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Abstract

The aim of the present paper is the classification of real hypersurfaces M,
whose Jacobi structure Operator is generalized ξ−parallel. The notion of gen-
eralized ξ−parallel Jacobi structure Operator is rather new and much weaker
than ξ− parallel Jacobi structure Operator which has been studied so far.

1 Introduction.

An n - dimensional Kaehlerian manifold of constant holomorphic sectional
curvature c is called a complex space form, which is denoted by Mn(c). A com-
plete and simply connected complex space form is a projective space CPn if c > 0,
a hyperbolic space CHn if c < 0, or a Euclidean space Cn if c = 0. The induced
almost contact metric structure of a real hypersurface M of Mn(c) will be denoted
by (φ, ξ, η, g).

Real hypersurfaces in CPn which are homogeneous, were classified by
R. Takagi ([15]). The same author classified real hypersurfaces in CPn, with con-
stant principal curvatures in [16], but only when the number k of distinct prin-
cipal curvatures satisfies k = 3. M. Kimura showed in [10] that if a Hopf real
hypersurface M in CPn has constant principal curvatures, then the number of
distinct principal curvatures of M is 2, 3 or 5. J. Berndt gave the equivalent result
for Hopf hypersurfaces in CHn ([1]) where he divided real hypersurfaces into
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four model spaces, named A0, A1, A2 and B. Analytic lists of constant princi-
pal curvatures can be found in the previously mentioned references as well as
in [11], [13]. Real hypersurfaces of type A1 and A2 in CPn and of type A0, A1

and A2 in CHn are said to be hypersurfaces of type A for simplicity and appear
quite often in classification theorems. Real hypersurfaces of type A1 in CHn are
divided into types A1,0 and A1,1 ([11]). For more information and examples on
real hypersurfaces, we refer to [13].

A Jacobi field along geodesics of a given Riemannian manifold (M, g) plays
an important role in the study of differential geometry. It satisfies a well known
differential equation which inspires Jacobi operators. For any vector field X, the
Jacobi operator is defined by RX: RX(Y) = R(Y, X)X, where R denotes the cur-
vature tensor and Y is a vector field on M. RX is a self - adjoint endomorphism
in the tangent space of M, and is related to the Jacobi differential equation, which
is given by ∇γ́(∇γ́Y) + R(Y, γ́)γ́ = 0 along a geodesic γ on M, where γ́ denotes
the velocity vector field along γ on M.

In a real hypersurface M of a complex space form Mn(c), c 6= 0, the Jacobi
operator on M with respect to the structure vector field ξ, is called the structure
Jacobi operator and is denoted by Rξ(X) = R(X, ξ, )ξ. Conditions including this
operator, generate larger classes than the conditions including the Riemannian
tensor R(X, Y)Z. So operator l = Rξ has been studied by quite a few authors and
under several conditions.

In 2007, Ki, Perez, Santos and Suh ([8]) classified real hypersurfaces in com-
plex space forms with ξ-parallel Ricci tensor and structure Jacobi operator.
J. T. Cho and U - H. Ki in [3] classified the real hypersurfaces whose structure
Jacobi operator is symmetric along the Reeb flow ξ and commutes with the shape
operator A.

In the present paper we classify real hypersurfaces M satisfying the condition

(∇ξ l)X = ω(X)ξ, (1.1)

where ω is 1-form and X ∈ TpM at a point p ∈ M. This condition is rather new
([17]) and much weaker than the condition ∇ξ l = 0 that has been used so far ([3],
[6], [7], [8]). Therefore a larger class is produced.

We also mention that hypersurfaces in M2(c) have not been studied as thor-
oughly as the ones in Mn(c), n ≥ 3. We refer here to [4], [5], [9].

The major part of the paper is to prove M is a Hopf hypersurface, that is ξ is a
principal vector field and the classification follows right after that. In particular,
the following theorem is proved:

Theorem 1.1. Let M be a real hypersurface of a complex plane M2(c), (c 6= 0), satisfying
(1.1) for every vector field X on M. Then M is a Hopf hypersurface and satisfies ∇ξ l = 0.
Furthermore, M is pseudo-Einstein, that is, there exist constants ρ and σ such that for
any tangent vector X we have QX = ρX + σg(X, ξ)ξ where Q is the Ricci tensor.
Conversely, every pseudo-Einstein hypersurface in M2(c) satisfies (1.1) with ω = 0.

As shown in [9] the pseudo-Einstein hypersurfaces, are precisely those that are

• For M2(c) = CP2: open subsets of geodesic spheres (type A1);
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• For M2(c) = CH2: open subsets of
1. horospheres (type A0);
2. geodesic spheres (type A1,0);
3. tubes around totally geodesic complex hyperbolic lines CH1 (type A1,1);

• Hopf hypersurfaces with η(Aξ) = 0.

The form ω has no restriction in its values, so it could vanish at some point.
Therefore condition (1.1) could be called generalized ξ−parallel Jacobi structure
Operator, since it generalizes the notion of ξ−parallel Jacobi structure Operator
(∇ξ l = 0).

2 Preliminaries

In this section, we explain explicitly the notions that were mentioned in section
1, as well as the notions that will appear in the paper. We also give a series of
equations that will be our basic tools in our calculations and conclusions.

Let Mn be a Kaehlerian manifold of real dimension 2n, equipped with an al-
most complex structure J and a Hermitian metric tensor G. Then for any vector
fields X and Y on Mn(c), the following relations hold: J2X = −X, G(JX, JY) =

G(X, Y), ∇̃J = 0, where ∇̃ denotes the Riemannian connection of G of Mn.
Let M2n−1 be a real (2n − 1)-dimensional hypersurface of Mn(c), and denote

by N a unit normal vector field on a neighborhood of a point in M2n−1 (from now
on we shall write M instead of M2n−1). For any vector field X tangent to M we
have JX = φX + η(X)N, where φX is the tangent component of JX, η(X)N is the
normal component, and ξ = −JN, η(X) = g(X, ξ), g = G|M.

By properties of the almost complex structure J and the definitions of η and g,
the following relations hold ([2]):

φ2 = −I + η ⊗ ξ, η ◦ φ = 0, φξ = 0, η(ξ) = 1. (2.1)

g(φX, φY) = g(X, Y) − η(X)η(Y), g(X, φY) = −g(φX, Y). (2.2)

The above relations define an almost contact metric structure on M which is de-
noted by (φ, ξ, g, η). When an almost contact metric structure is defined on M,
we can define a local orthonormal basis {e1, e2, ...en−1, φe1, φe2, ...φen−1, ξ}, called
a φ − basis. Furthermore, let A be the shape operator in the direction of N, and
denote by ∇ the Riemannian connection of g on M. Then, A is symmetric and
the following equations are satisfied:

∇Xξ = φAX, (∇Xφ)Y = η(Y)AX − g(AX, Y)ξ. (2.3)

As the ambient space Mn(c) is of constant holomorphic sectional curvature c,
the equations of Gauss and Codazzi are respectively given by:

R(X, Y)Z =
c

4
[g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY (2.4)
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−2g(φX, Y)φZ] + g(AY, Z)AX − g(AX, Z)AY,

(∇X A)Y − (∇Y A)X =
c

4
[η(X)φY − η(Y)φX − 2g(φX, Y)ξ]. (2.5)

The tangent space TpM, for every point p ∈ M, is decomposed as following:

TpM = D
⊥ ⊕ D,

where D = ker(η) = {X ∈ TpM : η(X) = 0}.
The subspace ker(η) is more usually referred as D and called the holomorphic

distribution of M. Based on the decomposition of TpM, by virtue of (2.3), we
decompose the vector field Aξ in the following way:

Aξ = αξ + βU, (2.6)

where β = |φ∇ξξ|, α is a smooth function on M and U = − 1
β φ∇ξξ ∈ ker(η),

provided that β 6= 0.
If β vanishes identically, then Aξ is expressed as Aξ = αξ, ξ is a principal

vector field and M is a Hopf hypersurface.
Finally differentiation of a function f along a vector field X will be denoted by

(X f ). All manifolds, vector fields, etc., of this paper are assumed to be connected
and of class C∞.

3 Auxiliary relations

Let us assume there exists a point p ∈ M, where β 6= 0. Then there exists a
neighborhood N of p where β 6= 0. By putting X = ξ in (1.1), combined with (2.3)
and (2.6), we obtain βlφU = −ω(ξ)ξ. The inner product of the last equation with
ξ yields lφU = 0 which is analyzed from (2.4) and (2.6) giving (4αA + c)φU = 0.
From the last equation it follows that α 6= 0 in N .

Lemma 3.1. Let M be a real hypersurface of a complex plane M2(c) satisfying (1.1).
Then the following relations hold on N .

AU =
(γ

α
−

c

4α
+

β2

α

)
U + βξ, AφU = −

c

4α
φU. (3.1)

∇ξξ = βφU, ∇Uξ =
(γ

α
−

c

4α
+

β2

α

)
φU, ∇φUξ =

c

4α
U. (3.2)

∇ξU = κ1φU, ∇UU = κ2φU, ∇φUU = κ3φU −
c

4α
ξ. (3.3)

∇ξφU = −κ1U − βξ, ∇UφU = −κ2U −
(γ

α
−

c

4α
+

β2

α

)
ξ, (3.4)

∇φUφU = −κ3U.
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where κ1, κ2, κ3 are smooth functions on N .

Proof.
By definition of the vector fields U, φU, ξ and due to (1.1), the set {U, φU, ξ} is
an orthonormal basis. From (2.4) we obtain

lU =
c

4
U + αAU − βAξ, lφU =

c

4
φU + αAφU. (3.5)

The inner products of lU with U and φU yield respectively

g(AU, U) =
γ

α
−

c

4α
+

β2

α
, g(AU, φU) =

δ

α
(3.6)

where γ = g(lU, U) and δ = g(lU, φU).
So, (3.6) and g(AU, ξ) = g(Aξ, U) = β, yield

AU =
(γ

α
−

c

4α
+

β2

α

)
U +

δ

α
φU + βξ. (3.7)

We have already shown in the beginning of this section that

lφU = 0 ⇔ AφU = −
c

4α
U. (3.8)

From (3.7), (3.8) and the symmetry of A, (3.1) has been proved.
From equations (2.6),(3.1) and relation (2.3) for X = ξ, X = U, X = φU, we

obtain (3.2). Next we recall the rule

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ). (3.9)

By virtue of (3.9) for X = Z = ξ, Y = U and for X = ξ, Y = Z = U, it is shown
respectively ∇ξU⊥ξ and ∇ξU⊥U. So ∇ξU = κ1φU, where κ1 = g(∇ξU, φU). In
a similar way, (3.9) for X = Y = Z = U and X = Z = U, Y = ξ yields-with the aid
of (3.2)-respectively ∇UU⊥U and ∇UU⊥ξ. This means that ∇UU = κ2φU, where
κ2 = g(∇UU, φU). Finally, (3.9) for X = φU, Y = Z = U and X = φU, Y = U,
Z = ξ-with the aid of (3.2)-yields respectively ∇φUU⊥U and g(∇φUU, ξ) = − c

4α .
Therefore ∇φUU = κ3φU − c

4α ξ where κ3 = g(∇φUU, φU) and (3.3) has been
proved. In order to prove (3.4) we use the second of (2.3) with the following com-
binations: i) X = ξ, Y = U, ii) X = Y = U, iii) X = φU, Y = U, and make use of
(2.6), (3.1), (3.3).

By putting X = U, Y = ξ in (2.5) we obtain ∇U Aξ − A∇Uξ −∇ξ AU + A∇ξU =
− c

4φU, which is expanded by Lemma 3.1, to give

[(Uα)− (ξβ)]ξ + [(Uβ)− ξ
(γ

α
−

c

4α
+

β2

α

)
]U+

[κ2β + γ +
c

4α
(

γ

α
−

c

4α
+

β2

α
)− (

γ

α
+

β2

α
)κ1]φU = 0.
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Since the vector fields U, φU and ξ are linearly independent, the above equation
gives

(Uα) = (ξβ), (3.10)

(Uβ) = ξ
(γ

α
−

c

4α
+

β2

α

)
, (3.11)

κ2β + γ +
c

4α
(

γ

α
−

c

4α
+

β2

α
)− (

γ

α
+

β2

α
)κ1 = 0. (3.12)

In a similar way, from (2.5) we get ∇φU Aξ − A∇φUξ −∇ξ AφU + A∇ξφU =
c
4U, which is expanded by Lemma 3.1, to give

[(φUα)−
3βc

4α
− κ1β − αβ]ξ+

[(φUβ) −
c

4α
(

γ

α
−

c

4α
+

β2

α
)− κ1(

γ

α
+

β2

α
)− β2]U+

[κ3β − (
c

4α2
)(ξα)]φU = 0,

which leads to

(φUα)−
3βc

4α
− κ1β − αβ = 0, (3.13)

(φUβ)−
c

4α
(

γ

α
−

c

4α
+

β2

α
)− κ1(

γ

α
+

β2

α
)− β2 = 0, (3.14)

(ξα) =
4α2β

c
κ3. (3.15)

Finally, (2.5) yields ∇U AφU − A∇UφU −∇φU AU + A∇φUU = − c
2ξ, which

is expanded by Lemma 3.1, to give

[−φUβ + γ +
c

2α
(

γ

α
−

c

4α
+

β2

α
) + κ2β + β2]ξ+

[β(
γ

α
−

c

4α
+

β2

α
) + κ2(

β2

α
+

γ

α
)− φU(

γ

α
−

c

4α
+

β2

α
)−

βc

2α
]U+

[
c

4α2
(Uα)− κ3(

γ

α
+

β2

α
)]φU = 0.

The above relation leads to

−φUβ + γ +
c

2α
(

γ

α
−

c

4α
+

β2

α
) + κ2β + β2 = 0, (3.16)

β(
γ

α
−

c

4α
+

β2

α
) + κ2(

β2

α
+

γ

α
)− φU(

γ

α
−

c

4α
+

β2

α
)−

βc

2α
= 0, (3.17)

(Uα) = κ3
4α

c
(γ + β2). (3.18)

From (2.4) we calculate R(U, ξ)U, using Lemma 3.1. The result is
R(U, ξ)U = −γξ. However, the vector field R(U, ξ)U is also calculated from
R(U, ξ)U = ∇U∇ξU − ∇ξ∇UU − ∇[U,ξ]U using also Lemma 3.1, giving
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R(U, ξ)U = [(Uκ1) − (ξκ2) + κ3κ1 − κ3(
γ
α − c

4α + β2

α )]φU + [κ2β + c
4α (

γ
α − c

4α +
β2

α )− (γ
α + β2

α )κ1]ξ. Comparing the two expressions of R(U, ξ)U we get

(Uκ1)− (ξκ2) = κ3(
γ

α
−

c

4α
+

β2

α
− κ1). (3.19)

By making use of (1.1) for X = U, we obtain (∇ξ l)U = ω(U)ξ, which is
expanded with the aid of Lemma 3.1 and (3.5), giving (ξγ)U + γκ1φU = ω(U)ξ.
Since U, φU, ξ are linearly independent, we obtain

γκ1 = 0, (ξγ) = 0. (3.20)

4 The case γ 6= 0.

Let us assume there exists a point p1 ∈ N such that γ 6= 0 in a neighborhood W1

of p1. Then (3.20) yields κ1 = 0 = (ξγ). So, by differentiating (3.12) along ξ, with
the aid of (3.10), (3.15), (3.18), (3.19) we have

κ3[−2β(
γ

α
−

c

4α
+

β2

α
) + κ2

4α

c
(γ + β2) +

β

α
(γ +

c

4
+ β2)] = 0. (4.1)

If we assume that κ3 6= 0 in W1 then (4.1) will give −2β(γ
α − c

4α +
β2

α ) +

κ2
4α
c (γ + β2) +

β
α (γ + c

4 + β2) = 0 which is further modified giving

3βc

4α
−

β

α
(γ + β2) + κ2

4α

c
(γ + β2) = 0. (4.2)

Apparently, γ + β2 6= 0, otherwise relation (4.2) would yield
βc
α = 0 which is a

contradiction. Therefore (4.2) yields

κ2 =
βc

4α2
−

3βc2

16α2(γ + β2)
. (4.3)

We replace the term κ2 in (3.12), from (4.3) and then multiply the new relation
with γ + β2. The outcome is

(γ + β2)(γα2 +
cβ2

2
+

c

4
γ −

c2

16
)−

3β2c2

16
= 0.

The above equation is differentiated along ξ, combined with (3.10), (3.15), (3.18),
(3.20) leading to

κ3(γ + β2)[
8αβ

c
(γα2 +

cβ2

2
+

c

4
γ −

c2

16
) +

8α3βγ

c
+ 4αβγ + 4αβ3 −

3αβc

2
] = 0.

Since we have κ3(γ + β2) 6= 0, the above equation yields

8α2γ

c
+ 4β2 + 3γ − c = 0. (4.4)
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By virtue of (3.10), (3.15), (3.18), (3.20) and κ3 6= 0 we differentiate (4.4) to obtain

8α2γ

c
+ 4β2 + 4γ = 0. (4.5)

From (4.4) and (4.5) we obtain

β2 − 2α2 = c, γ = −c. (4.6)

The differentiation of (4.6) along U, with the aid of (3.10), (3.11), (3.15), (3.18),
(3.20), (4.6) and κ3 6= 0 leads to

(β2 −
3c

4
)β2 − 2α2(β2 − c) = 0.

The term 2α2 is replaced from (4.6) in order to acquire β2 = 4c
5 . So β is constant

and from (4.6) we have (ξα) = 0 ⇒ κ3 = 0 (due to (3.15)) which is a contradiction
to our assumption κ3 6= 0.

This means that in W1 we have κ3 = 0 and the Lie brackets [U, ξ]α, [U, ξ]β are
zero, due to (3.10), (3.11), (3.15), (3.18). The same Lie brackets are estimated from
[U, ξ] = ∇Uξ −∇ξU , (3.13), (3.14), κ1 = 0 and Lemma 3.1 as following:

[U, ξ]α = (γ−
c

4
+ β2)(

3c

4α
+ α), [U, ξ]β = (γ−

c

4
+ β2)[

c

4α
(

γ

α
−

c

4α
+

β2

α
)+ β2],

which means we have

(γ −
c

4
+ β2)(

3c

4α
+ α) = 0, (γ −

c

4
+ β2)[

c

4α
(

γ

α
−

c

4α
+

β2

α
) + β2] = 0. (4.7)

The term γ − c
4 + β2 can not vanish identically, otherwise the combination of

(3.12), (3.17) would imply β is constant, which would violate (3.14). Therefore
γ − c

4 + β2 6= 0 holds in W1. Then (4.7), (3.13) and (3.14) yield

α2 = −
3c

4
⇒ (φUα) = 0, γ −

c

4
= 2β2 ⇒ (φUβ) = 0. (4.8)

Combining (4.8) with (3.17) we get

κ2(3β2 +
c

4
) + 3β3 −

βc

2
= 0. (4.9)

On the other hand, combining (3.12) with (4.8) we obtain κ2 = β − γ
β . The last

relation is used with (4.9) and (4.8) to remove the terms κ2, γ leading to

β2 = −
c

24
. (4.10)

Next we calculate R(φU, U)U from (2.4), (4.8), (4.10) and Lemma 3.1 to take
R(φU, U)U = 23

24 cφU. We also have R(φU, U)U = ∇φU∇UU − ∇U∇φUU −
∇[φU,U]U, which is further developed with the help of Lemma 3.1, (3.18), (4.8),

(4.9), (4.10), κ1 = κ3 = 0, resulting to R(φU, U)U = 13
12 cφU. Equalizing the two

expressions of R(φU, U)U we have c = 0 which is a contradiction in W1.
Thus W1 is the empty set and γ = 0 holds in N . However, this implies l = 0

due to Lemma 3.1, (3.5), (3.8) and lξ = 0. Such hypersurfaces do not exist ([5])
and we have a contradiction on N . Hence M is a Hopf hypersurface.
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5 Proof of Theorem 1.1

Since M is Hopf, we have Aξ = αξ and α is constant ([13]). The inner product of
(∇ξ l)X = ω(X)ξ with ξ (because of (2.3), (3.9) and Aξ = αξ) yields ω(X) = 0.
This means that ∇ξ l = 0.

It is easy to check that (∇ξ l)ξ = 0 for any Hopf hypersurface. Now consider
a vector field X ∈ D. From the Gauss equation we have lX = (αA + c

4)X, so that

(∇ξ l)X = ∇ξ lX − l∇ξX

= ∇ξ(αA +
c

4
)X − (αA +

c

4
)∇ξX,

since ∇ξX is also in D. We can simplify this, using the Codazzi equation, to get

(∇ξ l)X = α(∇ξ A)X

= α((∇X A)ξ +
c

4
φX)

= α((α − A)φAX +
c

4
φX).

In particular, If X is chosen to be a principal vector field, such that AX = λ1X
and AφX = λ2φX, then the condition ∇ξ l = 0 implies that

α(λ1 − λ2) = 0

where we have used the well known relation for Hopf hypersurfaces

λ1λ2 =
λ1 + λ2

2
α +

c

4
.

If α 6= 0 then λ1 = λ2 is locally constant since it satisfies λ2
1 = αλ1 +

c
4 .

Therefore, M is an open subset of type A hypersurface, based on the theorems of
Kimura and Berndt and the lists of principal curvatures in [15] and [11]. In case
α = 0, we have λ1 6= λ2 or λ1 = λ2 with λ2

1 = c
4 and the classification follows

from [9].
Conversely let M be of type A1 in CP2 or type A0, A1,0, A1,1 in CH2. Take

X ∈ D a principal vector field with principal curvature λ, and α the principal
curvature of ξ. (2.4) yields lX = (αA + c

4)X, ∀X ∈ D. Furthermore, in a real

hypersurface of the previously mentioned types, we have λ2 = αλ+ c
4 , thus from

the last two equations we have lX = λ2X, which is used to show (∇ξ l)X = 0.
The last equation and (∇ξ l)ξ = ∇ξ lξ − l∇ξξ = 0 show that real hypersurfaces of
type A satisfy (1.1) with ω = 0.

If M is Hopf with α = 0 then (2.4) yields lX = c
4 X for every X ∈ D. Therefore

(∇ξ l)X = 0 holds. In addition we have (∇ξ l)ξ = 0, thus (∇ξ l)X = 0 holds for
every X, which means ω = 0.
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