On bijections, isometries and expansive maps

Alessandro Fedeli* Attilio Le Donne

Abstract

In this paper we show when a bijection on a set X can be made either an isometry or an expansive map with respect to a non-discrete metric on X. As a corollary we obtain that any bijection on an infinite set can be made biLipschitz by a non-discrete metric.

1 Introduction

In [2] Ellis raised the following question: let *T* be a self-map on a set *X*, how can we construct a non-discrete topology on *X* with respect to which *T* is continuous?

Answering the above question, de Groot and de Vries showed, among other things, that if T is a bijection on an infinite set X, then there is always a non-discrete metric d on X (i.e., (X,d) has an accumulation point) with respect to which T is a homeomorphism [6].

Moreover, it is worth noting that in [5] the authors show when a bijection on a set X can be made a homeomorphism by a compact metrizable topology on X(see also [4]).

The aim of this note is to show when a bijection on a set X can be made either an isometry or an expansive map by a non-discrete metric on X.

Let T be a self-map on a metric space (X,d). Recall that T is called an isometry if it is a distance-preserving bijection, while T is said to be expansive if it is a homeomorphism satisfying the following property: there is a $\delta > 0$, called expansivity constant for T, such that for every pair x,y of distinct points of X we have $d(T^n(x), T^n(y)) \ge \delta$ for some $n \in \mathbb{Z}$.

Received by the editors in February 2015.

Communicated by E. Colebunders.

2010 Mathematics Subject Classification: 54E35, 54E40.

Key words and phrases : bijection, metric, isometry, expansive map.

^{*}Corresponding author

Let $T: X \to X$ be a bijection and let $x \in X$. The (full) orbit of x (under T) is the set $O(x) = O(x, T) = \{T^n(x) : n \in \mathbb{Z}\}$. The cardinality of a finite orbit O(x) will be called the length of O(x) and x will be called a periodic point of minimal period |O(x)|.

The reader is referred to [3] for notations and terminology not explicitly given.

2 The results

Our first result will characterize isometries of non-discrete metric spaces.

Theorem 1. Let T be a bijection on a set X. There is a non-discrete metric d on X with respect to which T is an isometry iff one of the following holds.

- (1) There exists an infinite orbit.
- (2) For some $p \in \mathbb{N}$:
 - (i) there is an orbit of length p,
 - (ii) there exist infinitely many orbits whose length is a multiple of p.

Proof. Let us show the sufficiency. First suppose that there is an infinite orbit O. Without loss of generality we may assume that $O = \mathbb{Z}$ and T(x) = x + 1 for every $x \in O$.

Claim. There exists a non-discrete metric ρ on \mathbb{Z} such that the map $T:(\mathbb{Z},\rho)\to (\mathbb{Z},\rho)$ given by T(x)=x+1, for every $x\in\mathbb{Z}$, is an isometry.

Proof of the claim. Although, as noted by the referee, we may simply take the restriction of an irrational rotation of S¹ to the orbit of any point, we will give an alternative proof.

Let us define, when p is odd and $k \ge 0$, $\rho(0, 2^k p) = \|2^k p\| = \frac{1}{k+1}$ and $\rho(0, 0) = 0$. Now let us extend ρ on \mathbb{Z} by $\rho(n, m) = \rho(0, m - n) = \rho(0, n - m)$. To show that ρ is a metric on \mathbb{Z} it is enough to show that $\|x + y\| \le \max(\|x\|, \|y\|)$. So let $x = 2^k p$ and $y = 2^h q$, with p and q odd. We may assume $k \ge h$.

If k > h, then ||y|| > ||x||. So $x + y = 2^h(2^{k-h}p + q)$ with $k - h \ge 1$, hence $2^{k-h}p + q$ is odd and $||x + y|| = \frac{1}{h+1} = ||y||$.

If h = k, then ||x|| = ||y||, $x + y = 2^k(p + q) = 2^m s$ with s odd and m > k. So $||x + y|| = \frac{1}{m+1} < \frac{1}{k+1} = ||x|| = ||y||$. Therefore $||x + y|| \le \max(||x||, ||y||)$.

Clearly $T:(\mathbb{Z},\rho)\to(\mathbb{Z},\rho)$ is an isometry. Moreover ρ is non-discrete, in fact (\mathbb{Z},ρ) has no isolated points (it is enough to observe that 0 is an accumulation point of (\mathbb{Z},ρ)). The proof of the claim is complete.

Now let d be the metric on X given by $d|O = \rho$, where ρ is the metric described in the proof of the claim above, and d(x,y) = 1 whenever x and y are distinct points of X not both belonging to O (observe that d is a metric because ρ is bounded by 1). Clearly d is non-discrete and T is an isometry.

Now suppose (2) holds. Then there is an orbit O(x) of length some p and, for every $n \in \mathbb{N}$, there is an orbit $O(x_n)$, with $O(x_n) \neq O(x)$, whose length is a multiple of p and $O(x_n) \neq O(x_m)$ whenever $n \neq m$.

It is not restrictive to assume that $X = O(x) \cup \bigcup_n O(x_n)$.

Case 1. (p = 1) In this case x is a fixed point and we define:

 $d_T(x,y) = \frac{1}{n}$ whenever $y \in O(x_n)$, $d_T(y,z) = \frac{1}{n}$ whenever $y,z \in O(x_n)$ and $y \neq z$, $d_T(y,z) = \frac{1}{n} + \frac{1}{m}$ whenever $y \in O(x_n)$, $z \in O(x_m)$ and $n \neq m$.

Clearly d_T is a non-discrete metric on X (x is an accumulation point of X) with respect to which T is an isometry.

Case 2.
$$(p > 1)$$
 Set $X_i = T^i(\{x\} \cup \bigcup_n O(x_n, T^p))$ for every $i \in \{0, ..., p - 1\}$.

Clearly X is the disjoint union of $X_0, ..., X_{p-1}$. Since $T^i(x)$ is a fixed point of the restriction $T^p: X_i \to X_i$, we may take on each X_i the metric $d = d_{T^p}$ defined in case 1. If we define also d(y,z) = 1 whenever y and z do not both belong to the same X_i , we obtain a non-discrete metric on X (observe that $T^i(x)$ is an accumulation point of X_i) with respect to which T is an isometry.

Now let us show the necessity. If there are no infinite orbits, let us take an accumulation point x. Then O(x) is formed by accumulation points. Let p be the length of O(x). We claim that that there are infinitely many orbits whose length is a multiple of p. This is clear if p=1. If p>1, let η be the smallest distance between two distinct points of O(x). We may assume that $\eta=1$. Now, for every n>2, let us take some $x_n\neq x$ such that $d(x_n,x)\leq \frac{1}{n}$ and $O(x_n)\neq O(x_m)$ whenever $n\neq m$. We claim that the length p_n of $O(x_n)$ is a multiple of p. Suppose not. Since T is an isometry and $d(x_n,x)\leq \frac{1}{n}$, it follows that $d(T^{p_n}(x_n),T^{p_n}(x))\leq \frac{1}{n}$, i.e., $d(x_n,T^{p_n}(x))\leq \frac{1}{n}$. Now $T^{p_n}(x)\neq x$ (recall that we are assuming that p_n is not a multiple of p), so $d(T^{p_n}(x),x_n)\geq d(x,T^{p_n}(x))-d(x,x_n)\geq 1-\frac{1}{n}>\frac{1}{n}$ (recall that n>2), a contradiction.

Now let us turn our attention on expansivity. In the sequel we will make use of the following dynamical system. Let $2^{\mathbb{Z}}$, where $2 = \{0,1\}$, be endowed with the metric given by $\rho(x,y) = 2^{-n}$ with $n = \min\{|i| : x_i \neq y_i\}$ whenever $x = (x_i)$ and $y = (y_i)$ are two distinct points of $2^{\mathbb{Z}}$, and let $\sigma : 2^{\mathbb{Z}} \to 2^{\mathbb{Z}}$ be the map defined by $\sigma(x) = (\sigma(x)_i)$, where $x = (x_i)$ and $\sigma(x)_i = x_{i+1}$. The map σ is an expansive homeomorphism, moreover it has 2^n periodic points of minimal period $\leq n$ and points with dense orbit (see, e.g., [1] pp. 7, 33, 36). $(2^{\mathbb{Z}}, \sigma)$ (or simply the map σ) is called (full) two-sided shift, it is a classical example of a (Devaney) chaotic dynamical system (for a recent account of this topic see [7, Ch. 1]).

Theorem 2. Let T be a bijection on a set X. There is a non-discrete metric d on X with respect to which T is expansive iff one of the following holds.

- (1) There exists an infinite orbit.
- (2) All points are periodic and the set of minimal periods is infinite.

Proof. Sufficiency. Let us assume that there is a infinite orbit O. We may assume, without loss of generality, that O is a dense orbit of the two-sided shift $\sigma: 2^{\mathbb{Z}} \to 2^{\mathbb{Z}}$ and that $T(x) = \sigma(x)$ for every $x \in O$. Now let d be the metric on X given by $d|O = \rho$, where ρ is the metric on $2^{\mathbb{Z}}$ described above, and d(x,y) = 1 whenever x and y are two distinct points of X not both belonging to O. Then d is a non-discrete metric on X with respect to which T is expansive (observe that $\sigma|O$ is expansive and O is not discrete).

Now let us consider the case in which all points are periodic and the set of

minimal periods is infinite. We may assume that there is a sequence $(n_k)_{k\geq 0}$ of distinct positive integers with :

- (i) $n_0 > 2$,
- (ii) $n_{k+1} > 2(2k+1)$ for every $k \ge 0$;

and such that n_k is the minimal period of some point of the two-sided shift σ .

Our goal is to find a sequence $(p_k)_{k\geq 0}$ in $2^{\mathbb{Z}}$ such that (p_k) converges to p_0 and p_k has minimal period n_k for every $k\geq 0$.

We define:

- 1) $p_0(n) = 1$ if and only if $n \equiv 0 \pmod{n_0}$;
- 2) $p_k(n) = p_0(n)$ whenever $|n| \le k$, for every $k \ge 1$;
- 3) $p_k(n) = 0$ whenever $k < n < n_k k$, for every $k \ge 1$;
- 4) $p_k(m) = p_k(n)$ if and only if $m \equiv n \pmod{n_k}$; for every $k \ge 1$.

Clearly, by 2), $\rho(p_k, p_0) < 2^{-k}$ for every k, therefore (p_k) converges to p_0 .

Moreover p_k has minimal period n_k for every k. Assume not, then there is some $m_k < n_k$ which is the minimal period of p_k . By 4), n_k is a period of p_k , so n_k must be a multiple of m_k . Hence $m_k \leq \frac{1}{2}n_k$. This is a contradiction, in fact p_k has more than $\frac{1}{2}n_k$ consecutive 0's (p_k has $n_k - 2k - 1$ consecutive 0's and such number is greater than $\frac{1}{2}n_k$).

Now let us take, for every non-negative integer k, a point x_k in X of minimal period n_k . We may identify the set $Y = \bigcup_{k \geq 0} O(x_k)$ with the subset of $2^{\mathbb{Z}}$ given by $\bigcup_{k \geq 0} O(p_k)$ and we may assume that $T(x) = \sigma(x)$ for every $x \in Y$.

Now let *d* be the metric on *X* given by $d|Y = \rho$ and d(x, y) = 1 whenever *x* and *y* are distinct points of *X* not both belonging to *Y*.

Clearly d is a non-discrete metric on X (x_0 is an accumulation point) with respect to which T is an expansive map.

Necessity. Let us suppose that there is a non-discrete metric d on X with respect to which T is expansive, all points are periodic and the set of minimal periods is finite, i.e., bounded by a number L.

Let p be an accumulation point of (X,d) and let κ be the period of p. We may assume that $d(T^n(p), T^m(p)) \ge 1$ whenever $T^n(p) \ne T^m(p)$. Let $\delta < \frac{1}{2}$ be an expansivity constant for T.

Now let us take a neighbourhood U of p such that $T^n(U) \subset B(T^n(p), \delta)$ for every $n \in \{0, ..., L\}$.

Let $y \in U$, we claim that $d(T^n(p), T^n(y)) < \delta$ for every $n \in \mathbb{Z}$. Let m be the minimal period of y. Then $d(T^m(p), T^m(y)) = d(T^m(p), y) < \delta$. Since $B(T^n(p), \frac{1}{2}) \cap B(T^m(p), \frac{1}{2}) = \emptyset$ whenever $T^n(p) \neq T^m(p)$, it follows that $T^m(p) = p$. So m is a multiple of k. Therefore from $d(T^i(p), T^i(y)) < \delta$ for every $i \leq m$ (recall that $m \leq L$), it follows that $d(T^n(p), T^n(y)) < \delta$ for every $n \in \mathbb{Z}$.

By expansiveness of T it follows that $U = \{p\}$. Since p is an accumulation point, we reach a contradiction.

A well-known weakening of the concept of isometry is given by the following notion: a self-map map f on a metric space (X,d) is called biLipschitz if there exists some L such that $\frac{1}{L}d(x,y) \le d(f(x),f(y)) \le Ld(x,y)$ for every $x,y \in X$.

It is interesting to observe that, as a consequence of our results, one can obtain the following

Corollary 3. Let T be a bijection on an infinite set X. Then there is always a non-discrete metric on X with respect to which T is biLipschitz.

Proof. By Theorem 1 it is enough to consider the case in which all points are periodic and the set of minimal periods is infinite. Now, following the proof of Theorem 2 it can be seen that, in this case, one can take the same metric given in the part (2) of the sufficiency (observe that the shift σ is biLipschitz).

References

- [1] M. Brin and G. Stuck, *Introduction to Dynamical Systems*, Cambridge University Press, 2002.
- [2] D. Ellis, Orbital topologies, Quart. J. of Math. (2) 4 (1953) 117-119.
- [3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989
- [4] C. Good and S. Greenwood, *Continuity in separable metrizable and Lindelöf spaces*, Proc. Amer. Math. Soc. 138 (2010) 577-591.
- [5] C. Good, S. Greenwood, R.W. Knight, D.W. McIntyre and S.Watson, *Characterizing continuous functions on compact spaces*, Adv. Math. 206 (2006) 695-728.
- [6] J. de Groot and H. de Vries, *Metrization of a set which is mapped into itself*, Quart. J. Math. Oxford (2) 9 (1958) 144-148.
- [7] K.-G. Grosse-Erdmann and A. Peris Manguillot, *Linear Chaos*, Springer Verlag, 2011.

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Universitá dell'Aquila 67100 L'Aquila, Italy e-mail: afedeli@univaq.it

Dipartimento di Matematica, Universitá di Roma "La Sapienza" 00185 Roma, Italy e-mail : ledonne@mat.uniroma1.it