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Abstract

We prove in a uniform way that all ultradifferentiable function classes
E{M} of Roumieu-type and E(M) of Beurling-type defined in terms of a weight
matrixM admit a convenient setting ifM satisfies some mild regularity con-
ditions. For C denoting either E{M} or E(M) the category C is cartesian closed,
i.e. C(E× F, G) ∼= C(E, C(F, G)) for E, F, G convenient vector spaces. As spe-
cial cases one obtains the classes E{M} and E(M) respectively E{ω} and E(ω)

defined by a weight sequence M respectively a weight function ω.

1 Introduction

Spaces of ultradifferentiable functions are subclasses of smooth functions with
certain growth conditions on all their derivatives. In the literature two different
approaches are considered, either using a weight sequence M = (Mk)k or using
a weight function ω. For compact K the set
{

f (k)(x)

hkMk
: x ∈ K, k ∈ N

}

respectively

{

f (k)(x)

exp(1/lϕ∗ω(lk))
: x ∈ K, k ∈ N

}

should be bounded, where the positive real number h respectively l is subject to
either a universal or an existential quantifier and ϕ∗ω denotes the Young-conjugate
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of ϕω = ω ◦ exp. In the case of a universal quantifier we call the class of Beurling-
type, denoted by E(M) or E(ω), in the case of an existential quantifier we call the
class of Roumieu-type, denoted by E{M} or E{ω}. We write E[⋆] if either E{⋆} or E(⋆)
is considered.

That a class of mappings C admits a convenient setting means that one can extend
the class to admissible infinite dimensional vector spaces E, F, G such that C(E, F)
is again admissible and the spaces C(E× F, G) and C(E, C(F, G)) are canonically
C-diffeomorphic. This important property is called the exponential law.

We recall now some facts, see [4] or the appendix in [5] for a short overview. The
class E of all smooth functions admits a convenient setting and for this approach
one can test smoothness along E -curves. The class Cω of all real-analytic map-
pings also admits a convenient setting. A mapping is Cω if and only if it is E and
in addition it is weakly Cω along (weakly) Cω-curves, i.e. curves whose composi-
tions with any bounded linear functional are Cω. It actually suffices to test along
affine lines.

In [5], [7] and finally in [6] A. Kriegl, P.W. Michor and A. Rainer were able to
develop the convenient setting for all reasonable classes E(M) and E{M}. In the
first step in [5] they introduced the convenient setting for E{M} by testing with
E{M}-curves for non-quasianalytic, strongly log-convex weight sequences M of mod-
erate growth. A function is E{M} if and only if it is E{M} along all E{M}-curves. It
was shown that moderate growth is really necessary for the exponential law and
non-quasianalyticity is needed for the existence of E{M}-partitions of unity.

Then, in [7], they succeeded to introduce the convenient setting for some quasi-
analytic classes E{M}. In this case M has to satisfy again strong log-convexity,
moderate growth and be such that E{M} can be represented as the intersection of
all larger non-quasianalytic classes E{L} with strongly log-convex L. A mapping
is E{M} if and only if it is E{L} along each E{L}-curve for each L ≥ M which is
strongly log-convex and non-quasianalytic. A family of explicit examples E{M}
satisfying the requested assumptions was constructed, but the approach does not
cover the real analytic case Cω and thus was not completely satisfactory.

Finally, in [6], it was shown that all classes E{M} and E(M) such that M is strongly
log-convex and has moderate growth admit a convenient setting, no matter if M
is quasianalytic or not. Instead of testing along curves the mappings are tested
along Banach plots, i.e. mappings of the respective weak class defined in open
subsets of Banach spaces. A smooth mapping between convenient vector spaces
is E[M] if it maps E[M]-Banach-plots to E[M]-Banach-plots.

The aim of this work is to generalize the results of [6] to classes E[M] defined by

(one-parameter) weight matricesM := {Mx : x ∈ R>0}. In [9] the classes E[M]
and E[ω] were identified as particular cases of E[M]. So using this new approach
one is able to transfer results from one setting into the other one. Moreover one is
able to prove results for E[M] and E[ω] simultaneously and no longer two separate
proofs are necessary. We have also shown that there are classes E[M] which can-
not be described by a single M or ω, e.g. the class defined by the Gevrey-matrix
G := {(p!s+1)p∈N : s > 0}. To transfer the proofs of [6] we will assume for
M among mild basic properties the so-called generalized Fa-di-Bruno-property
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(M[FdB]) and the moderate growth condition (M[mg]).

After introducing the basic notation and definitions we recall the setting of Whit-
ney jets between Banach spaces. We introduce classes of ultradifferentiable func-
tions defined by weight matrices, first between Banach spaces and then between
convenient vector spaces. This will be done in section 3. In section 4 we are go-
ing to prove the most important and new tools in this work. We will develop
projective descriptions for the classes E[M] in order to get rid of both existence

quantifiers in the Roumieu-case (if M = {M} only one occurs). For this we
have to use diagonal techniques and to introduce several families of sequences of
positive real numbers to generalize the results of [6]. These projective represen-
tations are needed in section 5 for the proof of Theorem 5.9 to show that E[M] is a
category and for cartesian closedness Theorem 6.2 in section 6.

Finally in section 7 we summarize some special cases. In 7.3 we revisit weight
matrices as defined by Beaugendre in [1] and Schmets and Valdivia in [13]. Put
MΦ := {(p!mΦ

ap)p∈N : a > 0}, where Φ : [0,+∞) → R is a convex and in-

creasing function with limt→∞
Φ(t)

t = +∞, Φ(0) = 0. In the literature only the
Beurling-type-class was studied. We will see that the results in this work can also
be applied to such classes.

Note that ifM = {M} then the Fa-di-Bruno-property for M is sufficient to show
closedness under composition and is sufficient for the proofs in this work. But
it is really weaker than strong log-convexity as assumed always in the previous
papers and proofs of Kriegl, Michor, Rainer, see [9, 3.3.] for an explicit (counter)-
example. So our results are slightly more general than those of [6] even in the
single weight sequence case. In Lemma 6.6 we will show that (M{mg}) is neces-
sary for cartesian closedness of E{M} and in Example 6.5 we will point out that
there exist weight matricesM such that no Mx ∈ M has moderate growth but
nevertheless (M{mg}) is valid. In particular this holds if the matrix is associated
to a weight function ω and such that E[ω] = E[M] does not hold, see [2] and [9].

This paper contains some of the main results of the authors PhD-Thesis, see [12].
The author thanks his advisor A. Kriegl, P.W. Michor and A. Rainer for the super-
vision and their helpful ideas.

1.1 Basic notation

We denote by C the class of all continuous, by E the class of smooth functions
and Cω is the class of all real analytic functions. We will write N>0 = {1, 2, . . . },
N = N>0 ∪ {0} and put R>0 := {x ∈ R : x > 0}. For α = (α1, . . . , αn) ∈ Nn

we use the usual multi-index notation, write α! := α1! . . . αn!, |α| := α1 + · · ·+ αn

and for x = (x1, . . . , xn) ∈ Rn we set xα = xα1
1 · · · xαn

n . We also put ∂α = ∂α1
1 · · · ∂αn

n

and denote by f (k) the k-th order Fréchet derivative of f . Iterated uni-directional

derivatives are defined by dk
v f (x) :=

(
d
dt

)k
f (x + tv)|t=0.

Let E1, . . . , Ek and F be topological vector spaces, then L(E1, . . . , Ek, F) is the space
of all bounded k-linear mappings E1 × · · · × Ek → F. If E = Ei for i = 1, . . . , k,
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then we write Lk(E, F). Lk
sym(E, F) is the space of all symmetric k-linear bounded

mappings E× · · · × E
︸ ︷︷ ︸

k−times

→ F, so f (k) : U → Lk
sym(E, F). E∗ denotes the space of

all continuous linear functionals on E, E
′

the space of all bounded linear func-
tionals. If B ⊆ E is closed absolutely convex bounded, then EB denotes the space
generated by B with the Minkowski-functional ‖ · ‖B.
Let E be a locally convex vector space, then the c∞-topology on E is the final
topology w.r.t. all smooth curves c : R → E. E is called convenient if E is c∞-
complete which is equivalent for E to be Mackey-complete and for EB to be a
Banach space for every bounded absolutely convex subset B of E. We refer to [4]
or the appendix in [5] for more details and proofs.

Convention: Let ⋆ ∈ {M, ω,M}, then write E[⋆] if either E{⋆} or E(⋆) is considered,
but not mixing the cases if statements involve more than one E[⋆] symbol. The

same notation will be used for the conditions, so write (M[⋆]) for either (M{⋆})
or (M(⋆)).

2 Basic definitions

2.1 Weight sequences and classes of ultradifferentiable functions E[M]

A weight sequence is an arbitrary sequence of positive real numbers

M = (Mk)k ∈ RN
>0. We introduce also m = (mk)k defined by mk := Mk

k! and

µk := Mk
Mk−1

, µ0 := 1. M is called normalized if 1 = M0 ≤ M1 holds.

(1) M is log-convex if

(lc) :⇔ ∀ j ∈ N : M2
j ≤ Mj−1Mj+1.

M is log-convex if and only if (µk)k is increasing. If M is log-convex and M0 = 1,
then

(alg) :⇔ ∃ C ≥ 1 ∀ j, k ∈ N : MjMk ≤ Cj+kMj+k

holds with C = 1 and the mapping j 7→ (Mj)
1/j is increasing, see e.g. [11, Lemma

2.0.4, Lemma 2.0.6].
M is called strongly log-convex if

(slc) :⇔ ∀ j ∈ N : m2
j ≤ mj−1mj+1.

This condition implies (lc) and was a basic assumptions for M in [5], [7] and [6].
It guarantees all stability properties in [10, Theorems 5,6] for the caseM = {M},
see also [9, Theorem 3.2.]. Related to this is the weaker condition

(FdB) :⇔ ∃ D ≥ 1 ∀ k ∈ N : m◦k ≤ Dkmk,

which is called the Fa-di-Bruno-property, see [9, 3.3.]. For m◦ = (m◦k )k we have put

m◦k := max{mjmα1
· · ·mαj

: αi ∈ N>0,
j

∑
i=1

αi = k}, m◦0 := 1.
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Strongly log-convexity is also related to

(rai) :⇔ ∃ C ≥ 1 ∀ 1 ≤ j ≤ k : (mj)
1/j ≤ C(mk)

1/k,

see [9] and [10].
(2) M has moderate growth if

(mg) :⇔ ∃ C ≥ 1 ∀ j, k ∈ N : Mj+k ≤ Cj+kMjMk.

This condition implies derivation closedness:

(dc) :⇔ ∃ C ≥ 1 ∀ j ∈ N : Mj+1 ≤ Cj+1Mj.

In both conditions one can replace the sequence M by m.
(3) For M = (Mp)p and N = (Np)p we write M ≤ N if and only if Mp ≤ Np for
all p ∈ N. Moreover we define

M � N :⇔ ∃ C1, C2 ≥ 1 ∀ j ∈ N : Mj ≤ C2C
j
1Nj ⇐⇒ sup

p∈N>0

(
Mp

Np

)1/p

< +∞

and we call the sequences equivalent if

M ≈ N :⇔ M�N and N�M.

We will write

M ⊳ N :⇔ ∀ h > 0 ∃ Ch ≥ 1 ∀ j ∈ N : Mj ≤ ChhjNj ⇐⇒ lim
p→∞

(
Mp

Np

)1/p

= 0.

For convenience we introduce the following set:

LC := {M ∈ R
N
>0 : M is normalized, log-convex, lim

k→∞
(Mk)

1/k = +∞}.

Let r, s ∈ N>0 and U ⊆ Rr be non-empty open. We introduce the ultradifferen-
tiable class of Roumieu-type by

E{M}(U, R
s) := { f ∈ E(U, R

s) : ∀ K ⊆ U compact ∃ h > 0 : ‖ f‖M,K,h < +∞},

and the class of Beurling-type by

E(M)(U, R
s) := { f ∈ E(U, R

s) : ∀ K ⊆ U compact ∀ h > 0 : ‖ f‖M,K,h < +∞},

where we have put

‖ f‖M,K,h := sup
k∈N,x∈K

‖ f (k)(x)‖Lk(Rr,Rs)

hkMk
. (2.1)

For compact sets K with smooth boundary

EM,h(K, R
s) := { f ∈ E(K, R

s) : ‖ f‖M,K,h < +∞}
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is a Banach space and we have the topological vector space representations

E{M}(U, R
s) := lim←−

K⊆U

lim−→
h>0

EM,h(K, R
s) = lim←−

K⊆U

E{M}(K, R
s) (2.2)

and

E(M)(U, R
s) := lim←−

K⊆U

lim←−
h>0

EM,h(K, R
s) = lim←−

K⊆U

E(M)(K, R
s). (2.3)

We recall some facts for log-convex M:

(i) Put Eglobal

{M} (U, Rs) := { f ∈ E(U, Rs) : ∃ h > 0 ‖ f‖M,U,h < +∞}. There

exist characteristic functions

(chf) :⇔ ∃ θM ∈ Eglobal

{M} (R, R) : ∀ j ∈ N :
∣
∣
∣θ

(j)
M (0)

∣
∣
∣ ≥ Mj,

and θ̃M ∈ Eglobal

{M} (R, C) with

∀ j ∈ N : θ̃
(j)
M (0) = (

√
−1)jsj, sj :=

∞

∑
k=0

Mk(2µk)
j−k ≥ Mj, (2.4)

hence
∣
∣
∣θ̃

(j)
M (0)

∣
∣
∣ ≥ Mj for all j ∈ N, see [9, Lemma 2.9.] and [14, Theorem 1].

Note that the Beurling-class Eglobal

(M)
(R, R) cannot contain such θM, see [11,

Proposition 3.1.2.].

(ii) If N is arbitrary, then M�N ⇐⇒ E{M} ⊆ E{N} and M⊳N ⇐⇒ E{M} ⊆
E(N). If M ∈ LC, then M�N ⇐⇒ E[M] ⊆ E[N].

(iii) Both classes E{M} and E(M) are closed under pointwise multiplication, see
e.g. [11, Proposition 2.0.8].

2.2 Classes of ultra-differentiable functions defined by one parameter weight

matrices and basic definitions

Definition 2.3. Let (Λ,≤) be a partially ordered set which is both up- and downward
directed, Λ = R>0 will be the most important example. A weight matrixM associated
to Λ is a family of weight sequencesM := {Mx ∈ RN

>0 : x ∈ Λ} such that

(M) :⇔ ∀ x ∈ Λ : Mx is normalized, increasing, Mx ≤ My for x ≤ y.

We callM standard log-convex, if

(Msc) :⇔ (M) and ∀ x ∈ Λ : Mx ∈ LC.

Also mx
k :=

Mx
k

k! and µx
k :=

Mx
k

Mx
k−1

, µx
0 := 1, will be used.
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We introduce ultradifferentiable classes of Roumieu- and Beurling-type defined
byM as follows (see also [9, 4.2.]):
Let r, s ∈ N>0, let U ⊆ Rr be non-empty and open. For all K ⊆ U compact we
put

E{M}(K, R
s) :=

⋃

x∈Λ

E{Mx}(K, R
s) E{M}(U, R

s) :=
⋂

K⊆U

⋃

x∈Λ

E{Mx}(K, R
s)

(2.5)
and

E(M)(K, R
s) :=

⋂

x∈Λ

E(Mx)(K, R
s) E(M)(U, R

s) :=
⋂

x∈Λ

E(Mx)(U, R
s). (2.6)

For a compact set K ⊆ Rr (with smooth boundary) we have

E{M}(K, R
s) := lim−→

x∈Λ

lim−→
h>0

EMx ,h(K, R
s),

and so for U ⊆ Rr non-empty open

E{M}(U, R
s) := lim←−

K⊆U

lim−→
x∈Λ

lim−→
h>0

EMx,h(K, R
s), (2.7)

and for the Beurling-case we get

E(M)(U, R
s) := lim←−

K⊆U

lim←−
x∈Λ

lim←−
h>0

EMx,h(K, R
s). (2.8)

Instead of compact sets K with smooth boundary one can also consider open
K ⊆ U with K compact in U, or one can work with Whitney jets on compact K.
If Λ = R>0 we can assume that all occurring limits are countable and so
E(M)(U, Rs) is a Fréchet space. Moreover lim−→

x∈Λ

lim−→
h>0

EMx ,h(K, Rs) = lim−→
n∈N>0

EMn,n(K, Rs)

is a Silva space, i.e. a countable inductive limit of Banach spaces with compact
connecting mappings. For more details concerning the locally convex topology
on these spaces we refer to [9, 4.2.-4.4.].

2.4 Conditions for a weight matrixM = {Mx : x ∈ Λ}

We are going to introduce now some conditions on M which will be needed
frequently, see also [9, 4.1.].
Roumieu-type-conditions

(M{dc}) ∀ x ∈ Λ ∃ C > 0 ∃ y ∈ Λ ∀ j ∈ N : Mx
j+1 ≤ Cj+1M

y
j

(M{mg}) ∀ x ∈ Λ ∃ C > 0 ∃ y1, y2 ∈ Λ ∀ j, k ∈ N : Mx
j+k ≤ Cj+kM

y1

j M
y2

k

(M{alg}) ∀ x1, x2 ∈ Λ ∃ C > 0 ∃ y ∈ Λ ∀ j, k ∈ N : Mx1
j Mx2

k ≤ Cj+kM
y
j+k

(M{L}) ∀ C > 0 ∀ x ∈ Λ ∃ D > 0 ∃ y ∈ Λ ∀ k ∈ N : CkMx
k ≤ DM

y
k
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(M{strict}) ∀ x ∈ Λ ∃ y ∈ Λ : supk∈N>0

(
M

y
k

Mx
k

)1/k

= +∞

(M{FdB}) ∀ x ∈ Λ ∃ y ∈ Λ : (mx)◦�my

(M{rai}) ∀ x ∈ Λ ∃ y ∈ Λ ∃ H > 0 : (mx
q)

1/q ≤ H(m
y
p)

1/p, 1 ≤ q ≤ p

Beurling-type-conditions

(M(dc)) ∀ x ∈ Λ ∃ C > 0 ∃ y ∈ Λ ∀ j ∈ N : M
y
j+1 ≤ Cj+1Mx

j

(M(mg)) ∀ x1, x2 ∈ Λ ∃ C > 0 ∃ y ∈ Λ ∀ j, k ∈ N : M
y
j+k ≤ Cj+kMx1

j Mx2
k

(M(alg)) ∀ x ∈ Λ ∃ C > 0 ∃ y1, y2 ∈ Λ ∀ j, k ∈ N : M
y1

j M
y2

k ≤ Cj+kMx
j+k

(M(L)) ∀ C > 0 ∀ x ∈ Λ ∃ D > 0 ∃ y ∈ Λ ∀ k ∈ N : Ck M
y
k ≤ DMx

k

(M(strict)) ∀ x ∈ Λ ∃ y ∈ Λ : supk∈N>0

(
Mx

k

M
y
k

)1/k

= +∞

(M(FdB)) ∀ x ∈ Λ ∃ y ∈ Λ : (my)◦�mx

(M(rai)) ∀ x ∈ Λ ∃ y ∈ Λ ∃ H > 0 : (m
y
q)

1/q ≤ H(mx
p)

1/p, 1 ≤ q ≤ p

2.5 Inclusion relations of weight matrices

Let two matricesM = {Mx : x ∈ Λ} and N = {Nx : x ∈ Λ′} be given, then we
write

M{�}N :⇔ ∀ x ∈ Λ ∃ y ∈ Λ′ : Mx�Ny

M(�)N :⇔ ∀ y ∈ Λ′ ∃ x ∈ Λ : Mx�Ny,

and
M{≈}N :⇔M{�}N and N{�}M

respectively
M(≈)N :⇔M(�)N and N (�)M.

By definitionM[�]N implies E[M] ⊆ E[N ]. Moreover write

M ⊳ N :⇔ ∀ x ∈ Λ ∀ y ∈ Λ′ : Mx
⊳Ny,

so M ⊳ N implies E{M} ⊆ E(N ). In [9, Proposition 4.6.] the above relations

are characterized for (Msc)-matrices with Λ = Λ′ = R>0. In this context we
introduce
(M{Cω}) ∃ x ∈ Λ : lim infk→∞(mx

k )
1/k

> 0,

(MH) ∀ x ∈ Λ : lim infk→∞(mx
k )

1/k
> 0,

(M(Cω)) ∀ x ∈ Λ : limk→∞(mx
k )

1/k = +∞.

If (M{Cω}) holds, then Cω ⊆ E{M}, if (M(Cω)) then Cω ⊆ E(M). Finally if (MH),
then the restrictions of entire functions are contained in E(M), see [9, Proposition
4.6.].
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Conventions:

(i) If Λ = R>0 or Λ = N>0, then these sets are always regarded with its natural
order ≤.

(ii) We will callM constant ifM = {M} or more generally if Mx≈My for all
x, y ∈ Λ and which violates both (M{strict}) and (M(strict)). Otherwise it
will be called non-constant.

2.6 Weight functions and classes of ultradifferentiable functions E[ω]

A function ω : [0, ∞)→ [0, ∞) (sometimes ω is extended to C by ω(x) := ω(|x|))
is called a weight function if

(ω0) ω is continuous, on [0, ∞) increasing, ω(x) = 0 for x ∈ [0, 1] (w.l.o.g.) and
limx→∞ ω(x) = +∞.

Moreover we consider the following conditions:

(ω1) ω(2t) = O(ω(t)) as t→ +∞.

(ω2) ω(t) = O(t) as t→ ∞.

(ω3) log(t) = o(ω(t)) as t→ +∞ (⇔ limt→+∞
t

ϕω(t)
= 0).

(ω4) ϕω : t 7→ ω(et) is a convex function on R.

(ω5) ω(t) = o(t) as t→ +∞.

(ω6) ∃ H ≥ 1 ∀ t ≥ 0 : 2ω(t) ≤ ω(Ht) + H.

(ω1′) ∃ D > 0 : ∃ t0 > 0 : ∀ λ ≥ 1 : ∀ t ≥ t0 : ω(λt) ≤ Dλω(t).

An interesting example is ωs(t) := max{0, log(t)s}, s > 1, which satisfies all
listed properties except (ω6). For convenience we define the sets

W0 := {ω : [0, ∞)→ [0, ∞) : ω has (ω0), (ω3), (ω4)},

W := {ω ∈ W0 : ω has (ω1)}.
For ω ∈ W0 we define the Legendre-Fenchel-Young-conjugate ϕ∗ω by

ϕ∗ω(x) := sup{xy− ϕω(y) : y ≥ 0}, x ≥ 0.

It is a convex increasing function, ϕ∗ω(0) = 0, ϕ∗∗ω = ϕω, limx→∞
x

ϕ∗ω(x)
= 0 and

finally x 7→ ϕω(x)
x and x 7→ ϕ∗ω(x)

x are increasing on [0,+∞), see e.g. [3, Remark
1.3., Lemma 1.5.].
For σ, τ ∈ W we write

σ � τ :⇔ τ(t) = O(σ(t)), as t→ +∞
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and call them equivalent if

σ ∼ τ :⇔ σ�τ and τ�σ.

Let r, s ∈ N>0, U ⊆ R
r be a non-empty open set and ω ∈ W0. The Roumieu-type

space is defined by

E{ω}(U, R
s) := { f ∈ E(U, R

s) : ∀ K ⊆ U compact ∃ l > 0 : ‖ f‖ω,K,l < +∞}

and the Beurling-type space by

E(ω)(U, R
s) := { f ∈ E(U, R

s) : ∀ K ⊆ U compact ∀ l > 0 : ‖ f‖ω,K,l < +∞},

where we have put

‖ f‖ω,K,l := sup
k∈N,x∈K

‖ f (k)(x)‖Lk(Rr,Rs)

exp(1
l ϕ∗ω(lk))

(2.9)

and f (k)(x) denotes the k-th order Fréchet derivative at x. For compact sets K
with smooth boundary

Eω,l(K, R
s) := { f ∈ E(K, R

s) : ‖ f‖ω,K,l < +∞}

is a Banach space and we have the topological vector space representations

E{ω}(U, R
s) := lim←−

K⊆U

lim−→
l>0

Eω,l(K, R
s) = lim←−

K⊆U

E{ω}(K, R
s) (2.10)

and
E(ω)(U, R

s) := lim←−
K⊆U

lim←−
l>0

Eω,l(K, R
s) = lim←−

K⊆U

E(ω)(K, R
s). (2.11)

A new idea introduced in [9, Chapter 5] was the following:

(i) To each ω ∈ W we can associate a (Msc) weight matrix
Ω = {Ωl = (Ωl

j)j∈N : l > 0} by

Ωl
j := exp

(
1
l ϕ∗ω(lj)

)

.

(ii) Ω has always (M{mg}) and (M(mg)), (M{L}) and (M(L)). If ω is sub-

additive, then (M{FdB}) and (M(FdB)) hold, see [9, Lemma 6.1.]. Equivalent

weight functions ω yield equivalent weight matrices w.r.t. both (≈) and
{≈}.

(iii) E[Ω] = E[ω] holds as locally convex vector spaces, so defining classes of ul-
tradifferentiable functions by weight matrices as in (2.5) and (2.6) is a com-
mon generalization of defining them by using a single weight sequence M,
i.e. a constant weight matrix, or a weight function ω ∈ W . But one is also
able to describe classes which cannot be described neither by a weight func-
tion nor by a weight sequence, e.g. the class defined by the Gevrey-matrix
G := {(p!s+1)p∈N : s > 0}, see [9, 5.19.].
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3 Basic definitions for the convenient setting

3.1 Whitney jets on Banach spaces

We recall the notation of [6, Chapter 3]. Let E, F be Banach spaces, K ⊆ E com-
pact and U ⊆ E open. Let f ∈ E(U, F), then we introduce the jet mapping
j∞ : E(U, F) → J∞(U, F) := ∏k∈N C(U, Lk

sym(E, F)) defined by f 7→ j∞( f ) =

( f (k))k∈N. For an arbitrary subset X ⊆ E and an infinite jet f = ( f k)k∈N we in-
troduce the Taylor polynomial (Tn

y f )k : X → Lk
sym(E, F) of order n at the point y as

follows:

(Tn
y f )k(x)(v1, . . . , vk) :=

n

∑
j=0

1

j!
f j+k(y)(x− y, . . . , x− y, v1, . . . , vk).

The remainder is given by

(Rn
y f )k(x) := f k(x)− (Tn

y f )k(x) = (Tn
x f )k(x)− (Tn

y f )k(x)

and so (Rn
y f )k(x) ∈ Lk

sym(E, F). We put now

‖ f‖k := sup
{

‖ f k(x)‖Lk
sym(E,F) : x ∈ K

}

and

|‖ f |‖n,k := sup






(n + 1)!

‖(Rn
y f )k(x)‖Lk

sym(E,F)

‖x− y‖n+1
: x, y ∈ K, x 6= y






.

We supply E(U, F) with the seminorms f 7→ ‖j∞( f )|K‖k, where K ⊆ U is a com-
pact set and k ∈ N. If K ⊆ E is compact and convex, then we introduce the space
E(E ⊇ K, F) of Whitney-jets on K by

E(E ⊇ K, F) :=

{

f = ( f k)k∈N ∈ ∏
k∈N

C(K, Lk
sym(E, F)) : |‖ f |‖n,k < +∞ ∀ n, k ∈ N

}

and we supply these spaces with both seminorms ‖ f‖k and |‖ f |‖n,k for k, n ∈ N.
Finally recall [6, Lemma 3.1.]:

Lemma 3.2. Let E and F be Banach spaces and K ⊆ E be a compact convex subset. Then
E(E ⊇ K, F) is a Fréchet space.

3.3 Classes of ultra-differentiable mappings defined by a weight matrix

LetM := {Mx : x ∈ Λ} be (M), E and F be Banach spaces and K ⊆ E a compact
subset. Then, as in [6, 4.1.], for x ∈ Λ and h > 0 we define

EMx,h(E ⊇ K, F) :=

{

( f j)j ∈ ∏
j∈N

C(K, L
j
sym(E, F)) : ‖ f‖J

Mx ,h < +∞

}

,
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where

‖ f‖J
Mx ,h := max

{

sup

{

‖ f‖k

hkMx
k

: k ∈ N

}

, sup

{

|‖ f |‖n,k

hn+k−1Mx
n+k+1

: k, n ∈ N

}}

.

For open U ⊆ E and compact K ⊆ U we introduce the space

EMx,K,h(U, F) :=
{

f ∈ E(U, F) : j∞( f )
∣
∣

K
∈ EMx,h(E ⊇ K, F)

}

,

with semi-norm f 7→
∥
∥
∥j∞( f )

∣
∣

K

∥
∥
∥

J

Mx,h
. It is not Hausdorff and for infinite dimen-

sional E its Hausdorff quotient will not always be complete. Note that if K is
assumed to be convex, then we can take on EMx ,K,h(U, F) also the semi-norm

f 7→ sup







‖ f (n)(a)‖Ln
sym(E,F)

hnMx
n

: a ∈ K, n ∈ N






=: ‖ f‖J

Mx ,K,h.

Thus we see that EMx ,K,h(U, F) =
{

f ∈ E(U, F) : (‖j∞( f )
∣
∣
K
‖k)k ∈ FMx,h

}

holds

with
FMx,h :=

{

( fk)k ∈ R
N
>0 : ∃ C > 0 : ∀ k ∈ N : | fk| ≤ Chk Mx

k

}

.

The bounded sets B in EMx ,K,h(U, F) are exactly those B ⊆ E(U, F) such that

(bm)m ∈ FMx ,h with bm := sup
{

‖j∞( f )
∣
∣

K
‖m : f ∈ B

}

.

Let U ⊆ E be convex open and K ⊆ U be convex compact, then define

E(M)(E ⊇ K, F) := lim←−
x∈Λ,h>0

EMx,h(E ⊇ K, F)

E{M}(E ⊇ K, F) := lim−→
x∈Λ,h>0

EMx ,h(E ⊇ K, F)

and finally
E[M](U, F) := lim←−

K⊆U

E[M](E ⊇ K, F), (3.1)

i.e.
E[M](U, F) :=

{

f ∈ E(U, F) : ∀ K : ( f (k)
∣
∣
K
) ∈ E[M](E ⊇ K, F)

}

,

where K runs through all compact and convex subsets of U.
If Λ = R>0, then we can restrict in both cases to the countable diagonal, see
also [9, 4.2.-4.4.]. We have E(M)(E ⊇ K, F) = lim←−

n∈N>0

EM1/n,1/n(E ⊇ K, F) and

E{M}(E ⊇ K, F) = lim−→
n∈N>0

EMn,n(E ⊇ K, F).

As already mentioned in [6, Proposition 4.1. (3)] the space E{M}(E ⊇ K, F) is
not a Silva space for infinite dimensional E, because the connecting mappings in
the inductive limit lim−→

x∈Λ,h>0

EMx,h(E ⊇ K, F) are not compact any more. The set

B := {α ∈ E
′

: ‖α‖ ≤ 1} is bounded in EMk,k(E ⊇ K, R) for each k ≥ 1. We have
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‖α‖0 = sup{|α(x)| : x ∈ K} ≤ sup{‖x‖ : x ∈ K}, ‖α‖1 = ‖α‖ ≤ 1 and ‖α‖m = 0
for each m ≥ 2. Moreover (Rn

y α)k = 0 for n + k ≥ 1 and (R0
yα)0 = α(x− y). But

B is not relatively compact in any EMk,k(E ⊇ K, R), k ≥ 1, because it is not even
pointwise relatively compact in C(K, L(E, R)).

Moreover we define

E(M),K(U, F) := lim←−
x∈Λ,h>0

EMx ,K,h(U, F)

E{M},K(U, F) := lim−→
x∈Λ,h>0

EMx,K,h(U, F)

and so

E(M),K(U, F) =
{

f ∈ E(U, F) : (‖j∞( f )
∣
∣

K
‖k)k ∈ F(M)

}

E{M},K(U, F) =
{

f ∈ E(U, F) : (‖j∞( f )
∣
∣

K
‖k)k ∈ F{M}

}

with F(M) =
⋂

x∈Λ,h>0FMx ,h, F{M} =
⋃

x∈Λ,h>0FMx ,h.

The bounded sets B ⊆ E[M],K(U, F) are exactly those B ⊆ E(U, F) for which the

sequence (bm)m, bm := sup
{

‖j∞( f )
∣
∣
K
‖m : f ∈ B

}

, belongs to F[M].

Finally we introduce

lim←−
K⊆U

E[M],K(U, F) =
{

f ∈ E(U, F) : ∀ K : (‖j∞( f )
∣
∣

K
‖m)m ∈ F[M]

}

.

The next result generalizes [6, Proposition 4.1.].

Proposition 3.4. Let M be (M) with Λ = R>0, then the following completeness
properties are valid:

(1) EMx,h(E ⊇ K, F) is a Banach space.

(2) E(M)(E ⊇ K, F) is a Fréchet space.

(3) E{M}(E ⊇ K, F) is a compactly regular (LB)-space, i.e. compact subsets are con-
tained and compact in some step and so (c∞)-complete, webbed and ultrabornolog-
ical.

(4) E(M)(U, F) and E{M}(U, F) are complete.

(5) As locally convex vector spaces we have

E(M)(U, F) = lim←−
K⊆U

E(M)(E ⊇ K, F) = lim←−
K⊆U

E(M),K(U, F)

and

E{M}(U, F) = lim←−
K⊆U

E{M}(E ⊇ K, F) = lim←−
K⊆U

E{M},K(U, F).
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Proof. (1) This was already shown in [6, Proposition 4.1. (1)].

(2) Holds since Λ = R>0.

(3) We can restrict to Λ = N>0 and proceed analogously as in [6, Proposition 4.1.
(3)]. To show that the inductive limit is compactly regular it suffices to show that
there exists a sequence of increasing 0-neighborhoods Un ∈ EMn,n(E ⊇ K, F) such
that for each n ∈ N there exists l ∈ N with l ≥ n and for which the topologies of
EMl ,l(E ⊇ K, F) and of EMk,k(E ⊇ K, F) coincide on Un for all k ≥ l.

In general, for indices x1 ≥ x2 and positive real numbers h1 ≥ h2 we have

clearly by definition ‖ · ‖J
Mx1 ,h1

≤ ‖ · ‖J
Mx2 ,h2

. Consider now the ε-Ball Ux,h
ε ( f ) :=

{g : ‖g− f‖J
Mx ,h ≤ ε} in EMx ,h(E ⊇ K, F) and we restrict to the diagonal x = h = n

and identify Un,n with Un.

We show that for arbitrary n ∈ N>0 and n2 > n1 := 2n, for each ε > 0 and
f ∈ Un

1 (0) there exists δ > 0 such that Un2
δ ( f ) ∩Un

1 (0) ⊆ Un1
ε ( f ).

By assumption f ∈ Un
1 (0) = Un,n

1 (0) we have ‖ f‖a ≤ na Mn
a and |‖ f‖|a,b ≤

na+b+1Mn
a+b+1 for all a, b ∈ N. Consider g ∈ Un2

δ ( f ) ∩ Un
1 (0) = Un2,n2

δ ( f ) ∩
Un,n

1 (0), then ‖g‖a ≤ naMn
a , |‖g‖|a,b ≤ na+b+1Mn

a+b+1 and moreover ‖g− f‖a ≤
δna

2Mn2
a , |‖g− f‖|a,b ≤ δna+b+1

2 Mn2
a+b+1 for all a, b ∈ N. We estimate similarly as

in [6, Proposition 4.1. (3)]. So for given ε > 0 consider N ∈ N (minimal) with

1
2N <

ε
2 and put δ := ε

(
n1
n2

)N−1
1

M
n2
N

.

For a ≥ N we have 1
2a ≤ 1

2N <
ε
2 (⋆), so use triangle-inequality to get

‖g− f‖a ≤ ‖g‖a + ‖ f‖a ≤ 2naMn
a = 2na

1Mn
a

1

2a
<
︸︷︷︸

(⋆)

εna
1 Mn

a ≤ εna
1Mn1

a

and the last inequality holds since n1 = 2n > n and so Mn
a ≤ Mn1

a for all a ∈ N.
For a < N we have

‖g− f‖a ≤ δna
2Mn2

a ≤ εna
1

Mn2
a

Mn2
N

≤ εna
1 ≤ εna

1 Mn1
a ,

because Mn
a ≤ Mn

N,
(

n1
n2

)N−1
≤
(

n1
n2

)a
since a < N, n1

n2
< 1 and finally Mn1

a ≥ 1.

Analogously we can use the same estimates for |‖ · ‖|a,b instead of ‖ · ‖a for each
a, b ∈ N.

(4) In the Beurling-case we have a projective limit of Fréchet spaces, in the Roumieu-
case a projective limit of (LB)-spaces, which are all compactly regular by (3) and
so complete, too. Since projective limits of complete spaces are complete we are
done.

(5) This holds precisely by the same proof as given in [6, Proposition 4.1. (5)]
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Let E, F be convenient, U ⊆ E be c∞-open, then define

Eb
(M)(U, F) :=

{

f ∈ E(U, F) : ∀ B : ∀ K ⊆ U ∩ EB : ∀ x ∈ Λ ∀ h > 0 :

{ f (k)(a)(v1 , . . . , vk)

hkMx
k

: k ∈ N, a ∈ K, ‖vi‖B ≤ 1
}

is bounded in F
}

=
{

f ∈ E(U, F) : ∀ B : ∀ K ⊆ U ∩ EB : ∀ x ∈ Λ ∀ h > 0 :

{dk
v f (a)(v1 , . . . , vk)

hkMx
k

: k ∈ N, a ∈ K, ‖vi‖B ≤ 1
}

is bounded in F
}

.

and

Eb
{M}(U, F) :=

{

f ∈ E(U, F) : ∀ B : ∀ K ⊆ U ∩ EB : ∃ x ∈ Λ ∃ h > 0 :

{ f (k)(a)(v1 , . . . , vk)

hkMx
k

: k ∈ N, a ∈ K, ‖vi‖B ≤ 1
}

is bounded in F
}

=
{

f ∈ E(U, F) : ∀ B : ∀ K ⊆ U ∩ EB : ∃ x ∈ Λ ∃ h > 0 :

{dk
v f (a)(v1 , . . . , vk)

hkMx
k

: k ∈ N, a ∈ K, ‖vi‖B ≤ 1
}

is bounded in F
}

.

B runs through all closed absolutely convex bounded subsets in E, EB is the com-
plete vector space generated by B with the Minkowski-functional ‖ · ‖B. Finally K
runs through all sets in U ∩ EB which are compact w.r.t. the norm ‖ · ‖B. If E and
F both are Banach spaces and U ⊆ E open we have Eb

[M]
(U, F) = E[M](U, F),

where the latter space is introduced in (3.1).
Now we give the most important definition:

E[M](U, F) :=
{

f ∈ E(U, F) : ∀ α ∈ F∗ : ∀ B : α ◦ f ◦ iB ∈ E[M](UB, R)
}

,

where B is running again through all closed absolutely convex bounded subsets
in E, the mapping iB : EB → E denotes the inclusion of EB in E and we write

UB := i−1
B (U). The initial locally convex structure is now induced by all linear

mappings

E[M](iB, α) : E[M](U, F) −→ E[M](UB, R), f 7→ α ◦ f ◦ iB.

E[M](U, F) ⊆ ∏α,B E[M](UB, R) are convenient vector spaces as c∞-closed sub-
spaces in the product: Smoothness can be tested by composing with inclusions
EB → E and α ∈ F∗ as mentioned in [4, 2.14.4, 1.8]. Hence we obtain the repre-
sentation

E[M](U, F) := { f ∈ FU : ∀ α ∈ F∗ ∀ B : α ◦ f ◦ iB ∈ E[M](UB, R)}. (3.2)

All definitions given here are clearly generalizations of the definitions in [6, 4.2.]
for constant matrices.
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4 Projective descriptions for E[M]

In this section we are going to study one of the most important new techniques in
this work. Using abstract families of sequences of positive real numbers we prove
projective representations for the Roumieu-class E{M}. This technique is very
important since we want to get rid of both existence quantifiers in the definitions
of E{M} so we want to generalize [6, Lemma 4.6.]. Furthermore we are going
to prove analogous results for the Beurling-case E(M) and generalize [6, Lemma
4.5.]. To do so we have to show variations and generalizations of [4, Lemma 9.2.]
(for the Roumieu-case) and of the Lemma between Lemma 4.5. and Lemma 4.6.
in [6] (for the Beurling-case).
We will obtain different projective representations for E[M]. The choice of the
appropriate representation depends on the application in the proofs. To show
closedness under composition in section 5, see Theorem 5.8 and Theorem 5.9, we
will have to use the versions using the Fa-di-Bruno-property (M[FdB]). For the

exponential laws in section 6 the versions only assuming (M) or (Msc) for M
are sufficient.
First we have to introduce several classes of sequences of positive real numbers
(rk)k and (sk)k. It is no restriction to assume r0 = 1 resp. s0 = 1 (normalization)
for all occurring sequences.

RRoum := {(rk)k ∈ RN

>0 : rktk → 0 as k→ ∞ for each t > 0}
RRoum,sub := {(rk)k ∈ RRoum : rj+k ≤ rkrj ∀ j, k ∈ N}
RBeur := {(rk)k ∈ RN

>0 : rktk → 0 as k→ ∞ for some t > 0}
RBeur,sub := {(rk)k ∈ RBeur : rj+k ≤ rkrj ∀ j, k ∈ N}
SMRoum := {(sk)k ∈ RN

>0 : ∀ x ∈ Λ ∃ Cx > 0 ∀ k ∈ N : skmx
k ≤ Ck

x}
S̃MRoum := {(sk)k ∈ RN

>0 : ∀ x ∈ Λ ∃ Cx > 0 ∀ k ∈ N : skMx
k ≤ Ck

x}
S̃MRoum,sub := {(sk)k ∈ S̃MRoum : ∃ D > 0 ∀ j, k ∈ N : sj+k ≤ D j+ksjsk}
SMRoum,FdB := {(sk)k ∈ SMRoum : ∃ (ŝk)k ∈ SMRoum ∃ D > 0 ∀ k ∈ N : sk ≤ Dk(ŝo)k}
SMBeur := {(sk)k ∈ RN

>0 : ∃ x ∈ Λ ∃ Cx > 0 ∀ k ∈ N : skmx
k ≤ Ck

x}
S̃MBeur := {(sk)k ∈ RN

>0 : ∃ x ∈ Λ ∃ Cx > 0 ∀ k ∈ N : skMx
k ≤ Ck

x}
S̃MBeur,sub := {(sk)k ∈ S̃MBeur : ∃ D > 0 ∀ j, k ∈ N : sj+k ≤ D j+ksjsk}
SMBeur,FdB := {(sk)k ∈ SMBeur : ∃ (ŝk)k ∈ SMBeur ∃ D > 0 ∀ k ∈ N : sk ≤ Dk(ŝo)k}
For (sk)k ∈ SMRoum,SMBeur we have put

(so)k := min{sjsα1
· · · sαj

: αi ∈ N>0, α1 + · · ·+ αj = k}, (so)0 := 1.

By definition S̃MRoum ⊆ SMRoum and (sk)k ∈ S̃MRoum if and only if (k!sk)k ∈ SMRoum

respectively for the Beurling-case. If (sk)k ∈ S̃MBeur,SMBeur holds for x ∈ Λ, then

also for all y ≤ x, too. All occurring sets are stable w.r.t. (·k)k 7→ (Bk·k)k for
arbitrary B > 0.
Using [6, Lemma 4.6.] directly we get:

Proposition 4.1. Let M = {Mx : x ∈ Λ} be (M), E, F be Banach spaces, U ⊆ E
open and f : U → F a E -mapping. Then the following are equivalent:

(1) f is E{M} = Eb
{M}.
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(2) For each compact K ⊆ U there exists x ∈ Λ such that for each (rk)k ∈ RRoum

{

f (k)(a)(v1 , . . . , vk)rk

Mx
k

: a ∈ K, k ∈ N, ‖vi‖E ≤ 1

}

is bounded in F.

(3) For each compact K ⊆ U there exists x ∈ Λ such that for each (rk)k ∈ RRoum,sub

there exists ε > 0 such that
{

f (k)(a)(v1 , . . . , vk)rkεk

Mx
k

: a ∈ K, k ∈ N, ‖vi‖E ≤ 1

}

is bounded in F.

Note that E{M} = Eb
{M} holds by Lemma 5.4 below, but for our approach in this

work we also have to get rid of the second existence quantifier.

4.2 Roumieu-case with (M{FdB})

We prove the following generalization of [4, Lemma 9.2.]:

Lemma 4.3. LetM = {Mx : x ∈ Λ} be (Msc) with Λ = N>0 and (M{FdB}). For a

formal power series ∑k≥0 ax
k tk = ∑k≥0

bk
k!mx

k
tk, so ax

k := bk
Mx

k
, the following are equivalent:

(1) There exists x ∈ Λ such that ∑k≥0 ax
k tk has positive radius of convergence.

(2) ∑k≥0
bkrksk

k! converges absolutely for all (rk)k ∈ RRoum and (sk)k ∈ SMRoum.

(3) The sequence
(

bkrksk
k!

)

k
is bounded for all (rk)k ∈ RRoum and (sk)k ∈ SMRoum.

(4) For each (rk)k ∈ RRoum,sub and for each (sk)k ∈ SMRoum,FdB there exists ε > 0

such that
(

bkrksk
k! εk

)

k
is bounded.

Proof. (1) ⇒ (2) For the given series (x ∈ Λ coming from (1)) and arbitrary (rk)k

and (sk)k as considered in (2) we have

∑
k≥0

bkrksk

k!
= ∑

k≥0

ax
k mx

k rksk = ∑
k≥0

(ax
k tk) (skmx

k)
︸ ︷︷ ︸

≤Ck
x

rk

tk
≤ ∑

k≥0

(ax
k tk) rk

(
Cx

t

)k

︸ ︷︷ ︸

→0,as k→∞

,

hence the first sum converges for t > 0 sufficiently small.
(2)⇒ (3)⇒ (4) are clearly satisfied.
(4) ⇒ (1) Since (M{FdB}) is satisfied and mx ≤ my for x ≤ y we can associate to

each x ∈ Λ the index α(x) := min{y ∈ Λ : (mx)◦�my}. Since (mx)◦ ≤ (my)◦ for
x ≤ y we also have α(x) ≤ α(y) for such indices and limx→∞ α(x) = +∞.
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On the other hand for y ≥ α(1) we can define β(y) := max{x ∈ Λ : α(x) ≤ y}
which is clearly well-defined. So β(y1) ≤ β(y2) for y1 ≤ y2, limy→∞ β(y) = +∞

and finally by construction for each x ∈ N>0, x ≥ α(1), there exist y ∈ N>0,
y ≤ x, with (my)◦�mx. Note that this does not imply (M(FdB)). W.l.o.g. we

could assume that α(x) = x + 1 and so β(y) = y − 1. If M has in addition
(M{Cω}), i.e. the real analytic functions are contained in E{M}, then we can take

w.l.o.g. M1 = (p!)p∈N , so m1
p = 1 for each p and α(1) = 1.

We prove by contradiction. So assume that each ∑k≥0 ax
k tk would have radius of

convergence 0. Then we would get ∑k≥0 |ax
k |
(

1
n2

)k
= +∞ for each n ∈ N>0 and

each x ∈ Λ = N>0. Consider now n ∈ N>0 and x := n + α(1) and so we find an
increasing sequence (kn)n≥0 with k0 = 1, limn→∞ kn = +∞ such that

∀ n ∈ N>0 :
kn−1

∑
k=kn−1

|an+α(1)
k |

(
1

n2

)k

≥ 1. (4.1)

We put now

rk :=

(
1

n2

)k

for kn−1 ≤ k ≤ kn − 1, n ∈ N>0,

and show (rk)k ∈ RRoum,sub. For kn−1 ≤ k ≤ kn − 1 by definition rktk =
(

t
n2

)k
,

and so rktk → 0 as k → ∞ and all t > 0. Clearly (rk)k is also log-sub-additive.
In addition one can see that (

√
rk)k ∈ RRoum,sub and so for all ε > 0 there exists

kε ∈ N such that for all k ≥ kε we have
√

rk
1
εk ≤ 1⇔ √rk ≤ εk.

No we define s := (sk)k. We put sk := 1

m
γ(k)
k

, where γ(k) := n + α(1) for

kn−1 ≤ k ≤ kn − 1, n ∈ N>0, and show (sk)k ∈ SMRoum,FdB.
So let x ∈ Λ be arbitrary (large) but fixed, then for kn−1 ≤ k ≤ kn − 1 we get

skmx
k =

mx
k

m
γ(k)
k

=
Mx

k

M
γ(k)
k

. For all k ∈ N we can estimate
Mx

k

M
γ(k)
k

≤ Ck
x with some

constant Cx > 0, because limk→∞ γ(k) = +∞. This proves (sk)k ∈ SMRoum. Define

ŝk :=
1

m
β(γ(k))
k

for kn−1 ≤ k ≤ kn − 1, n ∈ N>0,

and similarly we find a constant Dx > 0 such that ŝkmx
k ≤ Dk

x for each x ∈ Λ

and k ∈ N because limk→∞ β(γ(k)) = +∞. This proves (ŝk)k ∈ SMRoum. For
δ1 + · · ·+ δj = k we obtain for k ∈ N with kn−1 ≤ k ≤ kn − 1, n ∈ N>0:

sk =
1

m
γ(k)
k

≤ Chk 1

m
β(γ(k))
j m

β(γ(k))
δ1

· · ·mβ(γ(k))
δj

≤ Chk 1

m
β(γ(j))
j m

β(γ(δ1))
δ1

· · ·mβ(γ(δj))

δj

= Chk ŝj ŝδ1
· · · ŝδj

,
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which precisely shows s�ŝo. The first inequality holds by (M{FdB}) and by defi-
nition of β, the second because j, δ1, . . . , δj ≤ k. So s is as desired.
Moreover

∑
k≥1

|bk|rksk

k!
= ∑

n≥1

kn−1

∑
k=kn−1

|bk|rksk

k!
= ∑

n≥1

kn−1

∑
k=kn−1

|an+α(1)
k |

(
1

n2

)k

≥ ∑
n≥1

1 = +∞,

because by definition |bk|
k! sk =

|bk|
M

n+α(1)
k

= |an+α(1)
k | for kn−1 ≤ k ≤ kn − 1 (note that

n(k) = n + α(1) for k ∈ [kn−1, kn − 1]).

Finally we show that
(

bk
k!

√
rksk(2ε)k

)

k
cannot be bounded for any ε > 0. First we

get

∑
k≥1

|bk|
k!

√
rkskεk ≥ ∑

k≥kε

|bk|
k!

√
rksk εk

︸︷︷︸

≥√rk

≥ ∑
k≥kε

|bk|
k!

rksk = +∞.

But if the sequence would be bounded for some ε, then for all k ∈ N we would

get bk
k!

√
rkskεk ≤ C

2k , hence ∑k≥0
|bk|
k!

√
rkskεk ≤ ∑k≥0

C
2k = 2C, a contradiction.

We use Lemma 4.3 to generalize [6, Lemma 4.6.].

Proposition 4.4. LetM = {Mx : x ∈ Λ} be (Msc) with Λ = N>0 and (M{FdB}).
Let E, F be Banach spaces, U ⊆ E open and f : U → F a E -mapping. Then the following
are equivalent:

(1) f is E{M} = Eb
{M}.

(2) For each compact K ⊆ U, for each (rk)k ∈ RRoum and each (sk)k ∈ SMRoum the set

{

f (k)(a)(v1 , . . . , vk)

k!
rksk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1

}

is bounded in F.

(3) For each compact K ⊆ U, for each (rk)k ∈ RRoum,sub and for each

(sk)k ∈ SMRoum,FdB, there exists ε > 0 such that the set

{

f (k)(a)(v1 , . . . , vk)

k!
rkskεk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1

}

is bounded in F.

Proof. (1) ⇒ (2) Let f be E{M} and K ⊆ U compact, then estimate as follows
(where we use Lemma 5.4 below):
∥
∥
∥
∥
∥

f (k)(a)

k!
rksk

∥
∥
∥
∥
∥

Lk(E,F)

=

∥
∥
∥
∥
∥

f (k)(a)

k!mx
k hk

∥
∥
∥
∥
∥

Lk(E,F)

|rkhk skmx
k

︸︷︷︸

≤Ck
x

| ≤
∥
∥
∥
∥
∥

f (k)(a)

hkMx
k

∥
∥
∥
∥
∥

Lk(E,F)

∣
∣
∣rk(Cxh)k

∣
∣
∣

︸ ︷︷ ︸

→0, as k→∞
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for a ∈ K, x ∈ Λ and h > 0 large enough (depending on K and f ) and for arbitrary
(rk)k and (sk)k as considered in (2).
(2)⇒ (3) Take ε = 1.
(3) ⇒ (1) We use (4) ⇒ (1) in Lemma 4.3. Let K ⊆ U be an arbitrary compact

set but fixed and put bk := supa∈K

∥
∥
∥ f (k)(a)

∥
∥
∥

Lk(E,F)
. Then there exists h > 0 and

x ∈ Λ such that supk∈N

bk

Mk
xhk < +∞, hence f is E{M}.

4.5 Roumieu-case without (M{FdB})

Lemma 4.6. LetM = {Mx : x ∈ Λ} be (Msc) with Λ = N>0. For a formal power

series ∑k≥0 ax
k tk = ∑k≥0

bk
Mx

k
tk the following are equivalent:

(1) There exists x ∈ Λ such that ∑k≥0 ax
k tk has positive radius of convergence.

(2) ∑k≥0 bkrksk converges absolutely for all (rk)k ∈ RRoum and (sk)k ∈ S̃MRoum.

(3) (bkrksk)k is bounded for all (rk)k ∈ RRoum and (sk)k ∈ S̃MRoum,sub.

(4) For each (rk)k ∈ RRoum,sub and for each (sk)k ∈ S̃MRoum,sub there exists ε > 0

such that (bkrkskεk)k is bounded.

IfM is (M), then in (3) and (4) we replace S̃MRoum,sub by S̃MRoum.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) is the same as in Lemma 4.3. For (4) ⇒ (1)
we prove again by contradiction. In (4.1) consider x = n ∈ N>0, take the same
r = (rk)k and for s = (sk)k we put sk := 1

Mn
k

if kn−1 ≤ k ≤ kn − 1. IfM is (Msc)

then we have Mx
j Mx

k ≤ Mx
j+k for each j, k ∈ N and x ∈ Λ and Mx ≤ My for

x ≤ y. This implies (sk)k ∈ S̃MRoum,sub. IfM is (M), then (sk)k ∈ S̃MRoum holds by
definition.

So we can prove a new version of Proposition 4.4.

Proposition 4.7. Let M = {Mx : x ∈ Λ} be (Msc) with Λ = N>0. Let E, F
be Banach spaces, U ⊆ E open and f : U → F a E -mapping, then the following are
equivalent:

(1) f is E{M} = Eb
{M}.

(2) For each compact K ⊆ U, for each (rk)k ∈ RRoum and for each (sk)k ∈ S̃MRoum the
set {

f (k)(a)(v1 , . . . , vk)rksk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1
}

is bounded in F.

(3) For each compact K ⊆ U, for each (rk)k ∈ RRoum,sub and for each

(sk)k ∈ S̃MRoum,sub, there exists ε > 0 such that the set
{

f (k)(a)(v1 , . . . , vk)rkskεk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1
}

is bounded in F.
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IfM is (M), then in (3) we replace S̃MRoum,sub by S̃MRoum.

Proof. Use precisely the same arguments as in Proposition 4.4, for (3) ⇒ (1) we
use (4)⇒ (1) in Lemma 4.6.

4.8 Beurling-case with (M(FdB))

Lemma 4.9. LetM = {Mx : x ∈ Λ} be (Msc) with Λ = R>0 and (M(FdB)). For a

formal power series ∑k≥0 ax
k tk = ∑k≥0

bk
Mx

k
tk, so ax

k := bk
Mx

k
, the following are equivalent:

(1) The series ∑k≥0 ax
k tk has infinite radius of convergence for each x ∈ Λ.

(2) For each (rk)k ∈ RBeur,sub and for each (sk)k ∈ SMBeur,FdB the sequence
(

bk
k! rkskδk

)

k
is bounded for each δ > 0.

Proof. (1)⇒ (2) Let (rk)k and (sk)k be given as considered in (2), then

∑
k≥0

bk

k!
rkskδk = ∑

k≥0

ax
k (m

x
k sk)

︸ ︷︷ ︸

≤Ck
x

(rktk)

(
δ

t

)k

≤ ∑
k≥0

ax
k (rktk)
︸ ︷︷ ︸

→0, as k→∞

(
δCx

t

)k

is absolutely convergent for each δ > 0. The index x ∈ Λ was chosen such
that skmx

k ≤ Ck
x holds for all k ∈ N and it is depending on (sk)k ∈ SMBeur. The

real number t > 0 was chosen in such a way that rktk → 0 as k → ∞. Hence
(

bk
k! rkskδk

)

k
is bounded for each δ > 0.

(2)⇒ (1) Assume that there would exist x ∈ Λ such that ∑k≥0 ax
k tk would have fi-

nite radius of convergence. Then there would exist h > 0 such that ∑k≥0 |ax
k |nk =

+∞ for each n > h. Put now rk := 1
nk for some n > h and sk := 1

mx
k
.

Clearly (rk)k ∈ RBeur,sub holds.
Also (sk)k is as desired. By (M(FdB)) for all x ∈ Λ there exists y ∈ Λ and D > 0
such that for all α1 + · · ·+ αj = k we get

sk :=
1

mx
k

≤ Dk 1

m
y
j m

y
α1
· · ·my

αj

=: Dk ŝj ŝα1
· · · ŝαj

,

where we have put ŝj := 1
m

y
j

. We have y ≤ x, since (my)◦ ≤ (mx)◦ for

y ≤ x. Clearly (ŝk)k ∈ SMBeur, hence (sk)k ∈ SMBeur,FdB and so both sequences

are as considered in (2). But then there would exist C > 0 such that for all k ∈ N:

C >
bk

k!
skrk(2n2)k =

bk

k!mx
k

rk(2n2)k = ax
k rkn2k2k = ax

k nk2k.

Hence ∑k≥0 |ax
k |nk ≤ C ∑k≥0

1
2k = 2C, a contradiction.

Using the previous result we can show:
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Proposition 4.10. LetM = {Mx : x ∈ Λ} be (Msc) with Λ = R>0 and (M(FdB)).
Let E, F be Banach spaces, U ⊆ E open and f : U → F a E -mapping, then the following
are equivalent:

(1) f is E(M) = Eb
(M)

.

(2) For each compact K ⊆ U, for each (rk)k ∈ RBeur and for each (sk)k ∈ SMBeur the
set {

f (k)(a)(v1 , . . . , vk)

k!
rksk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1

}

is bounded in F.

(3) For each compact K ⊆ U, for each (rk)k ∈ RBeur,sub and for each (sk)k ∈ SMBeur,FdB
the set {

f (k)(a)(v1 , . . . , vk)

k!
rkskδk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1

}

is bounded in F for each δ > 0.

Proof. (1) ⇒ (2) Let f be E(M) and (rk)k, (sk)k given by (2), then we can estimate
as follows (where we use Lemma 5.2 below):

∥
∥
∥
∥
∥

f (k)(a)

k!
rksk

∥
∥
∥
∥
∥

Lk(E,F)

=

∥
∥
∥
∥
∥

f (k)(a)

k!mx
k hk

∥
∥
∥
∥
∥

Lk(E,F)

|rkhk skmx
k

︸︷︷︸

≤Ck
x

| ≤
∥
∥
∥
∥
∥

f (k)(a)

Mx
k hk

∥
∥
∥
∥
∥

Lk(E,F)

∣
∣
∣rk(Cxh)k

∣
∣
∣

︸ ︷︷ ︸

→0, as k→∞

for a ∈ K. We have chosen x ∈ Λ depending on (sk)k ∈ SMBeur such that skmx
k ≤ Ck

x

and h > 0 depending on given (rk)k ∈ RBeur such that rk(Cxh)k → 0 as k→ ∞.
(2)⇒ (3) Replace in (2) the sequence (rk)k by (rkδk)k.
(3) ⇒ (1) Use (2) ⇒ (1) in Lemma 4.9. Let K ⊆ U be a compact set, arbitrary

but fixed. Then put bk := supa∈K

∥
∥
∥ f (k)(a)

∥
∥
∥

Lk(E,F)
and so for each h > 0 and each

x ∈ Λ we have that supk∈N

bk

Mk
xhk < +∞, hence f is E(M).

4.11 Beurling-case without (M(FdB))

Lemma 4.12. LetM = {Mx : x ∈ Λ} be (Msc) with Λ = R>0. For a formal power

series ∑k≥0 ax
k tk = ∑k≥0

bk
Mx

k
tk, ax

k := bk
Mx

k
, the following are equivalent:

(1) The series ∑k≥0 ax
k tk has infinite radius of convergence for each x ∈ Λ.

(2) For each (rk)k ∈ RBeur,sub and for each (sk)k ∈ S̃MBeur,sub the sequence (bkrkskδk)k

is bounded for each δ > 0.

IfM is (M), then in (2) we replace S̃MBeur,sub by S̃MBeur.
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Proof. Proceed as in Lemma 4.9: For (2) ⇒ (1) we put sk := 1
Mx

k
, where x ∈ Λ is

the index arising by the contradiction argument.

Hence (sk)k ∈ S̃Mbeur,sub holds wheneverM is (Msc) since each Mx is log-convex.

IfM is (M), then (sk)k ∈ S̃MBeur is clear.

So we are able to prove:

Proposition 4.13. Let M = {Mx : x ∈ Λ} be (Msc) with Λ = R>0. Let E, F
be Banach spaces, U ⊆ E open and f : U → F a E -mapping, then the following are
equivalent:

(1) f is E(M) = Eb
(M)

.

(2) For each compact K ⊆ U, for each (rk)k ∈ RBeur and for each (sk)k ∈ S̃MBeur the
set

{

f (k)(a)(v1 , . . . , vk)rksk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1
}

is bounded in F.

(3) For each compact K ⊆ U, for each (rk)k ∈ RBeur,sub and for each (sk)k ∈ S̃MBeur,sub
the set

{

f (k)(a)(v1 , . . . , vk)rkskδk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1
}

is bounded in F for each δ > 0.

IfM is (M), then in (3) we replace S̃MBeur,sub by S̃MBeur.

Proof. The proof is the same as for Proposition 4.10. For (3) ⇒ (1) we use
(2)⇒ (1) in Lemma 4.12.

5 Closedness under composition

5.1 First observations

First we generalize [6, Lemma 4.2.]:

Lemma 5.2. LetM be (M), then E(M) = Eb
(M)

.

Proof. Let E, F be convenient, U ⊆ E a c∞-open subset and let f : U → F be
a E -mapping. Then we obtain the following equivalences, where the set B runs
through all closed absolutely convex bounded subsets in E and K runs through
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all sets in UB which are compact w.r.t. the norm ‖ · ‖B:

f ∈ E(M)(U, F)

⇐⇒ ∀ α ∈ F∗ ∀ B ∀ K ⊆ UB ∀ x ∈ Λ ∀ h > 0 :
{

(α ◦ f )(k)(a)(v1 , . . . , vk)

hkMx
k

: a ∈ K, k ∈ N, ‖vi‖B ≤ 1

}

is bounded in R

⇐⇒ ∀ B ∀ K ⊆ UB ∀ x ∈ Λ ∀ h > 0 ∀ α ∈ F∗ :

α

({

f (k)(a)(v1 , . . . , vk)

hkMx
k

: a ∈ K, k ∈ N, ‖vi‖B ≤ 1

})

is bounded in R

⇐⇒ ∀ B ∀ K ⊆ UB ∀ x ∈ Λ ∀ h > 0 :
{

f (k)(a)(v1 , . . . , vk)

hkMx
k

: a ∈ K, k ∈ N, ‖vi‖B ≤ 1

}

is bounded in R

⇐⇒ f ∈ Eb
(M)(U, F).

But in general we do not have E{M} = Eb
{M}. To see this we show the following

result; for the caseM := {M} see [6, Example 4.4.].

Lemma 5.3. LetM = {Mx : x ∈ Λ} be (Msc) with Λ = N>0.
Then there exists f : R2 → RN>0 which is E{M}, but there is no reasonable topology on

E{M}(R, RN>0) such that the associated mapping f∨ : R→ E{M}(R, RN>0) is Eb
{M}.

For a ”reasonable topology” on E{M}(R, RN>0) we assume only that all point-

evaluations evt : E{M}(R, RN>0)→ RN>0 are bounded linear mappings.

Proof. Consider f : R2 → RN>0 defined by f (s, t) := (θx(st))x∈Λ ,

θx ∈ Eglobal

{Ml} (R, R), see (chf). f is clearly E{M} since each linear functional on

RN>0 depends only on finitely many coordinates. If f∨ : R → E{M}(R, RN>0)

would be Eb
{M}, then there would exist h > 0 and some y ∈ Λ such that the set

{

( f∨)(k)(0)
hk M

y
k

: k ∈ N

}

would be bounded in E{M}(R, RN>0). But if we apply the bounded linear func-
tion evt for t = 2h, then

|( f∨)(k)(0)(2h)|
hkM

y
k

=

(

(2h)k|θ(k)x (0)|
hkM

y
k

)

x∈Λ

≥
(

2kMx
k

M
y
k

)

x∈Λ

and so the coordinates are unbounded as k→ ∞ whenever x ≥ y.

To get E{M} = Eb
{M} we have to assume additional assumptions, see [6, Lemma

4.3.] for the constant case.
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Lemma 5.4. LetM be (M), let E, F be convenient and let U ⊆ E be a c∞-open subset.
Assume that there exists a Baire-vector-space-topology on the dual F∗ for which the point
evaluations evx are continuous for all x ∈ F. Then f : U → F is E{M} if and only if f

is Eb
{M}.

Proof. (⇐) is clear.
(⇒) Let B a closed absolutely convex bounded subset of E, furthermore consider
a compact set K in UB (w.r.t. ‖ · ‖B) and introduce the sets

Ax,h,C :=

{

α ∈ F∗ :
|(α ◦ f )(k)(a)(v1 , . . . , vk)|

hk Mx
k

≤ C, ∀ k ∈ N, a ∈ K, ‖vi‖B ≤ 1

}

.

These sets are closed in F∗ for the Baire-topology and
⋃

x∈Λ,h,C>0 Ax,h,C = F∗

holds. Then, by the Baire-property of F∗, there exist x0 ∈ Λ, h0, C0 > 0 such that

the interior
◦
Ax0,h0,C0

is non-empty. Let α0 ∈
◦
Ax0,h0,C0

, then for all α ∈ F∗ there

exists ε > 0, such that we get εα ∈
◦
Ax0,h0,C0

− α0 ⇔ εα + α0 ∈
◦
Ax0,h0,C0

.
Thus for all a ∈ K, k ∈ N and ‖vi‖B ≤ 1 we get

|(α ◦ f )(k)(a)(v1 , . . . , vk)|

≤ 1

ε

(

|((εα) + α0) ◦ f )(k)(a)| + |(α0 ◦ f )(k)(a)|
)

≤ 2C0

ε
hk

0Mx0
k .

So the set

{

f (k)(a)(v1,...,vk)

hk
0M

x0
k

: k ∈ N, a ∈ K, ‖vi‖B ≤ 1

}

is weakly bounded (in F),

hence bounded. Since B was arbitrary we get f ∈ Eb
{M}.

If the matrix is non-constant and has infinite index set, e.g. ifM is coming from
ω ∈ W which does not have (ω6) - see [9, Section 5], then another phenomenon
appears.

Proposition 5.5. LetM = {Mx : x ∈ Λ = N>0} be (Msc) with (M{strict}).
Then there exist locally convex vector spaces E and E{M}-curves c : R → E that are not

E{Mx} for any x ∈ Λ, i.e. E{M}(R, E) (
⋃

x∈Λ E{Mx}(R, E).

Proof. By (M{strict}) we have that for each x ∈ Λ we can find x1 ∈ Λ, x1 > x,

such that E{Mx} ( E{Mx1}. Iterating (M{strict}) we obtain a strictly increasing

sequence (xi)i≥0 with x0 = x and limi→∞ xi = +∞, w.l.o.g. one could assume
thatM = {Mxi : i ∈ N}.
So let x ∈ Λ be arbitrary but from now on fixed and set E := RN. Consider
a curve c : R → RN, c(t) = (ci(t))i∈N = (c0(t), c1(t), . . . ), with the following
property: c0 is Eb

{Mx0}, and for each i ≥ 1 we assume ci ∈ E{Mxi}\E{Mxi−1}.

The curve c is E{M} since each α ∈ (RN)∗ = R(N) depends only on finitely many

coordinates. Let i be the maximal of these coordinates. Then α ◦ c ∈ E{Mxi}(R, R),

thus c ∈ E{M}(R, RN).

If there would exist some y ∈ Λ such that c is E{My}, then for each α ∈ R(N)

we would get that α ◦ c ∈ E{My}(R, R). According to this y we choose a linear
functional α depending on at least i0 + 1 many coordinates where xi0 > y.
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5.6 Closedness under composition of E[M]

Definition 5.7. Let E be a convenient vector space. A E[M]-Banach-plot in E is a map-
ping c : D → E such that c ∈ E[M] and D denotes an open set in some Banach space F.
It is sufficient to consider the open unit ball D = oF.

Using the definitions and projective representations of section 4 we can generalize
[6, Theorem 4.8.].

Theorem 5.8. Let M be (Msc) with Λ = R>0, let U ⊆ E be a c∞-open subset in a
convenient vector space E and F be a Banach space.
If M has (M[FdB]) and f : U → F, then f ∈ E[M] implies f ◦ c ∈ E[M] for all
E[M]-Banach plots c.
The converse implication holds always by the definitions given in 3.3.

Proof. We follow the proof of [6, Theorem 4.8.] and apply Proposition 4.4 for the
Roumieu- and Proposition 4.10 for the Beurling-case.
(a) Beurling-case E(M).
We have to show that f ◦ c is E(M) for each E(M)-Banach-plot c : G ⊇ D → E,

where D denotes the open unit ball in an arbitrary Banach-space G. By (3) in
Proposition 4.10 we have to prove that for each compact K ⊆ D and for each
(rk)k ∈ RBeur,sub, (sk)k ∈ SMBeur,FdB the set

{

( f ◦ c)(k)(a)(v1 , . . . , vk)

k!
rkskδk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1

}

is bounded in F for each δ > 0. So let δ > 0, the sequences (rk)k, (sk)k, and finally
a compact (w.l.o.g. convex) set K ⊆ D be given, arbitrary but from now on fixed.
Then for each α ∈ E∗ by assumption and by (2) in Proposition 4.10 applied to
the sequence (rk(2Dδ)k)k and (ŝk)k ∈ SMBeur, where the constant D is coming from

sk ≤ Dk(ŝo)k (since (sk)k ∈ SMBeur,FdB), the set

{

(α ◦ c)(k)(a)(v1 , . . . , vk)rk ŝk(2Dδ)k

k!
: a ∈ K, k ∈ N, ‖vi‖G ≤ 1

}

(5.1)

is bounded in R. So the set
{

c(k)(a)(v1 , . . . , vk)rk ŝk(2Dδ)k

k!
: a ∈ K, k ∈ N, ‖vi‖G ≤ 1

}

is contained in some closed absolutely convex bounded subset B of E, hence

‖c(k)(a)‖Lk (G,EB)
rk ŝkδk

k!
≤ 1

(2D)k
. (5.2)

We proceed now as in [6, Theorem 4.8.]. c(K) is compact in EB since the mapping

c : K → EB is Lipschitzian: For all a, b ∈ K we get c(a) − c(b) ∈ ‖a−b‖G
2Dr1 ŝ1δ B. Then
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we estimate for all δ > 0 and k ∈ N>0 as follows:

∥
∥
∥
∥
∥

( f ◦ c)(k)(a)

k!
rkskδk

∥
∥
∥
∥
∥

Lk(G,F)

≤ ∑
j≥0

∑
α∈N

j
>0,∑

j
i=1 αi=k

Dk

∥
∥
∥ f (j)(c(a))

∥
∥
∥

Lj(EB,F)
ŝj

j!

j

∏
i=1

‖c(αi)(a)‖Lαi (G,EB)rαi
ŝαi

δαi

αi!
︸ ︷︷ ︸

≤ 1
(2D)α1

··· 1

(2D)
αj
= 1

(2D)k

≤
(

1

2

)k

∑
j≥0

∑
α∈N

j
>0,∑

j
i=1 αi=k

∥
∥
∥ f (j)(c(a))

∥
∥
∥

Lj(EB,F)

j!mx
j

︸ ︷︷ ︸

(⋆)≤Chj

(ŝjm
x
j )

︸ ︷︷ ︸

≤C
j
1

≤ (ChC1)

(
1

2

)k

·∑
j≥0

(
k− 1

j− 1

)

(hC1)
j−1 = (ChC1)

(
1

2

)k

(1 + C1h)k−1

≤ (ChC1)

(
(1 + C1h)

2

)k

.

We have to choose x ∈ Λ according to (ŝj)j ∈ SMBeur (arising in SMBeur,FdB) such that

ŝjm
x
j ≤ C

j
1 for some constant C1 > 0 and all j ∈ N. Since f ∈ E(M), we obtain the

estimate (⋆) with this index x and arbitrary h > 0 for a constant C = Cx,h and all

j ∈ N. Finally we can choose h := 1
C1

and so the expression at the beginning is

bounded by C = Cx,1/C1
.

(b) Roumieu-case E{M}.
Use Proposition 4.4 and by (3) there it is sufficient to show that each compact
K ⊆ D and for each (rk)k ∈ RRoum,sub, (sk)k ∈ SMRoum,FdB, there exists ε > 0 such
that the set

{

( f ◦ c)(k)(a)(v1 , . . . , vk)

k!
rkskεk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1

}

(5.3)

is bounded in F.
We use the same proof as above and replace in (2) in Proposition 4.4 the sequence
(rk)k by ((2D)krk)k, where D is the constant arising in sk ≤ Dk(ŝo)k (since (sk)k ∈
SMRoum,FdB and so (ŝk)k ∈ SMRoum). Then we take δ = 1 in (5.1), in (5.2) and in
the Lipschitz-argument. We can use now precisely the same estimate as for the
Beurling-case (for δ = 1) and so we have shown (5.3) for ε = 2

(1+C1h)
. Note that

f ∈ E{M}, hence we have to consider x ∈ Λ and h > 0 sufficiently large to obtain

estimate (⋆) for some constant C. According to this chosen x ∈ Λ we can estimate

ŝjm
x
j ≤ C

j
1 for a constant C1 and all j ∈ N, since (ŝj)j ∈ SMRoum.

Using Theorem 5.8 we can generalize [6, Theorem 4.9.].
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Theorem 5.9. LetM be (Msc) with Λ = R>0. Let E, F, G be convenient vector spaces,
U ⊆ E and V ⊆ F be c∞-open and f : U → F, g : V → G with f (U) ⊆ V.

(a) IfM(FdB), then f , g ∈ E(M) implies g ◦ f ∈ E(M).

(b) IfM{FdB}, then f , g ∈ E{M} implies g ◦ f ∈ E{M}.

Proof. By definition of E[M] we have to show that for all closed absolutely convex
bounded subsets B ⊆ E and for all α ∈ G∗ the composite α ◦ g ◦ f ◦ iB : UB → R is
E[M]. By assumption f ◦ iB ∈ E[M] and α ◦ g ∈ E[M] hold, so we can use Theorem
5.8 to obtain the desired implication. Note that f ◦ iB is a E[M]-Banach plot.

6 Exponential laws for E[M]

We start with the generalization of [6, Lemma 5.1.].

Lemma 6.1. Let M be (M) or (Msc) with Λ = R>0, let E be Banach and U ⊆ E
open. Let F be convenient and B a family of bounded linear functionals on F which
together detect bounded sets, i.e. B ⊆ E is bounded in E if and only if α(B) is bounded
in R for all α ∈ B. Then we have

f ∈ E[M](U, F) ⇔ α ◦ f ∈ E[M](U, R) ∀ α ∈ B.

Proof. For E -curves this follows by [4, 2.1., 2.11.], and so by composing with such
curves for E -mappings f : U → F.
In the Roumieu-case we use (1) ⇔ (2) in Proposition 4.7. Hence for arbitrary
α ∈ F∗ the mapping α ◦ f is E{M} if and only if for each compact K ⊆ U the set

{

(α ◦ f )(k)(a)(v1 , . . . , vk)rksk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1
}

is bounded in R for each (rk)k ∈ RRoum and for each (sk)k ∈ S̃MRoum. So the
smooth mapping f : U → F is E{M} if and only if the set

{

f (k)(a)(v1 , . . . , vk)rksk : a ∈ K, k ∈ N, ‖vi‖E ≤ 1
}

is bounded in F, for each compact K ⊆ U, (rk)k ∈ RRoum and for each
(sk)k ∈ S̃MRoum.
Because B detects bounded sets we can replace in the above equivalences F∗ by
B.
For the Beurling-case proceed analogously and use (1)⇔ (2) in Proposition 4.13.

Now we are able to prove Cartesian closedness for classes E[M] and so generalize
[6, Theorem 5.2.].

Theorem 6.2. Let M be (Msc) with Λ = R>0, let Ui ⊆ Ei be c∞-open subsets in
convenient vector spaces Ei for i = 1, 2 and moreover let F be also a convenient vector
space. Then we obtain:
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(a) If (M{mg}), then

f ∈ E{M}(U1 ×U2, F) ⇐⇒ f∨ ∈ E{M}(U1, E{M}(U2, F)).

(b) If (M(mg)), then

f ∈ E(M)(U1 ×U2, F)⇐⇒ f∨ ∈ E(M)(U1, E(M)(U2, F)).

Important remarks:

(i) In both cases (⇐=) holds also without (M{mg}) respectively (M(mg)).

(ii) To prove (⇐=) it is sufficient to assume thatM is (M) and (M[alg]).

(iii) For the proof it is not necessary to assume that E{M} respectively E(M) is a
category, i.e. closedness under composition.

(iv) IfM is (Msc) with Λ = R>0, (M[mg]) and (M[FdB]), then by Theorem 6.2
and Theorem 5.9 the category E[M] is cartesian closed.

Proof. The technique and methods are completely analogous to [6, Theorem 5.2.],
for convenience of the reader we give the full proof.
As shown in [4, 3.12.] we have E(U1 × U2, F) ∼= E(U1, E(U2, F)). So we as-
sume form now on that all occurring mappings are smooth. Let B ⊆ E1 × E2 and
Bi ⊆ Ei, i = 1, 2, where B, B1, B2 run through all closed absolutely convex bounded
subsets. Similarly as shown in [6, Theorem 5.2.] we get:

f ∈ E[M](U1 ×U2, F)

⇔ ∀ α ∈ F∗ ∀ B : α ◦ f ◦ iB ∈ E[M]((U1 ×U2)B, R)

⇔ ∀ α ∈ F∗ ∀ B1, B2 : α ◦ f ◦ (iB1
× iB2

) ∈ E[M]((U1)B1
× (U2)B2

, R)

and

f∨ ∈ E[M](U1, E[M](U2, F))

⇔ ∀ B1 : f∨ ◦ iB1
∈ E[M]((U1)B1

, E[M](U2, F))

⇔ ∀ α ∈ F∗ ∀ B1, B2 : E[M](iB2
, α) ◦ f∨ ◦ iB1

∈ E[M]((U1)B1
, E[M]((U2)B2

, R)),

where Lemma 6.1 is used and note that the linear mappings E[M](iB2
, α) generate

the bornology.
With these preparations we are able to restrict ourselves to Ui ⊆ Ei open sets in
Banach spaces Ei and F = R. We start now with (=⇒) for both cases.

Let f ∈ E[M](U1 ×U2, R), then clearly f∨ takes values in the space E[M](U2, R).
First we show that
Claim. f∨ : U1 → E[M](U2, R) is E with dj f∨ = (∂

j
1 f )∨.

E[M](U2, R) are convenient vector spaces, hence by [4, 5.20.] it suffices to prove

that the iterated unidirectional derivatives d
j
v f∨(x) exist, are equal to ∂

j
1 f (x, ·)(vj),

and are separately bounded for x and v in compact subsets. For j = 1 and x, v, y
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fixed we consider the smooth curve c : t 7→ f (x + tv, y). Then, by the fundamen-
tal theorem of calculus, we obtain:

f∨(x + tv)− f∨(x)
t

(y)− (∂1 f )∨(x)(y)(v) =
c(t)− c(0)

t
− c′(0)

= t
∫ 1

0
s
∫ 1

0
c′′(tsr)drds = t

∫ 1

0
s
∫ 1

0
∂2

1 f (x + tsrv, y)(v, v)drds.

(∂2
1 f )∨(K1)(o(E1 × E1)) is bounded in E[M](U2, R) and for each compact set

K1 ⊆ U1 this expression is Mackey-convergent to 0 in E[M](U2, R) as t → 0.

Hence dv f∨(x) exists an is equal to ∂1 f (x, ·)(v).
The induction argument is completely the same as in [6, Theorem 5.2.].

We distinguish now between the Roumieu- and the Beurling-case.

The Beurling-case.

We have to show that f∨ : U1 → E(M)(U2, R) is E(M).

By Lemma 6.1 it suffices to prove that f∨ : U1 → EMx,h(E2 ⊇ K2, R) is

Eb
(M)

= E(M) for each K2 ⊆ U2 compact, each h > 0 and x ∈ Λ = R>0. This

holds, because each α ∈ (E(M)(U2, R))∗ factorizes over EMx,h(E2 ⊇ K2, R) for
some K2, h and x.

So we have to show that for each compact sets K1 ⊆ U1, K2 ⊆ U2, each h1, h2 > 0
and each x1, x2 ∈ Λ, the set







dk1 f∨(a1)(v
1
1, . . . , v1

k1
)

hk1
1 Mx1

k1

: a1 ∈ K1, k1 ∈ N, ‖v1
j ‖E1
≤ 1






(6.1)

is bounded in the space EMx2 ,h2
(E2 ⊇ K2, R). Equivalently, for all compact sets

K1, K2, for all h1, h1 > 0 and all x1, x2 ∈ Λ the set







∂k2
2 ∂k1

1 f (a1, a2)(v
1
1, . . . , v1

k1
; v2

1, . . . , v2
k2
)

hk2
2 hk1

1 Mx2
k2

Mx1
k1

: ai ∈ Ki, ki ∈ N, ‖vi
j‖Ei
≤ 1; i = 1, 2







(6.2)
is bounded in R.
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Let a1 ∈ K1, k1 ∈ N, then we obtain the following estimate:

∥
∥
∥
∥
∥
∥

dk1 f∨(a1)(v
1
1, . . . , v1

k1
)

hk1
1 Mx1

k1

∥
∥
∥
∥
∥
∥

J

Mx2 ,K2,h2

= sup







∣
∣
∣∂

k2
2 ∂k1

1 f (a1, a2)(v
1
1, . . . , v1

k1
; v2

1, . . . , v2
k2
)
∣
∣
∣

hk1
1 hk2

2 Mx1
k1

Mx2
k2

: a2 ∈ K2, k2 ∈ N, ‖v2
j ‖E2
≤ 1







≤
︸︷︷︸

(M(mg))

sup






Ck1+k2

∣
∣
∣∂

k2
2 ∂k1

1 f (a1, a2)(v
1
1, . . . , v1

k1
; v2

1, . . . , v2
k2
)
∣
∣
∣

hk1
1 hk2

2 M
y
k1+k2

:

a2 ∈ K2, k2 ∈ N, ‖v2
j ‖E2
≤ 1

}

≤ sup







∣
∣
∣∂

k2
2 ∂k1

1 f (a1, a2)(v
1
1, . . . , v1

k1
; v2

1, . . . , v2
k2
)
∣
∣
∣

hk1+k2 M
y
k1+k2

:

a2 ∈ K2, k2 ∈ N, ‖v2
j ‖E2
≤ 1

}

< +∞,

where we have put h := 1
C min{h1, h2}. Note that f is E(M) and so for arbitrary

h1, h2 > 0 and x1, x2 ∈ Λ we can find y ∈ Λ and h > 0 such that the last inequality
is valid. This shows that f∨ is E(M).

The Roumieu-case.

By Lemma 6.1 it suffices to prove that f∨ : U1 → lim−→
x2∈Λ

lim−→
h2>0

EMx2 ,h2
(E2 ⊇ K2, R) is

Eb
{M} ⊆ E{M} for each compact set K2 ⊆ U2. This holds because each

α ∈ (E{M}(U2, R))∗ factorizes over some lim−→
x2∈Λ

lim−→
h2>0

EMx2 ,h2
(E2 ⊇ K2, R).

So we have to prove that for all K1 ⊆ U1, K2 ⊆ U2 compact there exist h1 > 0 and
some x1 ∈ Λ such that the set in (6.1) is bounded in lim−→

x2∈Λ

lim−→
h2>0

EMx2 ,h2
(E2 ⊇ K2, R).

Equivalently, we have to show that for all K1, K2 compact there exist h1, h2 > 0
and x1, x2 ∈ Λ such that the set in (6.2) is bounded in R.

We can use now the same estimate as for the above Beurling-case and use (M{mg}).
First, because f is E{M} and by (3) in Proposition 3.4 we obtain that there exist
some h > 0 and y ∈ Λ, such that the last set

sup

{ ∣
∣
∣∂

k2
2 ∂

k1
1 f (a1,a2)(v

1
1,...,v1

k1
;v2

1,...,v2
k2
)
∣
∣
∣

hk1+k2 M
y
k1+k2

: a2 ∈ K2, k2 ∈ N, ‖v2
j ‖E2
≤ 1

}

in the Beurling estimate is bounded. For this y ∈ Λ we obtain by (M{mg}) that

there exist some x1, x2 ∈ Λ and C > 0 such that M
y
j+k ≤ Cj+kMx1

j Mx2
k holds for

all j, k ∈ N. So we can put in the estimate now hi := Ch for i = 1, 2 to get, that f∨

is E{M}.
Now we start with (⇐=) for both cases.
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Let f∨ : U1 → E[M](U2, R) be E[M]. The mapping f∨ : U1 → E[M](U2, R) →
E(U2, R) is E , hence it remains to show that f ∈ E[M](U1 ×U2, R).

The Beurling-case.
For each compact K2 ⊆ U2, each h2 > 0 and each x2 ∈ Λ, the mapping
f∨ : U1 → EMx2 ,h2

(E2 ⊇ K2, R) is Eb
(M)

= E(M). This means that for all compact

K1 ⊆ U1, K2 ⊆ U2, each h1, h2 > 0 and each x1, x2 ∈ Λ the set in (6.1) is bounded
in EMx2 ,h2

(E2 ⊇ K2, R). Because it is contained in the space EMx2 ,K2,h2
(U2, R) :=

{ f ∈ E(U2, R) : j∞( f )|K2
∈ EMx2 ,h2

(E2 ⊇ K2, R)} with semi-norm ‖ f‖J
Mx2 ,K2,h2

:=

‖j∞( f )|K2
‖J

Mx2 ,h2
, it is also bounded in this space and so the set in (6.2) is bounded

in R.
By assumption each Mx is log-convex and so Mx

j Mx
k ≤ Mx

j+k for all j, k ∈ N.

For the next estimate (M(alg)) would be sufficient. Let a1 ∈ K, k1 ∈ N and

‖v1
j ‖E1
≤ 1, then:

+∞ >

∥
∥
∥
∥
∥
∥

dk1 f∨(a1)(v
1
1, . . . , v1

k1
)

hk1
1 Mx1

k1

∥
∥
∥
∥
∥
∥

J

Mx2 ,K2,h2

= sup







∣
∣
∣∂

k2
2 ∂k1

1 f (a1, a2)(v
1
1, . . . , v1

k1
; v2

1, . . . , v2
k2
)
∣
∣
∣

hk1
1 hk2

2 ·M
x1
k1

Mx2
k2

:

a2 ∈ K2, k2 ∈ N,
∥
∥
∥v2

j

∥
∥
∥

E2

≤ 1

}

≥ sup







∣
∣
∣∂

k2
2 ∂k1

1 f (a1, a2)(v
1
1, . . . , v1

k1
; v2

1, . . . , v2
k2
)
∣
∣
∣

hk1+k2 M
y
k1+k2

:

a2 ∈ K2, k2 ∈ N,
∥
∥
∥v2

j

∥
∥
∥

E2

≤ 1

}

where we have put y := max{x1, x2} and h := max{h1, h2} (put h :=
C max{h1, h2}, where y ∈ Λ and C > 0 are coming from (M(alg))). So we have
shown that f is E(M).

The Roumieu-case.
For each compact K2 ⊆ U2 the mapping f∨ : U1 → lim−→

x2∈Λ

lim−→
h2>0

EMx2 ,h2
(E2 ⊇ K2, R)

is E{M}. By (3) in Proposition 3.4 the dual space
(

lim−→
x2∈Λ

lim−→
h2>0

EMx2 ,h2
(E2 ⊇ K2, R)

)∗

can be equipped with the Baire-vector-space-topology of the countable limit of
Banach spaces lim←−

x2∈Λ

lim←−
h2>0

(
EMx2 ,h2

(E2 ⊇ K2, R)
)∗

.

Now we can use Lemma 5.4 to conclude that the mapping f∨ : U1 → lim−→
x2∈Λ

lim−→
h2>0

EMx2 ,h2
(E2 ⊇ K2, R) is Eb

{M}.
By (3) in Proposition 3.4 this inductive limit is countable and compactly regular
and so for each compact K1 ⊆ U1 there exist h1 > 0 and x1 ∈ Λ such that the set in
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(6.1) is bounded in EMx2 ,h2
(E2 ⊇ K2, R) for some h2 > 0 and x2 ∈ Λ. Because it is

contained EMx2 ,K2,h2
(U2, R) := { f ∈ E(U2, R) : j∞( f )|K2

∈ EMx2 ,h2
(E2 ⊇ K2, R)}

with semi-norm ‖ f‖J
Mx2 ,K2,h2

:= ‖j∞( f )|K2
‖J

Mx2 ,h2
, it is also bounded in this space

and so the set in (6.2) is bounded (in R) with those given h1, h2, x1, x2.
But now we can use the same estimate as in the above Beurling-case to conclude
that f is E{M}. Similarly (M{alg}) would be sufficient for this step.

Using Theorem 6.2 we can prove now the matrix generalization of [6, Corollary
5.5.]:

Corollary 6.3. LetM be a weight matrix as assumed in Theorem 6.2. Let E, F, Ei, Fi, G
be convenient vector spaces and let U and V be c∞-open subsets. Then we get

(1) The exponential law

E[M](U, E[M](V, G)) ∼= E[M](U ×V, G)

holds, it is a linear E[M]-diffeomorphism of convenient vector spaces.

The following mappings are E[M]:

(2) ev : E[M](U, F)×U → F given by ev( f , x) = f (x).

(3) ins : E→ E[M](F, E× F) given by ins(x)(y) = (x, y).

(4) (·)∧ : E[M](U, E[M](V, G))→ E[M](U ×V, G).

(5) (·)∨ : E[M](U ×V, G)→ E[M](U, E[M](V, G)).

(6) ∏ : ∏i E[M](Ei, Fi)→ E[M] (∏i Ei, ∏i Fi).

IfM has also (M[FdB]), then we get

(7) comp : E[M](F, G) × E[M](U, F) → E[M](U, G).

(8) E[M](·, ·) : E[M](F, F1)×E[M](E1, E)→ E[M](E[M](E, F), E[M](E1, F1)) which

is given by ( f , g) 7→ (h 7→ f ◦ h ◦ g).

Remark: (7) proves the claim of [9, Remark 4.23.].

6.4 Comparison of conditions (mg) and (M{mg})

In [6, Example 5.4.] it was shown that cartesian closedness fails forM = {M} if
M does not satisfy (mg). In the weight matrix case we can prove the following
(counter)-example:
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Example 6.5. There exist (non-constant) (Msc) weight matricesM with (M{mg}) but

such that no Mx ∈ M satisfies (mg).

Proof. Let M = Ω be coming from ω ∈ W such that (ω6) does not hold, see
[9, 5.5., Corollary 5.8. (2)]. The weights ω(t) := max{0, log(t)s}, s > 1, are
concrete examples, see also [2] for the consequences of (ω6).

In the next step we generalize [6, Example 5.4.]. We show that (M{mg}) is neces-
sary for Theorem 6.2.

Lemma 6.6. LetM be (Msc) with Λ = N>0 but such that (M{mg}) does not hold.

Then there exists f ∈ E{M}(R2, C) such that the associated mapping

f∨ : R→ E{M}(R, C) is not E{M}.

Proof. We follow the proof of [6, Example 5.4.]. The negation of (M{mg}) gives

∃ x ∈ Λ ∀ C > 0 ∀ y ∈ Λ ∃ j, k ∈ N : Mx
j+k > Cj+kM

y
j M

y
k . (6.3)

For this x ∈ Λ and the choice C = y = n, n ∈ N>0, we obtain sequences (jn)n

and (kn)n such that (jn)n is increasing, jn → ∞, kn ≥ 1 for each n ∈ N>0 and with

(
Mx

jn+kn

Mn
jn

Mn
kn

)1/(kn+jn)

≥ n.

Define a linear functional α : E{M}(R, C)→ C by

α( f ) := ∑
n≥1

(
√
−1)3jn f (jn)(0)

Mn
jn

njn
.

Claim. α is bounded. For given f ∈ E{M}(R, C) we choose h > 0 and l ∈ Λ large
enough and estimate

∣
∣
∣
∣
∣
∑
n≥0

(
√
−1)3jn f (jn)(0)

Mn
jn

njn

∣
∣
∣
∣
∣
≤ ∑

n≥0

∣
∣
∣ f (jn)(0)

∣
∣
∣

hjn Ml
jn

Ml
jn

Mn
jn

(
h

n

)jn

≤

‖ f‖Ml ,[−1,1],h ∑
n≥0

Ml
jn

Mn
jn

(
h

n

)jn

< +∞.

Note that Ml ≤ Mn for l ≤ n and ∑n≥0

(
h
n

)jn
< +∞ for each h > 0.

We apply α to θ̃x ∈ Eglobal

{Mx} (R, C) (see (2.4)), where x ∈ Λ is the index from (6.3).

For s, t ∈ R define ψx(s, t) := θ̃x(s + t) and so ψx ∈ Eglobal

{M} (R
2, C) with

ψ
(β1 ,β2)
x (0, 0) = (

√
−1)β1+β2sx

β1+β2
for all (β1, β2) ∈ N2.
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Claim. α ◦ ψ∨x is not E{M}. Let h > 0 and l ∈ Λ be arbitrary (large) but fixed and
estimate as follows:

∥
∥α ◦ ψ∨x

∥
∥

Ml ,[−1,1],h = sup
t∈[−1,1],k∈N

|(α ◦ ψ∨x )
(k)(t)|

hkMl
k

≥ sup
k∈N

1

hkMl
k

∣
∣
∣
∣
∣
∑
n≥1

(
√
−1)3jn ψ

(jn,k)
x (0, 0)

Mn
jn

njn

∣
∣
∣
∣
∣

= sup
k∈N

1

hkMl
k

∣
∣
∣
∣
∣
∑
n≥1

(
√
−1)3jn

(
√
−1)jn+ksx

jn+k

Mn
jn

njn

∣
∣
∣
∣
∣
= sup

k∈N

1

hkMl
k

∣
∣
∣
∣
∣
(
√
−1)k ∑

n≥1

sx
jn+k

Mn
jn

njn

∣
∣
∣
∣
∣

= sup
k∈N

1

hkMl
k

∑
n≥1

sx
jn+k

Mn
jn

njn
≥
︸︷︷︸

k=kn

sup
n∈N>0

1

hkn Ml
kn

Mn
kn

Mn
kn

sx
jn+kn

Mn
jn

njn

≥ sup
n∈N>0

Mn
kn

hkn njn Ml
kn

Mx
jn+kn

Mn
jn

Mn
kn

≥ sup
n∈N>0

njn+kn

hkn njn

Mn
kn

Ml
kn

= +∞.

7 Remarks and special cases

7.1 More results for E[M]

Let M be (M) with Λ = R>0. Using the closed graph theorem [4, 52.10] the
matrix generalization of the uniform boundedness principle [6, Theorem 6.1.] is
valid for E[M], see [12, Theorem 12.4.1.]. All further results from [6, Chapter 8] can
be transferred to the matrix-case, see [12, 12.4., 12.6., 12.7.]. For the generalization
of [6, Theorem 2.2.] see [12, Proposition 9.4.4.].

LetM be (M) and assume that

(i) M is (Msc) with Λ = R>0 and has

(ii) (M[mg]) (⇒ (M[dc]));

(iii) for the Roumieu-case (MH), for the Beurling-case (M(Cω));

(iv) (M[FdB]) or equivalently (M[rai]) (see [10, Lemma 1]).

Using [10, Theorems 5,6], where we characterized the required stability proper-
ties for E[M], all results from [6, Chapter 9] can be transferred to the E[M]-case, see
[12, 12.8.] for full proofs. Note that the characterization theorem for the Beurling-
case shown in [12, Chapter 8] is weaker than [10, Theorem 6].
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7.2 Special casesM = {M} andM = Ω

To apply all previous results to the constant caseM = {M} we have to assume
that

(i) M ∈ LC;

(ii) lim infp→∞(mp)1/p
> 0 in the Roumieu-, limp→∞(mp)1/p = +∞ in the

Beurling-case;

(iii) M has (mg)(⇒ (dc)),

(iv) M has (FdB) or equivalently (rai) (see also [9, Chapter 3]).

IfM = Ω = {(Ωl
j)j : l > 0} with Ωl

j := exp(1/lϕ∗ω(lj)), then we assume that

ω ∈ W and

(i) (ω2) in the Roumieu-, (ω5) in the Beurling-case to guarantee (MH) respec-
tively (M(Cω)) (see [9, Corollary 5.15.]);

(ii) (ω1′), i.e. ω is equivalent w.r.t. ∼ to a sub-additive weight, see [10, Theo-
rems 3,4] and [9, Chapter 6].

7.3 Weight matrices in the sense of Beaugendre, Schmets and Valdivia

Beaugendre in [1] and Schmets and Valdivia in [13] have considered weight ma-
trices in the following sense: Let Φ : [0,+∞) → R be a convex and increas-

ing function with limt→∞
Φ(t)

t = +∞ and Φ(0) = 0 (w.l.o.g. - replace Φ by
Ψ(t) := Φ(t)−Φ(0), see [13, Definition 16.]). We introduce the following weight
matrix

MΦ := {(p!mΦ
ap)p∈N : a > 0} mΦ

ap := exp(Φ(ap)).

In the literature the Beurling-case E(MΦ) was considered. We summarize some
properties:

(i) MΦ is (Msc) and (M(Cω)) holds.

(ii) (M{L}) and (M(L)) both are satisfied, compare this with [9, Lemma 5.9.

(5.10)] where condition (ω1) is needed. As shown in [13, Lemma 17] we get
both

∀ a > 0 ∀ h > 0 ∃ b > 0 (b > a) ∃ D > 0 ∀ p ∈ N>0 :

log(h)− log(D)

p
≤ 1

p
(Φ(bp) −Φ(ap))

and

∀ b > 0 ∀ h > 0 ∃ a > 0 (a < b) ∃ D > 0 ∀ p ∈ N>0 :

log(h)− log(D)

p
≤ 1

p
(Φ(bp) −Φ(ap)) ,
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since convexity of Φ yields

∀ a, b > 0, b > a :
Φ(bp) −Φ(ap)

p(b− a)
≥ Φ(bp)

pb
⇔

Φ(bp) −Φ(ap)

p
≥ Φ(bp)

pb
(b− a) → ∞ (7.1)

as p→ ∞.

(iii) (7.1) implies also that all sequences are pairwise not equivalent. If
(mΦ

ap)p≈(mΦ
bp)p for all a, b > 0, then we would get

∀ a > 0 ∀ b > 0 ∃ C ≥ 1 ∀ p ∈ N : mΦ
bp ≤ CpmΦ

ap ⇔
1

p
(Φ(bp) −Φ(ap)) ≤ log(C),

but the left hand side tends to infinity as p → ∞ whenever b > a. SoMΦ

has both (M{strict}) and (M(strict)).

(iv) MΦ has (M{mg}) and (M(mg)). By convexity of Φ we get Φ(ap + aq) ≤
1
2Φ(2ap) + 1

2Φ(2aq) ≤ Φ(2ap) + Φ(2aq) for all a > 0 and p, q ∈ N and so

MΦ
a(p+q) ≤ MΦ

bp ·MΦ
bq ⇔ Φ(a(p + q)) ≤ Φ(bp) + Φ(bq)

holds with b = 2a.

(v) (M{FdB}) and (M(FdB)) both are satisfied. This is clear since each (mΦ
ap)p is

log-convex, see e.g. [9, 2.2. Lemma (1)].

Thus also for E[MΦ] the exponential laws in Theorem 6.2 and the consequences in
Lemma 6.3 are valid. Moreover the characterizing results [10, Theorems 5,6] and
all further generalizations of the results from [6] hold.

As special case one may consider Φ = ϕ∗ω for ω ∈ W . Then on the one hand
one has the matrix MΦ as defined before, on the other hand the weight matrix
Ω := {(Ωa

p)p := exp(1/aϕ∗ω(ap)) : a > 0} as the approach in [3]. By definition
we have

mΦ
ap := exp(Φ(ap)) = exp(1/aϕ∗ω(ap))a = (Ωa

p)
a.

As we have already pointed out the weights ωs := max{0, log(t)s}, s > 1, gener-
ate an infinite non-constant weight matrix. We denote the associated matrices by
MΦ

s and Ωs and prove:

Lemma 7.4. For any s > 1 the matricesMΦ
s and Ωs are equivalent w.r.t. both {≈} and

(≈).
Proof. Let s > 1 be arbitrary but fixed. For t ≥ 0 we get ϕωs(t) = ωs(exp(t)) =
(log(exp(t)))s = ts, hence ϕ∗ωs

(x) = sup{xy− ys : y ≥ 0} =: sup{ fx,s(y) : y ≥ 0}
for all x ≥ 0. A straightforward computation shows

ϕ∗ωs
(x) = fx,s

((x

s

) 1
s−1

)

= x
(x

s

) 1
s−1 −

(x

s

) s
s−1

= x
s

s−1

(
1

s
1

s−1

− 1

s
s

s−1

)

=: x
s

s−1 R(s)
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and so

Ωl
p = exp

(

l1/(s−1)ps/(s−1)R(s)
)

mΦ
l p = exp(ls/(s−1)ps/(s−1)R(s)). (7.2)

The case s = 2 gives Ωl
p = (exp(lR(2)))p2

= (exp(l/4))p2
and

mΦ
l p = (exp(l2/4))p2

.

Ωs{�}MΦ
s . Let l ∈ N>0 (large) and get Ωl

p ≤ (Ωl
p)

l ≤ (Ωl
p)

l p! = p!mΦ
l p for each

p ∈ N since Ωl
p ≥ 1 for each l > 0, p ∈ N.

MΦ
s {�}Ωs. Let l > 0, then we have to find n > l > 0 and C ≥ 1 such

that for all p ∈ N we get p!mΦ
l p ≤ CpΩn

p ⇔ p! exp(ls/(s−1)ps/(s−1)R(s)) ≤
Cp exp(n1/(s−1)ps/(s−1)R(s)). So the choice n = 2s−1ls is sufficient and analo-
gouslyMΦ

s (�)Ωs holds, too.
Ωs(�)MΦ

s . For each l > 0 (small) there exists C ≥ 1 and n > 0 such that for all
p ∈ N we get

Ωn
p ≤ Cp p!mΦ

l p ⇔ exp(n1/(s−1)ps/(s−1)R(s)) ≤ Cp p! exp(ls/(s−1)ps/(s−1)R(s)),

so the choice n = ls is sufficient.

If ω ∈ W , then Ω has always both (M{mg}) and (M(mg)). But Ωl≈Ωn for all

l, n > 0 holds if and only if (mg) for some/each Ωl and if and only if (ω6) for ω,
see [9, Chapter 5].
ForMΦ this is not true any more. As we have already seen the sequences inMΦ

are always pairwise not equivalent.
On the other hand, since (mΦ

ap)p∈N is log-convex, (mg) holds for this sequence

if and only if mΦ
a2p ≤ C2p(mΦ

ap)
2 ⇔ 1

2p Φ(2ap) − 1
p Φ(ap) ≤ log(C) for a constant

C ≥ 1 and all p ∈ N, see [8, Theorem 1, (3)⇒ (2)]. So if Φ satisfies

∃ D ≥ 1 ∀ t ≥ 0 : Φ(2t) ≤ 2Φ(t) + Dt, (7.3)

then each (mΦ
ap)p∈N has (mg). In [1] a weight with (7.3) is called a weight of mod-

erate growth. (7.3) is valid for Φ = ϕ∗ω if and only if ω ∈ W has (ω6). This holds
by the proof of (5.11.) in [9, Lemma 5.9.] and by applying the conjugate operator
to (7.3) (note that ϕ∗∗ω = ϕω).

Finally consider Φ(t) := t log(t) for t ≥ 1 and Φ(t) := 0 for 0 ≤ t < 1. Each
(mΦ

ap)p∈N has (mg), since 1
2p Φ(2ap) − 1

p Φ(ap) = a log(2). More precisely Stir-

ling’s formula and mΦ
ap = exp(Φ(ap)) = (ap)ap show that this yields the Gevrey-

matrix G and which should be compared with [9, 5.19.].
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