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1 Introduction

Let G be a reductive algebraic group defined over an algebraically closed field F
of positive characteristic p, and let g be the Lie algebra of G. In [3, 5.1], Friedlander
and Parshall asked to find necessary and sufficient conditions for the simplicity
of a g-module with p-character χ ∈ g∗ that is induced from a simple module for
a parabolic subalgebra of g. This question has been answered (by V. Kac) when
g is of type A2 (see [3, Example 3.6] and [9]), and also when g is of type A3 (see
[11]). When g is of type An, Bn, Cn or Dn and when χ is of standard Levi form,
the question is partially answered in [12], in which a sufficient condition is given
for the simplicity of above-mentioned g-modules. In this paper we study the
simplicity of these induced g-modules under certain assumptions on g and χ.

Following [7, 6.3] we make the following hypotheses:

(H1) The derived group DG of G is simply connected;

(H2) The prime p is good for g;

(H3) There exists a G-invariant non-degenerate bilinear form on g.

Let T be a maximal torus of G, let h = Lie(T), and let Φ be the root system
of G. Let Π = {α1, . . . , αl} be a base of Φ and let Φ+ be the set of positive roots
relative to Π. For each α ∈ Φ+ let gα denote the corresponding root space of g.
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According to [7, 6.1] we have g = n− + h+ n+, where

n+ = ∑
α∈Φ+

gα, n− = ∑
α∈Φ+

g−α.

Fix a proper subset I of Π and put ΦI = ZI ∩ Φ and Φ+
I = ΦI ∩ Φ+. Define

g̃I = h+ ∑α∈ΦI
gα, as well as

u = ∑
α∈Φ+\Φ+

I

gα, u′ = ∑
α∈Φ+\Φ+

I

g−α.

Then pI = g̃I + u and p′I = g̃I + u′ are parabolic subalgebras of g, each with Levi
factor g̃I [7, 10.6]. Throughout the paper we assume that χ(n+) = 0. This is
done without loss of generality due to [7, Lemma 6.6]. Our method requires the
additional assumption that χ(u′) = 0, which we make throughout,

For any restricted Lie subalgebra L of g, we denote by uχ(L) the χ-reduced
enveloping algebra of L, where we continue to use χ for the restriction of χ to L
([14, 5.3]). If χ = 0, then uχ(L) is referred to as the restricted enveloping algebra
of L, and denoted more simply by u(L). Let L

χ
I (λ) be a simple uχ(pI)-module

generated by a maximal vector vλ of weight λ ∈ h∗. Define the induced uχ(g)-
module

Z
χ
I (λ) = uχ(g)⊗uχ(pI) L

χ
I (λ).

The main result of the present paper is Theorem 3.7, which gives a necessary
and sufficient condition for Z

χ
I (λ) to be simple; we show that Z

χ
I (λ) is simple if

and only if λ is not a zero of a certain polynomial RI
g(λ). Under our assumption

on χ, Theorem 3.7 answers the open question [3, 5.1].
The paper is organized as follows. In Section 2 we introduce the concept of

an extended α-string for any simple root α in an irreducible root system. Then we
investigate extended α-strings for all irreducible root systems (see Proposition
2.1). Using results from Section 2, we prove the main theorem in Section 3, which
says that the simplicity of the induced module Z

χ
I (λ) is completely determined

by a polynomial RI
g(λ). In Section 4 we establish the explicit expression of the

polynomial RI
g(λ) (see Theorem 4.4). We also use this result to rederive the Kac-

Weisfeiler theorem (see [10, Theorem 2] and [2, Theorem 8.5]).

2 α-strings in a root system

Let Π and Φ+ be as above. Without loss of generality we assume that Φ is irre-
ducible. For each α ∈ Π and β ∈ Φ+ \ α, we denote the α-string through β by
Sαβ. Define an order on the set Sαβ by

β + qα ≺ β + (q − 1)α ≺ · · · ≺ β ≺ β − α ≺ · · · ≺ β − rα,

where q (resp. r) is the largest non-negative integer such that β+ qα (resp. β− rα)
in Φ+. By [5, 9.4], the length of the string is at most 4. We say that the α-string
through β is isolated if r = q = 0. Note that if Sαβ is non-isolated, we have
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Sαβ = Sαβ′ for any β′ ∈ Sαβ. To avoid repetitions, we assume in the following
that β + α /∈ Φ+.

We call the set ((N \ 0)β + Zα) ∩ Φ+ the extended α-string through β, denoted
S̃αβ. Define an order on the extended α-string by

lβ + mα ≺ l′β + m′α if l > l′ or l = l′ but m > m′.

Proposition 2.1. Assume that Φ is irreducible. Let α ∈ Π, and let β ∈ Φ+ \ α with
Sαβ non-isolated.

(1) If Φ is not of type G2, then we have either Sαβ = {β,
β− α} or Sαβ = {β, β− α, β− 2α}, and either S̃αβ = Sαβ or S̃αβ = {2β− α}∪Sα β.

(2) If Φ is of type G2, then we have either Sαβ = {β,
β − α} or Sαβ = {β, β − α, β − 2α, β − 3α}, and either S̃αβ = Sαβ or S̃αβ = Φ+ \ α.

Proof. (1) Set

Φα,β = (Zα + Zβ) ∩ Φ, Φ+
α,β = (Zα + Zβ) ∩ Φ+, Φ−

α,β = (Zα + Zβ) ∩ Φ−.

Then clearly Φα,β = Φ+
α,β ∪ Φ−

α,β is a subsystem of rank 2. In addition, α ∈ Φ+
α,β is

also a simple root. By assumption, the subsystem Φα,β can only be of type A2 or
B2.

If Φα,β is of type A2, then we have Φ+
α,β = {α, β, β − α}, so that

S̃αβ = Sαβ = {β, β − α}.

If Φα,β is of type B2, then we have

Φ+
α,β = {α1, α2, α1 + α2, α1 + 2α2}

with either α = α1 or α = α2. Since Sαβ is non-isolated, in the case α = α1, we
must have β = α1 + α2. It follows that

Sαβ = {β, β − α}, S̃αβ = {2β − α} ∪ Sαβ.

In case α = α2, we must have β = α1 + 2α2, so that

S̃αβ = Sαβ = {β, β − α, β − 2α}.

(2) We now discuss the case G2. According to [1, Ch. 6, 4.13], we have

Φ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}, Π = {α1, α2}.

Case 1. α = α1. For β = 3α1 + 2α2, the α-string Sαβ is isolated; for β = 3α1 + α2,
we have

Sαβ = {3α1 + α2, 2α1 + α2, α1 + α2, α2} = {β, β − α, β − 2α, β − 3α}

and S̃αβ = Φ+ \ α.
Case 2. α = α2. For β1 = 3α1 + 2α2, we have

S̃αβ1 = Sαβ1 = {3α1 + 2α2, 3α1 + α2} = {β1, β1 − α};

for β2 = 2α1 + α2, the α-string through it is isolated; for β3 = α1 + α2, we have
Sαβ3 = {α1 + α2, α1} = {β3, β3 − α} and

S̃αβ3 = {3α1 + 2α2, 3α1 + α2, 2α1 + α2, α1 + α2, α1} = Φ+ \ α.

Note that S̃αβ1 ⊆ S̃αβ3.
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Let Φ be irreducible and let α ∈ Π. If β1, β2 ∈ Φ+ \ α with Sαβ1 and Sαβ2 both
non-isolated, we have from Proposition 2.1 that S̃αβ1 = S̃αβ2 or S̃αβ1 ∩ S̃αβ2 = φ
if Φ is not of type G2, but we can have S̃αβ1 $ S̃αβ2 in the case Φ is of type G2.

3 Simplicity criterion

In this section, we keep the assumptions as in the introduction. Let

{eα, hβ|α ∈ Φ, β ∈ Π}

be a Chevalley basis for g′ = Lie(DG) such that

[eα, eβ] = ±(r + 1)eα+β, if α, β, α + β ∈ Φ+,

where r is the greatest integer for which β − rα ∈ Φ (see [5, Theorem 25.2]).
From the proof of Proposition 2.1, we see that our assumption on p ensures that
(r + 1) 6= 0.

For α ∈ Φ+ put fα = −eα. Then we have gα = Feα and g−α = F fα for every
α ∈ Φ+. For each fixed simple root α, let Nα = ∑β∈Φ+\α g−β. Then Nα is a
restricted subalgebra of g.

Let u(Nα) be the restricted enveloping algebra of Nα. For each β ∈ Φ+ \ α

with Sαβ non-isolated, we define f̃ β ∈ u(Nα) to be the product of f
p−1
γ , γ ∈ S̃αβ

in the order given in Section 2. For example, if S̃αβ = Sαβ = {β, β − α}, then

f̃ β = f
p−1
β f

p−1
β−α ∈ u(Nα).

Remark: Let α, β ∈ Φ+ such that α + β ∈ Φ+ (resp. β − α ∈ Φ+). Then we
have

[eα, eβ] = ceα+β, [ fα, fβ] = −c fα+β (resp. [eα, fβ] = c fβ−α)

for some c ∈ F \ 0. For brevity, we omit the scalar c. This does not affect any of
the proofs in this section.

Lemma 3.1. Let α ∈ Π. For each β ∈ Φ+ \ α with Sαβ non-isolated, we have

[eα, f̃ β] = 0.

Proof. We may assume that Φ is irreducible. Suppose that Φ is not of type G2. By
Proposition 2.1, we need only consider the following cases.

Case 1. S̃αβ = Sαβ = {β, β − α}. Then we have f̃ β = f
p−1
β f

p−1
β−α . Since

[eα, fβ] = fβ−α, [eα, fβ−α] = 0, [ fβ−α, fβ] = 0,

and f
p
β−α = 0 in u(Nα), the lemma follows.

Case 2. S̃αβ = {2β − α, β, β − α}, Sαβ = {β, β − α}. In this case we have

f̃ β = f
p−1
2β−α f

p−1
β f

p−1
β−α .



On the simplicity of induced modules for reductive Lie algebras 361

Since
[eα, f2β−α] = 0, [eα, fβ] = fβ−α, [ fβ−α, fβ] = f2β−α,

and [ fβ, f2β−α] = 0, we get [eα, f̃ β] = 0.

Case 3. S̃αβ = Sαβ = {β, β − α, β − 2α}. In this case we have

f̃ β = f
p−1
β f

p−1
β−α f

p−1
β−2α.

Since

[eα, fβ] = fβ−α, [eα, fβ−α] = fβ−2α, [eα, fβ−2α] = 0, [ fβ−α, fβ] = 0,

and [ fβ−2α, fβ−α] = 0, we have [eα, f̃ β] = 0.
Assume Φ is of type G2. In the case α = α1, β = 3α1 + α2, we have from the

proof of Proposition 2.1 that

f̃ β = f
p−1
3α1+2α2

f
p−1
3α1+α2

f
p−1
2α1+α2

f
p−1
α1+α2

f
p−1
α2

.

Since [eα1
, f3α1+2α2

] = 0, we have

eα1
f̃ β = f

p−1
3α1+2α2

eα1
f

p−1
3α1+α2

f
p−1
2α1+α2

f
p−1
α1+α2

f
p−1
α2

(using [eα1
, f3α1+α2

] = f2α1+α2
and [ f2α1+α2

, f3α1+α2
] = 0)

= f
p−1
3α1+2α2

f
p−1
3α1+α2

eα1
f

p−1
2α1+α2

f
p−1
α1+α2

f
p−1
α2

(using [eα1
, f2α1+α2

] = fα1+α2 , [ fα1+α2 , f2α1+α2
] = f3α1+2α2

,

and the fact that f3α1+2α2
commutes with all fβ, β ∈ Φ+)

= f
p−1
3α1+2α2

f
p−1
3α1+α2

f
p−1
2α1+α2

eα1
f

p−1
α1+α2

f
p−1
α2

(using [eα1
, fα1+α2 ] = fα2 and [ fα1+α2 , fα2 ] = 0)

= f̃ βeα1
,

so that [eα, f̃ β] = 0.
Let α = α2. For β1 = 3α1 + 2α2, we have from the proof of Proposition 2.1 that

f̃ β1 = f
p−1
β1

f
p−1
β1−α, and hence [eα, f̃ β1 ] = 0 as above. For β3 = α1 + α2, we have

f̃ β3 = f
p−1
3α1+2α2

f
p−1
3α1+α2

f
p−1
2α1+α2

f
p−1
α1+α2

f
p−1
α1

.

Since [eα2 , f3α1+α2
] = 0 and [eα2 , f2α1+α2

] = 0, it is easy to see that [eα, f̃ β3 ] = 0.

Recall from the introduction the notation pI , p
′
I, u, u′, and g̃I . Each simple

uχ(pI)-module is generated by a maximal vector vλ of weight λ ∈ h∗, denoted
L

χ
I (λ). Define the induced uχ(g)-module

Z
χ
I (λ) = uχ(g)⊗uχ(pI) L

χ
I (λ).

By the PBW theorem for the χ-reduced enveloping algebra uχ(g) ([14, Theorem
5.3.1]), we have

Z
χ
I (λ)

∼= uχ(u
′)⊗F L

χ
I (λ)
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as uχ(u
′)-modules. By the assumption on χ, we have uχ(u

′) = u(u′).
Let Φ+ \ Φ+

I = {β1, β2, . . . , βk}, and let v1, . . . , vn be a basis of L
χ
I (λ). Then

Z
χ
I (λ) has a basis

f l1
β1

f l2
β2
· · · f

lk
βk
⊗ vj, 0 ≤ li ≤ p − 1, i = 1, . . . , k, j = 1, . . . , n.

Using (H3), we can show that u is the nilradical of the parabolic subalgebra pI .
By [14, Corollary 1.3.8], L

χ
I (λ) is annihilated by u, and hence is a simple uχ(g̃I)-

module.

Lemma 3.2. For any fixed ordering of Φ+ \ Φ+
I : βi1 , . . . , βik

, there is a nonzero scalar

c ∈ F such that f
p−1
βi1

· · · f
p−1
βik

= c f
p−1
β1

· · · f
p−1
βk

in u(u′).

Proof. Since u(u′) is restricted, it is naturally a T-module under the adjoint repre-
sentation. There is a PBW type basis for u(u′) given as:

f l1
β1
· · · f

lk
βik

, 0 ≤ l1, . . . , lk ≤ p − 1 ([2, p.1057]).

The T-weight of each element f l1
β1
· · · f

lk
βik

is exactly ∑
k
s=1 lsβis

. Write f
p−1
β1

· · · f
p−1
βk

as a linear combination of the above basis:

f
p−1
β1

· · · f
p−1
βk

= ∑ cl f l1
βi1

· · · f
lk
βik

.

By comparing the T-weights we see that all coefficients cl must be zero except for

the one for f
p−1
βi1

· · · f
p−1
βik

, which is nonzero, since f
p−1
β1

· · · f
p−1
βk

is an element of

another basis for u(u′). This completes the proof.

Lemma 3.3. Let α ∈ I, and let β ∈ Φ+ \ Φ+
I . If Sαβ is non-isolated, then

S̃αβ ⊆ Φ+ \ Φ+
I .

Proof. Since u is an ideal of pI with roots Φ+ \ Φ+
I , we have Sαβ ⊆ Φ+ \ Φ+

I .
Suppose that Φ is irreducible and not of type G2. By Proposition 2.1 we have

S̃αβ = Sαβ or S̃αβ = {2β − α} ∪ Sαβ.

The statement clearly holds in the case S̃αβ = Sαβ. So we assume

S̃αβ = {2β − α} ∪ Sαβ.

Since Sαβ ⊆ Φ+ \ Φ+
I , we have β − α, β ∈ Φ+ \ Φ+

I ; that is, β − α and β are roots
of u. It follows that eβ−α, eβ ∈ u, and hence, e2β−α ∈ u. Therefore, 2β − α is also a

root of u, implying S̃αβ ⊆ Φ+ \ Φ+
I .

Suppose Φ is of type G2. For I = {α1}, let α = α1 and β = 3α1 + α2. Then we
have by the proof of Proposition 2.1 that

Sαβ = {β, β − α, β − 2α, β − 3α}, S̃αβ = {2β − 3α} ∪ Sαβ.
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For I = {α2}, let α = α2. By the proof of Proposition 2.1 we have

S̃αβ = Sαβ = {β, β − α}

for β = 3α1 + 2α2, and
S̃αβ = Φ+ \ α = Φ+ \ Φ+

I

for β = α1 + α2. In each of these cases we have S̃αβ ⊆ Φ+ \ Φ+
I .

Suppose Φ is a disjoint union of irreducible subsystems. Then I is a disjoint
union of the subsets of simple roots in these subsystems. Let α ∈ I and let
β ∈ Φ+ \ Φ+

I with Sαβ non-isolated. Then α, β are in the same irreducible sub-

system. Thus, we have by the above discussion that S̃αβ ⊆ Φ+ \ Φ+
I .

Let α ∈ I. By the lemma, we see that the set Φ+ \ Φ+
I is a disjoint union of

all different S̃αβ with non-isolated Sαβ and the isolated Sαβ = {β}. We order the
elements in Φ+ \ Φ+

I in such a way that all elements in the same S̃αβ with Sαβ
non-isolated are adjacent in the order defined in Section 2, and call it an α-order.

Let S be a subset of Φ+. We say that S is a closed subset if α + β ∈ S for any
α, β ∈ S such that α + β ∈ Φ+. Therefore, Φ+ \ Φ+

I is a closed subset of Φ+.
We see that S is a closed subset of Φ+ if and only if s =: ∑α∈S g−α is a Lie
subalgebra of g; it is clear that s is restricted.

Let S be a closed subset of Φ+. Applying almost verbatim Humphreys’s
argument in the proof of [4, Lemma 1.4], we get the following result.

Lemma 3.4. Let (α1, . . . , αm) be any ordering of S. If ht(αk) = h, assume that all

exponents ij in f i1
α1
· · · f im

αm ∈ u(s) for which ht(αj) ≥ h are equal to p − 1. Then, if fαk

is inserted anywhere into this expression, the result is 0.

Lemma 3.5. Let Φ+ \ Φ+
I = {β1, . . . , βk}. For f

p−1
β1

· · · f
p−1
βk

∈ u(u′), we have in

uχ(g) that

[eα, f
p−1
β1

· · · f
p−1
βk

] = 0, [ fα, f
p−1
β1

· · · f
p−1
βk

] = 0

for every α ∈ Φ+
I .

Proof. By the remark before Lemma 3.1 it suffices to prove the identities for α ∈ I.
For each α ∈ I, we put the set Φ+ \ Φ+

I in a fixed α-order:

βi1 ≺ · · · ≺ βik
.

Then f
p−1
βi1

· · · f
p−1
βik

is the product of f̃ β for non-isolated Sαβ and f
p−1
β with Sαβ

isolated. By Lemma 3.1, eα commutes with every f̃ β with Sαβ non-isolated. It is

also clear that [eα, f
p−1
β ] = 0 if Sαβ is isolated. Then we have [eα, f

p−1
βi1

· · · f
p−1
βik

] =

0, and hence [eα, f
p−1
β1

· · · f
p−1
βk

] = 0 by Lemma 3.2.

To prove the second identity, we apply Lemma 3.4. Recall that u is an ideal of
pI with roots Φ+ \ Φ+

I . Then for each βi ∈ Φ+ \ Φ+
I , we have α + βi ∈ Φ+ \ Φ+

I
if α + βi ∈ Φ+. If [ fα, fβi

] = 0 for all i, then it is trivially true that

[ fα, f
p−1
β1

· · · f
p−1
βk

] = 0.
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Assume that [ fα, fβi
] 6= 0 for some i. Then we have [ fα, fβi

] = fα+βi
. Since

ht(α + βi) > ht(βi) for all βi with α + βi ∈ Φ+, we have by Lemma 3.4 that

[ fα, f
p−1
β1

· · · f
p−1
βk

] = ∑
i,α+βi∈Φ+

p−2

∑
s=0

f
p−1
β1

· · · ( f s
βi

fα+βi
f

p−2−s
βi

) · · · f
p−1
βk

= 0.

Lemma 3.6. There is a uniquely determined scalar RI
g(λ) ∈ F such that

e
p−1
β1

· · · e
p−1
βk

f
p−1
β1

· · · f
p−1
βk

⊗ vλ = RI
g(λ)⊗ vλ

in Z
χ
I (λ).

Proof. Let U(g) (resp. U(h)) be the universal enveloping algebra of g (resp. h).
Fix an ordering α1, . . . , αt of the positive roots Φ+. By the PBW theorem for U(g),
we have

e
p−1
β1

· · · e
p−1
βk

f
p−1
β1

· · · f
p−1
βk

= f (h) + ∑ u−
i u0

i u+
i ,

with f (h), u0
i ∈ U(h) and where each u+

i (resp. u−
i ) is of the form

el1
α1
· · · elt

αt
(resp. f s1

α1
· · · f st

αt
), lj, sj ≥ 0,

with u+
i and u−

i not both equal to 1. Note that U(g) is naturally a T-module
under the adjoint representation. Let us denote the T-weight of a weight vector
u ∈ U(g) by wt(u). Since

wt(e
p−1
β1

· · · e
p−1
βk

f
p−1
β1

· · · f
p−1
βk

) = 0,

we have wt(u+
i ) = −wt(u−

i ) 6= 0 for every i. It follows that ∑
t
i=1 li > 0, for every

u+
i = el1

α1
· · · elt

αt
.

We use for the images of the generators eα, fα, hα in uχ(g) the same notation as
before in U(g). By our assumption we have

uχ(g) = uχ(n
−)uχ(h)u(n

+).

Then we have in uχ(g):

(∗) e
p−1
β1

· · · e
p−1
βk

f
p−1
β1

· · · f
p−1
βk

= f̄ (h) +∑ ū−
i ū0

i ū+
i ,

where f̄ (h), ū0
i ∈ uχ(h), ū−

i ∈ uχ(n−), ū+
i ∈ u(n+).

For each u+
i = el1

α1
· · · elt

αt
∈ U(g), if ls ≥ p for some s, then ū+

i = 0. On the

other hand, if ls ≤ p − 1 for every s, the ū+
i = el1

α1
· · · elt

αt
∈ uχ(g), so ū+

i 6= 1 (since

u+
i 6= 1). It follows that ū+

i vλ = 0. Applying both sides of (∗) to 1 ⊗ vλ, we have

in Z
χ
I (λ) that

e
p−1
β1

· · · e
p−1
βk

f
p−1
β1

· · · f
p−1
βk

⊗ vλ = 1 ⊗ f̄ (h)vλ = RI
g(λ)⊗ vλ

for some scalar RI
g(λ).
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Theorem 3.7. The uχ(g)-module Z
χ
I (λ) is simple if and only if RI

g(λ) 6= 0.

Proof. Suppose RI
g(λ) 6= 0. Using the PBW theorem for the χ-reduced enveloping

algebra uχ(g) ([14, Theorem 5.3.1]) and our assumption that χ(u′) = 0, we have
a natural vector space isomorphism

Z
χ
I (λ)

∼= uχ(u
′)⊗F L

χ
I (λ) = u(u′)⊗F L

χ
I (λ).

Put the elements in Φ+ \ Φ+
I in the order of ascending heights: β1, . . . , βk. There-

fore, Z
χ
I (λ) has as basis the set { f l1

β1
· · · f

lk
βk
⊗ vj|0 ≤ li ≤ p − 1, 1 ≤ j ≤ n}, where

{vj|1 ≤ j ≤ n} is a basis for L
χ
I (λ).

Let N be a nonzero submodule of Z
χ
I (λ). There exists a nonzero element

x ∈ N, which we can write

x = ∑
l

cl f l1
β1
· · · f

lk
βk
⊗ vl ,

where the sum is over all tuples l = (l1, . . . , lk) with 0 ≤ li ≤ p − 1 and where

cl ∈ F and vl ∈ L
χ
I (λ). By applying appropriate fβi

’s, we get f
p−1
β1

· · · f
p−1
βk

⊗ v ∈

N for some nonzero v ∈ L
χ
I (λ).

It follows from hypothesis (H3) in the introduction that u is the nilradical of
the parabolic subalgebra pI. By [14, Corollary 3.8], L

χ
I (λ) is annihilated by u, and

is hence a simple uχ(g̃I)-module. Therefore uχ(g̃I)v = L
χ
I (λ). Then using Lemma

3.5, we have

f
p−1
β1

· · · f
p−1
βk

⊗ L
χ
I (λ) = f

p−1
β1

· · · f
p−1
βk

⊗ uχ(g̃I)v

⊆ uχ(g̃I) f
p−1
β1

· · · f
p−1
βk

⊗ v

⊆ N,

so that f
p−1
β1

· · · f
p−1
βk

⊗ vλ ∈ N. By Lemma 3.6,

RI
g(λ)⊗ vλ = e

p−1
β1

· · · e
p−1
βk

f
p−1
β1

· · · f
p−1
βk

⊗ vλ ∈ N,

and hence 1 ⊗ vλ ∈ N, implying N = Z
χ
I (λ). We conclude that Z

χ
I (λ) is simple.

Suppose that Z
χ
I (λ) is simple. Recall the definition of the parabolic subalgebra

p′I = g̃I + u′. Since fβi
f

p−1
β1

· · · f
p−1
βk

= 0 for all i, it follows that

L
χ
I (λ)

′ =: f
p−1
β1

· · · f
p−1
βk

⊗ L
χ
I (λ)

is a uχ(p′I)-module that is isomorphic to L
χ
I (λ) as vector spaces. The canonical

uχ(g)-module homomorphism

ϕ : uχ(g)⊗uχ(p′I)
L

χ
I (λ)

′ −→ Z
χ
I (λ)

induced by the embedding L
χ
I (λ)

′ ⊆ Z
χ
I (λ) is trivially nonzero, and is therefore

surjective since Z
χ
I (λ) is simple. Comparing the dimensions we see that ϕ must

be an isomorphism.
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Now vλ is nonzero, so v =: e
p−1
β1

· · · e
p−1
βk

⊗ ( f
p−1
β1

· · · f
p−1
βk

⊗ vλ) is a nonzero

element of uχ(g)⊗uχ(p′I)
L

χ
I (λ)

′. Therefore,

RI
g(λ)⊗ vλ = e

p−1
β1

· · · e
p−1
βk

f
p−1
β1

· · · f
p−1
βk

⊗ vλ = ϕ(v) 6= 0,

implying RI
g(λ) 6= 0.

Let us look at an application of Theorem 3.7. In [3, 5.1], Friedlander and
Parshall asked the following question: Can one give necessary and sufficient
condition on a simple module for a parabolic subalgebra pI to remain simple
upon induction to g. Clearly under our assumption the question is answered by
the theorem.

4 A formula for RI
g(λ)

In this section we determine RI
g(λ) using the polynomial defined by Rudakov

([13]). Recall the notation g̃I in the introduction and g′ at the beginning of
Section 3. Define gI = [g̃I , g̃I]. Since g′ ⊇ [g, g] ⊇ gI by [6, Corollary 10.5], gI

is spanned by a subset of the Chevalley basis of g′. This ensures the application
of [13, Proposition 8] to gI . For each α ∈ Φ, we shall write α instead of its deriva-
tive dα by abuse of notation.

Let χ ∈ g∗ as given earlier. Then χ can be written as χ = χs + χn, with
χs(n

+ + n−) = 0 and χn(h + n+) = 0. For each simple uχs(pI)-module L
χs

I (λ)
(λ ∈ h∗), define the induced module

Z
χs
I (λ) = uχs(g)⊗uχs(pI) L

χs
I (λ).

Let vλ ∈ L
χs

I (λ) be a maximal vector of weight λ. In a similar way as in the last

section we define the scalar RI
g(λ)s by

e
p−1
β1

· · · e
p−1
βk

f
p−1
β1

· · · f
p−1
βk

⊗ vλ = RI
g(λ)s ⊗ vλ.

Lemma 4.1. RI
g(λ)s = RI

g(λ) for any λ ∈ h∗.

Proof. From the last section we have in U(g) that

(1) e
p−1
β1

· · · e
p−1
βk

f
p−1
β1

· · · f
p−1
βk

= f (h) +∑ u−
i u0

i u+
i ,

where each u+
i (resp. u−

i ) is in the form el1
α1
· · · elt

αt (resp. f k1
α1
· · · f kt

αt ) with

l1, . . . , lt, k1, . . . , kt ∈ N,
t

∑
i=1

li > 0,
t

∑
i=1

ki > 0.

In view of the PBW type bases for uχ(g) and uχs(g) (see [14, Theorem 5.3.1]), we
have the isomorphisms of vector spaces

uχ(g) ∼= uχn(n
−)⊗ uχs(h)⊗ u(n+), uχs(g)

∼= u(n−)⊗ uχs(h)⊗ u(n+).



On the simplicity of induced modules for reductive Lie algebras 367

Then the images of the elements f (h), u0
i , u+

i in (1) are the same in both uχ(g) and

uχs(g). Applying the images of (1) to 1 ⊗ vλ in Z
χ
I (λ) and Z

χs
I (λ) respectively,

we obtain the same element 1 ⊗ f̄ (h)vλ ∈ 1 ⊗ uχs(h)vλ. It follows that RI
g(λ)s =

RI
g(λ).

By the lemma, in calculating RI
g(λ), we may assume χ = χs. With this as-

sumption, Lemma 3.2 says that any two products e
p−1
α1

· · · e
p−1
αt

∈ u(n+)

(or f
p−1
α1

· · · f
p−1
αt

∈ u(n−)) in different orders are equal (up to scalar multiple).
For the Borel subalgebra b = h+ n+ of g, let Fvλ be the 1-dimensional uχs(b)-

module with vλ a maximal vector of weight λ ∈ h∗. Define the induced uχs(g)-
module

Zχs(λ) = uχs(g)⊗uχs (b)
Fvλ.

Put all positive roots in Φ+ in the order of ascending heights:

αi1 , αi2 , . . . , αit
.

Let hα = [eα, fα] for all α ∈ Φ+. Then we have by [13, Proposition 8] that

e
p−1
αi1

· · · e
p−1
αit

f
p−1
αi1

· · · f
p−1
αit

⊗ vλ = Rg(λ)⊗ vλ,

where Rg(λ) = (−1)tΠt
i=1[(λ + ρ)(hαi

)p−1 − 1].
Let bI = b ∩ gI. Then bI is a Borel subalgebra of gI . Define the induce uχs(gI)-

module uχs(gI)⊗uχs(bI) Fvλ, which can be canonically imbedded in Zχs(λ). Put

the roots in Φ+
I in the order of ascending heights: αj1, . . . , αjs. Using [13, Proposi-

tion 8] for gI , we have

e
p−1
αj1

· · · e
p−1
αjs

f
p−1
αj1

· · · f
p−1
αjs

⊗ vλ = (−1)sΠs
i=1[(λ + ρI)(hαji

)p−1 − 1]⊗ vλ

in Zχs(λ), where ρI =
1
2 ∑α∈Φ+

I
α. We denote (−1)sΠs

i=1[(λ + ρI)(hαji
)p−1 − 1] by

RgI (λ).
As λ ∈ h∗ varies, each λ(hα) with α ∈ Φ+ can be viewed as a (linear) polyno-

mial on h∗ as follows: For the basis hα1
, . . . , hαl

of h, let h∗α1
, . . . , h∗αl

be a basis of h∗

such that
h∗αi

(hαj
) = δij for i, j = 1, . . . , l.

Then each λ ∈ h∗ can be written as λ = ∑
l
i=1 xih

∗
αi

, xi ∈ F, so that λ(hαi
) = xi for

i = 1, . . . , l. For each α ∈ Φ+, using the property of the Chevalley
basis ([5, Theorem 25.2(c)]) that hα is a Z-linear combination of hα1

, . . . , hαl
, say

hα = ∑
l
i=1 kihαi

, we get λ(hα) = ∑
l
i=1 kixi. Therefore, RI

g(λ), Rg(λ), and RgI (λ)
are all polynomials in variables x1, . . . , xl.

Lemma 4.2.
RI
g(λ)RgI (λ) = cRg(λ), c ∈ F \ 0.

Proof. Put the elements in Φ+ in the order α1, . . . , αt such that αt−s+1, . . . , αt are
positive roots of gI in the order of ascending heights, so that

Φ+ \ Φ+
I = {α1, . . . , αt−s} (denoted {β1, . . . , βk} earlier).
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By Lemma 3.2 and analogous conclusions for u(u), u(n+), and u(n−), there is a
nonzero c ∈ F such that

cRg(λ)⊗ vλ = e
p−1
α1

· · · e
p−1
αt−s

e
p−1
αt−s+1

· · · e
p−1
αt

f
p−1
α1

· · · f
p−1
αt−s

f
p−1
αt−s+1

· · · f
p−1
αt

⊗ vλ.

By Lemma 3.5, each eαi
, t − s < i ≤ t, commutes with f

p−1
α1

· · · f
p−1
αt−s

, so we get

cRg(λ)⊗ vλ = e
p−1
α1

· · · e
p−1
αt−s

f
p−1
α1

· · · f
p−1
αt−s

(e
p−1
αt−s+1

· · · e
p−1
αt

f
p−1
αt−s+1

· · · f
p−1
αt

⊗ vλ)

= e
p−1
α1

· · · e
p−1
αt−s

f
p−1
α1

· · · f
p−1
αt−s

RgI (λ)⊗ vλ

= RgI (λ)R
I
g(λ)⊗ vλ.

This completes the proof.

To prove the next theorem, we need to apply (H3). Let (, ) be the nondegen-
erate bilinear form on g. Define the mapping θ : g −→ g∗ by θ(x) = (−, x) for all
x ∈ g. Let us note that g (resp. g∗) is naturally a G-module with the adjoint (resp.
coadjoint) action. Then the G-invariance of (, ) implies that θ is an isomorphism
of G-modules, so that θ is also an isomorphism of g-modules by [8, 7.11(3)]. Here
g is a (left) g-module with the g-action given by

ad x(y) = [x, y] for x, y ∈ g,

whereas the g-action on g∗, by [8, 7.11(8)], is defined by

(x · f )(y) = f (ad (−x)(y)) for x, y ∈ g, f ∈ g∗.

Since θ is a g-module isomorphism, it follows that

(−, [x, y]) = θ(ad x(y))

= (−x) · θ(y)

(using the definition of g-action on g∗) = ([−, x], y)

for all x, y ∈ g; that is, (, ) is also g-invariant.
According to [7, 6.6], the bilinear form on g is also non-degenerate on h. For

each λ ∈ h∗, let tλ ∈ h be such that λ(h) = (h, tλ) for all h ∈ h. Define the
bilinear form (, ) on h∗ by

(λ, µ) = (tλ, tµ), λ, µ ∈ h∗.

Lemma 4.3. Let W be the Weyl group of G and let w ∈ W. Then

(wλ, wµ) = (λ, µ) for λ, µ ∈ h∗.

Proof. Let g ∈ NG(T) represent w. Then since

(h, g−1tgλ) = (gh, tgλ) = λ(h) = (h, tλ)

for all h ∈ h, so that g−1tgλ = tλ, it follows that, for λ, µ ∈ h∗,

(gλ, gµ) = (tgλ, tgµ)

= (gµ)(tgλ)

= µ(g−1tgλ)

= µ(tλ)

= (λ, µ).
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Keep the ordering of the elements of Φ+ as in the proof of Lemma 4.2. Then
we have the following theorem.

Theorem 4.4.

RI
g(λ) = cΠt−s

i=1[(λ + ρ)(hαi
)p−1 − 1]

for some nonzero c ∈ F.

Proof. From above we have

Rg(λ) = (−1)tΠt
i=1[(λ + ρ)(hαi

)p−1 − 1]

and

RgI(λ) = (−1)sΠt
i=t−s+1[(λ + ρI)(hαi

)p−1 − 1].

Since Rg(λ), RI
g(λ), and RgI (λ) are all elements in the polynomial algebra

F[x1, . . . , xl], which contains no zero divisors, by the cancellation law and Lemma
4.2 it suffices to show that ρ(hα) = ρI(hα) for all α ∈ Φ+

I = {αt−s+1, . . . , αt}.
For every α ∈ Φ+

I , applying the argument for the proof [5, Proposition 8.3(c)]
we have, for all h ∈ h,

(h, hα) = (h, [eα, fα])

= ([h, eα], fα)

= α(h)(eα , fα)

= (h, tα)(eα, fα)

= (h, (eα, fα)tα),

so that hα = cαtα, in which cα =: (eα, fα) is nonzero since the bilinear form is
nondegenerate.

If α ∈ I, then we have

(ρ − ρI)(hα) = cα(ρ − ρI)(tα)

= cα(tα, tρ−ρI )

= cα(α, ρ − ρI)

(using Lemma 4.3) = cα(sα(α), sα(ρ − ρI))

= cα(−α, ρ − ρI)

= −(ρ − ρI)(hα),

implying that ρ(hα) = ρI(hα). For every α ∈ Φ+
I , by the property of the Chevalley

basis mentioned before, hα is a Z-linear combination of hαi
, αi ∈ I, so we have

ρ(hα) = ρI(hα). This completes the proof.

As an application of Theorem 4.4, we give a new proof of the Kac-Weisfeiler
theorem (cf. [2, Theorem 8.5]).

Theorem 4.5. Let g = Lie(G) be a restricted Lie algebra of classical type. Keep the
assumptions from the introduction. Assume that χ(hα) 6= 0 for all α ∈ Φ+ \ Φ+

I . Then

the induced module Z
χ
I (λ) is simple.
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Proof. Recall from the proof of Lemma 4.2 that Φ+ \ Φ+
I = {α1, . . . , αt−s}. Since

χ(hα) 6= 0 for all α ∈ Φ+ \ Φ+
I , we have

(λ + ρ)(hαi
)p−1 − 1 6= 0 for i = 1, . . . , t − s,

so that RI
g(λ) 6= 0. Thus, Z

χ
I (λ) is simple.

Assume that χ(g−α) 6= 0 for all α ∈ I, χ(g−α) = 0 for all α ∈ Φ+ \ I and
χ(h+ n+) = 0. Then χ is referred to as having standard Levi form. Put J = Π \ I.
Define the parabolic subalgebra pJ similarly as in the introduction. Then we have
χ(pJ) = 0. Define the induced uχ(g)-module

Z
χ
J (λ) = uχ(g)⊗u(pJ) LJ(λ)

for λ ∈ h∗, where LJ(λ) is a simple u(pJ)-module generated by a (unique) maxi-
mal vector of weight λ.

Note that in [11, 12] the weight λ is an element in X(T). We identify it with its
differential by abuse of notation. Then the sufficient condition that λ is p-regular
given in [11, 12] implies that (λ + ρ)(hα) ∈ Fp \ 0 for all α ∈ Φ+, and hence,

RI
g(λ) = 0. Under this condition Z

χ
I (λ) is not simple by Theorem 3.7 and 4.4.

We now use Theorem 4.4 to show that λ is p-regular is not a necessary condi-
tion for the simplicity of Z

χ
J (λ).

Using the notation in Theorem 4.4, let λ ∈ h∗ satisfy (λ + ρ)(hαi
) = 0 for

i = 1, . . . , t − s, so that the uχ(g)-module Z
χ
I (λ) is simple by Theorem 3.7 and 4.4.

Let vλ ∈ LJ(λ) be the maximal vector of weight λ. By [2, Theorem 4.2], uχ(pI)⊗
vλ ⊆ Z

χ
J (λ) is a simple uχ(gI)-submodule and hence a simple uχ(pI)-submodule.

This induces a homomorphism κ of uχ(g)-modules from Z
χ
I (λ) into Z

χ
J (λ). Since

Z
χ
I (λ) is simple, κ is a monomorphism. Furthermore, by comparing dimensions

using the fact that dim Z
χ
I (λ) = dim uχ(n−) and dim Z

χ
J (λ) ≤ dim uχ(n−), we

see that κ is also an epimorphism and hence an isomorphism. Therefore, Z
χ
J (λ)

is a simple uχ(g)-module. But the weight λ is not p-regular.
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