, 12] the weight A is an element in X(T'). We identify it with its
differential by abuse of notation. Then the sufficient condition that A is p-regular
given in [11, 12] implies that (A + p)(hs) € F, \ 0 for all x € &7, and hence,
Rl(A) = 0. Under this condition Z{ (A) is not simple by Theorem 3.7 and 4.4.

We now use Theorem 4.4 to show that A is p-regular is not a necessary condi-
tion for the simplicity of Z}( (A).

Using the notation in Theorem 4.4, let A € bh* satisfy (A + p)(hs,) = 0O for
i=1,...,t—s,so that the u, (g)-module Z} (1) is simple by Theorem 3.7 and 4.4.
Let v, € Lj(A) be the maximal vector of weight A. By [2, Theorem 4.2], u, (p;) ®
v) C Z;‘ (A) is a simple u, (gr)-submodule and hence a simple u,, (pr)-submodule.
This induces a homomorphism « of 1, (g)-modules from Z) (1) into Z;‘ (A). Since

Z¥(A) is simple, k is a monomorphism. Furthermore, by comparing dimensions
using the fact that dim Z{ (1) = dim u,(n™) and dim Z;‘ (A) < dim uy(n™), we
see that « is also an epimorphism and hence an isomorphism. Therefore, Z;‘ (A)
is a simple u, (g)-module. But the weight A is not p-regular.
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