The convenient setting for ultradifferentiable
mappings of Beurling- and Roumieu-type
defined by a weight matrix

Gerhard Schindl*

Abstract

We prove in a uniform way that all ultradifferentiable function classes
&1 pmy of Roumieu-type and & ) of Beurling-type defined in terms of a weight
matrix M admit a convenient setting if M satisfies some mild regularity con-
ditions. For C denoting either £ v or &) the category C is cartesian closed,
i.e. C(ExF,G) =2 C(E,C(F,G)) for E, F, G convenient vector spaces. As spe-
cial cases one obtains the classes &1y and £y respectively &,y and &)
defined by a weight sequence M respectively a weight function w.

1 Introduction

Spaces of ultradifferentiable functions are subclasses of smooth functions with
certain growth conditions on all their derivatives. In the literature two different
approaches are considered, either using a weight sequence M = (M), or using
a weight function w. For compact K the set

(k) (k)
{f (x) :xEK,kElN} respectively { fox) :xEK,kEIN}

M, exp (17193, (IF))

should be bounded, where the positive real number & respectively [ is subject to
either a universal or an existential quantifier and ¢}, denotes the Young-conjugate
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of p, = w o exp. In the case of a universal quantifier we call the class of Beurling-
type, denoted by &) or £, in the case of an existential quantifier we call the
class of Roumieu-type, denoted by Eqppy or Ey,,y. We write £, if either £,y or £,
is considered.

That a class of mappings C admits a convenient setting means that one can extend
the class to admissible infinite dimensional vector spaces E, F, G such that C(E, F)
is again admissible and the spaces C(E x F,G) and C(E,C(F,G)) are canonically
C-diffeomorphic. This important property is called the exponential law.

We recall now some facts, see [4] or the appendix in [5] for a short overview. The
class £ of all smooth functions admits a convenient setting and for this approach
one can test smoothness along £-curves. The class C“ of all real-analytic map-
pings also admits a convenient setting. A mapping is C if and only if it is £ and
in addition it is weakly C* along (weakly) C“-curves, i.e. curves whose composi-
tions with any bounded linear functional are C. It actually suffices to test along
affine lines.

In [5], [7] and finally in [6] A. Kriegl, PW. Michor and A. Rainer were able to
develop the convenient setting for all reasonable classes &) and Eyyyy. In the
first step in [9] they introduced the convenient setting for &y by testing with
Eqmy-curves for non-quasianalytic, strongly log-convex weight sequences M of mod-
erate growth. A function is &,y if and only if it is £y, along all &ypy-curves. It
was shown that moderate growth is really necessary for the exponential law and
non-quasianalyticity is needed for the existence of £y, -partitions of unity.
Then, in [7], they succeeded to introduce the convenient setting for some quasi-
analytic classes &) In this case M has to satisfy again strong log-convexity,
moderate growth and be such that £, can be represented as the intersection of
all larger non-quasianalytic classes £y with strongly log-convex L. A mapping
is &(pyy if and only if it is £, along each & ,-curve for each L > M which is
strongly log-convex and non-quasianalytic. A family of explicit examples &y
satisfying the requested assumptions was constructed, but the approach does not
cover the real analytic case C“ and thus was not completely satisfactory.

Finally, in [6], it was shown that all classes &,y and £(yy) such that M is strongly
log-convex and has moderate growth admit a convenient setting, no matter if M
is quasianalytic or not. Instead of testing along curves the mappings are tested
along Banach plots, i.e. mappings of the respective weak class defined in open
subsets of Banach spaces. A smooth mapping between convenient vector spaces
is &)y if it maps &)pq-Banach-plots to &(-Banach-plots.

The aim of this work is to generalize the results of [6] to classes 5[ M] defined by
(one-parameter) weight matrices M := {M* : x € R>o}. In [9] the classes &y
and &), were identified as particular cases of £} (). So using this new approach
one is able to transfer results from one setting into the other one. Moreover one is
able to prove results for £,y and £,| simultaneously and no longer two separate
proofs are necessary. We have also shown that there are classes £, which can-
not be described by a single M or w, e.g. the class defined by the Gevrey-matrix
G = {(p¥"M)pen : s > 0}. To transfer the proofs of [6] we will assume for
M among mild basic properties the so-called generalized Fa-di-Bruno-property
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(Mrqp)) and the moderate growth condition (Mpg)).

After introducing the basic notation and definitions we recall the setting of Whit-
ney jets between Banach spaces. We introduce classes of ultradifferentiable func-
tions defined by weight matrices, first between Banach spaces and then between
convenient vector spaces. This will be done in section[3l In section 4 we are go-
ing to prove the most important and new tools in this work. We will develop
projective descriptions for the classes &y in order to get rid of both existence
quantifiers in the Roumieu-case (if M = {M} only one occurs). For this we
have to use diagonal techniques and to introduce several families of sequences of
positive real numbers to generalize the results of [6]. These projective represen-
tations are needed in section 5l for the proof of Theorem5.9/to show that &} isa
category and for cartesian closedness Theorem [6.2]in section [6]

Finally in section [/l we summarize some special cases. In [7.3] we revisit weight
matrices as defined by Beaugendre in [1] and Schmets and Valdivia in [13]. Put
M = {(p!m%,)peN :a > 0}, where ® : [0,+00) — R is a convex and in-

creasing function with lim;_ % = +o0o, ®(0) = 0. In the literature only the
Beurling-type-class was studied. We will see that the results in this work can also

be applied to such classes.

Note that if M = {M} then the Fa-di-Bruno-property for M is sufficient to show
closedness under composition and is sufficient for the proofs in this work. But
it is really weaker than strong log-convexity as assumed always in the previous
papers and proofs of Kriegl, Michor, Rainer, see [9) 3.3.] for an explicit (counter)-
example. So our results are slightly more general than those of [6] even in the
single weight sequence case. In Lemma 6.6 we will show that (M s} ) is neces-
sary for cartesian closedness of £ and in Example [6.5 we will point out that
there exist weight matrices M such that no M* € M has moderate growth but
nevertheless (M ,,}) is valid. In particular this holds if the matrix is associated
to a weight function w and such that E[w] = 5[ M does not hold, see [2] and [9].

This paper contains some of the main results of the authors PhD-Thesis, see [12].
The author thanks his advisor A. Kriegl, PW. Michor and A. Rainer for the super-
vision and their helpful ideas.

1.1 Basic notation

We denote by C the class of all continuous, by £ the class of smooth functions
and C¥ is the class of all real analytic functions. We will write N~y = {1,2,...},
IN = NooU{0} and put Ryp := {x € R: x > 0}. Fora = (a1,...,a,) € N"
we use the usual multi-index notation, write a! := aq!...a,!, |a]| ;= a1+ - + ay
and for x = (x1,...,x,) € R" we set x* = x7' - - - x;". We also put 9* = 9" - - - 93"
and denote by f) the k-th order Fréchet derivative of f. Iterated uni-directional

k
derivatives are defined by d¥ f(x) := (%) f(x+ tv)|s=0.

Let Eq, ..., Exand F be topological vector spaces, then L(E, ..., Ey, F) is the space
of all bounded k-linear mappings E; X --- x Ex — F. f E = E; fori =1,...,k,
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then we write L*(E, F). Lk, .. (E, F) is the space of all symmetric k-linear bounded

sym
mappings E x --- x E — F,so f& : U — L’S‘ym(E,F). E* denotes the space of
k—times

all continuous linear functionals on E, E  the space of all bounded linear func-
tionals. If B C E is closed absolutely convex bounded, then Ep denotes the space
generated by B with the Minkowski-functional || - || .

Let E be a locally convex vector space, then the ¢*-topology on E is the final
topology w.r.t. all smooth curves ¢ : R — E. E is called convenient if E is c*-
complete which is equivalent for E to be Mackey-complete and for Ep to be a
Banach space for every bounded absolutely convex subset B of E. We refer to [4]
or the appendix in [5] for more details and proofs.

Convention: Let x € {M, w, M}, then write £ | if either E {x} OF 8(*) is considered,
but not mixing the cases if statements involve more than one &, symbol. The
same notation will be used for the conditions, so write (M) for either (M, )

or (M)

2 Basic definitions

2.1 Weight sequences and classes of ultradifferentiable functions &},

A weight sequence is an arbitrary sequence of positive real numbers
M = (M), € ]RH;TO. We introduce also m = (my); defined by my = % and
Ui 1= %, po := 1. M is called normalized if 1 = My < M holds.

(1) M is log-convex if

(lo) ;& VjeN: M: < M; 1Mjy;.

M is log-convex if and only if (py )y is increasing. If M is log-convex and My = 1,
then
(alg) & IC>1Vj ke N: MM < O My

holds with C = 1 and the mapping j — (M;)!// is increasing, see e.g. [11, Lemma
2.0.4, Lemma 2.0.6].
M is called strongly log-convex if

(sle) i VjeN: m]2 <mj_qmjy.

This condition implies|(lc)|and was a basic assumptions for M in [5], [7] and [6].
It guarantees all stability properties in [10, Theorems 5,6] for the case M = {M},
see also [9, Theorem 3.2.]. Related to this is the weaker condition

(FdB) :=& 3D >1Vke N: m) < Dmy,
which is called the Fa-di-Bruno-property, see [9, 3.3.]. For m® = (my ), we have put

J
mp = max{mimy, - --my; ;& € Nso, ) o=k}, mg:=1.
i=1
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Strongly log-convexity is also related to
(rai) 1 3C>1V1<j<k: (m)"i < Clm)'¥,

see [9] and [10].
(2) M has moderate growth if

(mg) = 3C>1VjkeN: M < MM,
This condition implies derivation closedness:
(de) & 3C>1VjeEN: My < VM,

In both conditions one can replace the sequence M by m.
(3) For M = (My), and N = (N,), we write M < N if and only if M, < N,, for
all p € IN. Moreover we define

) M 1/p
M=N:is 3C,G>1YjeN: M; < GCNj <= sup <_P) < 4o
pEN=o Np

and we call the sequences equivalent if
M=~ N & and N=M.

We will write

. M\ /P
M<1N:<:>Vh>03Ch21VjelN:Mjgchh]Nj<:>11m<—p) =0.

p—00 P
For convenience we introduce the following set:

LC :={M € RY, : M is normalized, log-convex, klim (M)V* = 40},
— 00

Letr,s € N>gand U C R" be non-empty open. We introduce the ultradifferen-
tiable class of Roumieu-type by

Ea(UR) :={fe€&(UR): VKCUcompact 31 >0: ||fllaxn < +oo},
and the class of Beurling-type by
Em(UR) :={f € &EUR"): VKCUcompactVh>0: |flaxn < -+oo},

where we have put

£ () e e
Ifllmxn = sup PRRY, (2.1)

keN,xeK HE M
For compact sets K with smooth boundary

Emn(KR) :={f € E(KR) : || fllmpp < 4o}
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is a Banach space and we have the topological vector space representations

Equy (U R) = lim lim E0) (K R) = lim £y (KR (22)
KCU h>0 Kcu
and
KcU h>0 Kcu

We recall some facts for log-convex M:

(i) Put sg‘;‘;al(u,w) = {f e EW,R): Th>0|fllmunr < +o}. There

exist characteristic functions

(chf) w30 € 5L (RR) ¥ j € N )9}(} (o)‘ > M,

and 0y, € E?J\Zl;al(lR, C) with

VieN: 60(0) = (V=1)s;, s;:= Y M) *>M, (24
k=0

hence ‘91(\2) (0)} > M forall j € N, see [9, Lemma 2.9.] and [14, Theorem 1].

global

Note that the Beurling-class &€ (M)

Proposition 3.1.2.].

(R,R) cannot contain such 60y, see [11,

(i1) If N is arbitrary, then MEIN <= &y C Eny and MKN < &y C
E(N)' If M LC| then MEN < S[M] C 5[1\”

(iii) Both classes £(yqy and &y are closed under pointwise multiplication, see
e.g. [11), Proposition 2.0.8].

2.2 Classes of ultra-differentiable functions defined by one parameter weight
matrices and basic definitions

Definition 2.3. Let (A, <) be a partially ordered set which is both up- and downward
directed, A = R~ will be the most important example. A weight matrix M associated
to A is a family of weight sequences M := {M* € RY, : x € A} such that

(M) & VY xe A: M isnormalized, increasing, M* < MY for x < y.
We call M standard log-convex, if

(Mge) & (M) andV x € A: M* e[LCl

My My

Alsomy := — and pi := M uy =1, will be used.
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We introduce ultradifferentiable classes of Roumieu- and Beurling-type defined
by M as follows (see also [9, 4.2.]):
Letr,s € N+, let U C R" be non-empty and open. For all K C U compact we

put
Emy (KR == ([ Eguny(KR%)  Epng(URY) = (] | ey (K R)
xeA KCU xeA
(2.5)
and

Em (KR == () En) (K R®)  Eug (U, R%) := () Emy (U, R). (2.6)

xXeEN xXeEN

For a compact set K C R" (with smooth boundary) we have

S{M}(K,]RS) = llg‘l hﬂ ng,h(K/ ]RS),

xeA h>0
and so for U C R" non-empty open
Emy(URY) = lim lim linm Epx (K, R?), (2.7)
KCU xeA 1>0
and for the Beurling-case we get
Emy (U, R?) = 11% LA # m Eppx (K, R?). (2.8)

Instead of compact sets K with smooth boundary one can also consider open

K C U with K compact in U, or one can work with Whitney jets on compact K.

If A = Ryp we can assume that all occurring limits are countable and so

E(m) (U, R%) is a Fréchet space. Moreover lim lim Epr (K, R*) = lim - Eppn (K, R?)
xeA h>0 nelN-<g

is a Silva space, i.e. a countable inductive limit of Banach spaces with compact

connecting mappings. For more details concerning the locally convex topology

on these spaces we refer to [9) 4.2.-4.4.].

2.4 Conditions for a weight matrix M = {M* : x € A}

We are going to introduce now some conditions on M which will be needed
frequently, see also [9, 4.1.].
Roumieu-type-conditions

(Migey) VX €AIC>03yecAVjeN: My, <CHM]
(Mimgy) YVXEAIC>03y1,y2 €AV ke N: My, <THMIMP
(Mag)) V1,0 €AFC>03y € AV j k€ N: M M2 < CFHEMY,

(M) VC>0VxeAID>03yec AVke N: C"M{ < DM
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1/k
MY
(Mistricty) Vx € ATy €A ¢ supy <W§) — 4o
(Mgapy) Vx € ATy € A (m*)Zm?
(Mraiy) VXEAIYyE€AIH>0: (mz]‘)l/q <H@my)"r,1<q<p

Beurling-type-conditions

(Mge) VX€A3C>03ycAVjeN: M/, <CHM?
(Mmg)) Vx1,0€ AFC>0Ty € AV j ke N: M/, < MM
(Mg) VX €AIC >0y, pp € AV jke N: MM < THMz,,

(M) VC>0VxeAID>03ye AVkeN:C"M] < DM}

1/k
Mx
(M(strict)) VxeAdyeA : SUPkenN., (ﬁ%) = 400

(M(FdB)) Vxe AJye A: (m¥)Em*

(Mai)) VX EATYy € ATH>0: (m)V1 < HmH)VP, 1<q<p

2.5 Inclusion relations of weight matrices

Let two matrices M = {M* : x € At and N = {N* : x € A’} be given, then we
g

write
M{ZIN &V xeAJye A MTRNY
M(N e Vye N Ixe A MTENY,
and
M{=IN & M{ZIV and M{=IM
respectively

M(=)N & M(ZWV and V(M.

By definition M[=X]N implies &5 C &y]- Moreover write
MIN :&VxeAVye N : MENY,

so M < N implies Eqyqy C Epy. In [9, Proposition 4.6.] the above relations
are characterized for matrices with A = A’ = R.g. In this context we
introduce

(Mycwy) I x € A liminfi_o(m}) 5 >0,

(My) VxeA: liminf ,(m)/* >0,

(M(Cw)) VxeA: limk%w(mlf)l/k = +o0.

Ifholds, then C¥ C Eppyy, if[(Mcw))|then C¥ C € uy). Finally if[(My)

then the restrictions of entire functions are contained in £ (M) See [9, Proposition
4.6.].
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Conventions:

(i) If A =Rspor A = N+, then these sets are always regarded with its natural
order <.

(ii) We will call M constant if M = {M} or more generally if M"E=IMY for all
x,y € A and which violates both |(M fgyicty )| and [(M gy )} Otherwise it
will be called non-constant.

2.6 Weight functions and classes of ultradifferentiable functions &,

A function w : [0,00) — [0, o) (sometimes w is extended to C by w(x) := w(|x|))
is called a weight function if

(wp) w is continuous, on [0, c0) increasing, w(x) = 0 for x € [0,1] (w.l.o.g.) and
limy 00 w(x) = +o00.

Moreover we consider the following conditions:
(w1) w(2t) =O(w(t)) ast — +oo.
(w2) w(t) =O(t) ast — oo.

(ws) log(t) = o(w(t)) as t — 400 (& Limy oo o=y = 0).

(wg) @u : t+— w(e') is a convex function on R.

(ws) w(t) = o(t) as t — -co.

(we) IH>1Vt>0: 2w(t) < w(Ht) + H.

(wy) AD>0:Ft)>0:VA>1:Vt>ty:w(At) < DAw(t).

An interesting example is ws(t) := max{0,log(f)°}, s > 1, which satisfies all

listed properties except[(ws)| For convenience we define the sets
Wo = {w 1 [0,00) = [0,00) : w has|(wo)}(ws JH(wa)]},
W = {w € Wy : w has|(w1)]}.

For w € Wy we define the Legendre-Fenchel-Young-conjugate ¢}, by

¢(x) :=sup{xy — ¢u(y) 1y >0}, x2>0.

It is a convex increasing function, ¢,(0) = 0, ¢} = ¢u, limy_ = 0 and

X
?o(x)
finally x +— %’( %) and x %’( ) are increasing on [0, +), see e.g. [3, Remark
1.3., Lemma 1. 5 ].

For o, T elVlwe write

c21:17(t) =0(0(t)), ast — 4o
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and call them equivalent if

o~ 7:& 0=t and 4.

Letr,s € N5, U C R be a non-empty open set and w € The Roumieu-type
space is defined by

Erp(UR%) := {f € E(U,R*) : VK C U compact 31 >0: | fllox: < +oo}
and the Beurling-type space by

Ew)(U,R%) :={f € E(U,R*) : VK C U compactVI>0: |flloxi < +oo},
where we have put

||f(k) (x) HLk(]RV 1:0)
Ifllwk = sup '
M enrex exp (Lo (1K)

(2.9)

and f®)(x) denotes the k-th order Fréchet derivative at x. For compact sets K
with smooth boundary

Eol(KR?) :={f € E(K,R) [ fllexp < +o00}

is a Banach space and we have the topological vector space representations

Eroy (U, R%) := lim lim &, (K, R?) = lim &1 (K, R%) (2.10)
KCU 1>0 Kcu
and
E(W)(U, ]RS) = l&n @ gwll(K,]Rs) = l&n g(w) (K,]RS) (211)
KCU >0 Kcu

A new idea introduced in [9, Chapter 5] was the following;:

(i) To each w €M we can associate a |(Ms.)| weight matrix
Q= {0 = (Q)jen : | > 0} by

Q= exp (95, (1)) ).

(ii) O has always [(M ey )| and (M mg))} (M )| and (M)} Tf w is sub-
additive, then|(M (4} )|and|(M (ggp))|hold, see [9, Lemma 6.1.]. Equivalent
weight functions w yield equivalent weight matrices w.r.t. both and

{~}]

(iii) &jq) = €|, holds as locally convex vector spaces, so defining classes of ul-
tradifferentiable functions by weight matrices as in (2.5) and (2.6) is a com-
mon generalization of defining them by using a single weight sequence M,
i.e. a constant weight matrix, or a weight function w €./ But one is also
able to describe classes which cannot be described neither by a weight func-
tion nor by a weight sequence, e.g. the class defined by the Gevrey-matrix
G :={(p*t1)pen s > 0}, see [9,5.19.].
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3 Basic definitions for the convenient setting

3.1 Whitney jets on Banach spaces

We recall the notation of [6, Chapter 3]. Let E, F be Banach spaces, K C E com-
pact and U C E open. Let f € £(U,F), then we introduce the jet mapping
j° 2 EUF) = J°(U,F) = [Tken C(U, L& (E, F)) defined by f — j°(f) =
(f®))en. For an arbitrary subset X C E and an infinite jet f = (f¥)ren we in-
troduce the Taylor polynomial (Ty; f X — L]S‘ym(E, F) of order n at the point y as
follows:

n

(TP, =

]|f7+k( Y)(X—y,...,x—Y,01,...,0).
j=0

The remainder is given by
(Ry ¥ (x) = fE(x) = (Ty f*(x) = (TEHK(x) = (T ) ()
and 50 (R} f)*(x) € L (E, F). We put now
Il = sup {ILF* () s, 2.0y £ % € K}

and

IRy ) Gk, e,y
[1f [l == sup {(”+1)! Hx_yHn-zl xyeEKx#Fy .

We supply € (U, F) with the seminorms f +— [|j°(f)|x|/x, where K C U is a com-
pact set and k € IN. If K C E is compact and convex, then we introduce the space
E(E D K, F) of Whitney-jets on K by

E(E2KF) = {f ren € kI—H[\TC (K, L (E F)) = | fllng < o0V k € IN}
S

and we supply these spaces with both seminorms || f|| and ||| f|||,, x for k,n € IN.
Finally recall [6, Lemma 3.1.]:

Lemma 3.2. Let E and F be Banach spaces and K C E be a compact convex subset. Then
E(E D K, F) is a Fréchet space.
3.3 Classes of ultra-differentiable mappings defined by a weight matrix

Let M := {M* : x € A} be|(M)| E and F be Banach spaces and K C E a compact
subset. Then, asin [6}, 4.1.], for x € A and h > 0 we define

Emen(E 2 K F) := {(fj)j < I—HI\IC(K’ Léym(E'F)) : HfH{VIX,h < +°°} ’
je
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where

k £k
Hf‘”\/lx,h A {sup {% ke N} o {hn—kk—lMZ tkkneNp .

n+k+1

For open U C E and compact K C U we introduce the space
Enr (U, F) = { f € EWF) : [°(f)| € Emep(E2 K )},

J
with semi-norm f — H )] KHMX . It is not Hausdorff and for infinite dimen-

sional E its Hausdorff quotient will not always be complete. Note that if K is
assumed to be convex, then we can take on Eyx k 5, (U, F) also the semi-norm

£ @) g e,
stup{ D e K e Ny = |l

M

Thus we see that Eppx g (U, F) = {f e EWUF) = (1) i)k € .FMx’h} holds
with

Fapep 1= {(fk)k eRY,:3C>0:VkeN:|fi] < ChkM,f}.
The bounded sets B in Eypx k (U, F) are exactly those B C &£(U, F) such that
(bus)n € Faep with by = sup {72 (f)| gl s f € B}.

Let U C E be convex open and K C U be convex compact, then define

Em(EDKF):= lim Eyey(EDKF)
xeA >0

Emp(EDKF) = lim  Eyey(E DK F)

XENR>0
and finally
E[M](U,F) = @ S[M](E D K,F), (3.1)
Kcu
ie.

Epy(U,F) = {f € EUF):VK: (fP]) € Epg(E 2 K,F)},

where K runs through all compact and convex subsets of U.
If A = R, then we can restrict in both cases to the countable diagonal, see
also [9, 4.2.-4.4.]. We have S(M)(E O K,F) = l&n ng/",l/n(E D K,F) and
nelN<go
EMmy(E2KF) = lim Emnn(E O K, F).
n€lN-<g
As already mentioned in [6, Proposition 4.1. (3)] the space £ (E 2 K F) is
not a Silva space for infinite dimensional E, because the connecting mappings in
the inductive limit lim &y (E 2 K, F) are not compact any more. The set
xe€Ah>0
B:={acE :|a|| <1}isbounded in Enik(E 2 K, R) for each k > 1. We have
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|#llo = sup{la(x)] : x € K} < sup{]lx]| : x € K}, lals = Jla]| =1 and [|afl, =0
for each m > 2. Moreover (Rya ¥ =0forn+k>1and (R 2)? = a(x —y). But
B is not relatively compact in any €y ((E 2 K,R), k > 1, because it is not even
pointwise relatively compact in C(K, L(E, R)).

Moreover we define

Emy k(U F) = lim  Enpe (U, F)
xeA,h>0

Empx(UF) = lim - Eppegon(U, F)
x€NRh>0

and so
Eunx(UF) = {f € EWF) : (11 (Pl € Fia §
Empx( U F) = {f € EW ) : (I (F) il € Frany }

with Foug = Nxeanso Fmeh Fiay = Uxeanso Fms -
The bounded sets B C &k (U, F) are exactly those B C £(U, F) for which the

sequence (by)m, by 1= sup {H]‘”(f)‘KHm tfe B},belongs to Fiu-
Finally we introduce

lim & (U F) = {f € EWE) VK (1) glldm € Fiag |-

Kcu
The next result generalizes [6, Proposition 4.1.].

Proposition 3.4. Let M be with A = Rs, then the following completeness
properties are valid:

(1) Emxp(E 2 K, F) is a Banach space.
(2) Eam)(E 2 K, F) is a Fréchet space.

(3) Emy(E 2 K, F) is a compactly regular (LB)-space, i.e. compact subsets are con-
tained and compact in some step and so (c*)-complete, webbed and ultrabornolog-
ical.

(4) Emy(U, F) and E pq, (U, F) are complete.
(5) As locally convex vector spaces we have

S(M)(U,F) = l&n E(M)(E 2 K,F) L (U F)
KcUu KCu

and

Kcu Kcu
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Proof. (1) This was already shown in [6], Proposition 4.1. (1)].

(2) Holds since A = R~.

(3) We can restrict to A = N+ and proceed analogously as in [6, Proposition 4.1.
(3)]. To show that the inductive limit is compactly regular it suffices to show that
there exists a sequence of increasing 0-neighborhoods U,, € Eyny(E 2 K, F) such
that for each n € IN there exists | € IN with [ > n and for which the topologies of
SMZ,Z(E D K, F) and of ng,k(E D K, F) coincide on Uy, for all k > 1.

In general, for indices x1 > x2 and positive real numbers h; > h; we have
My = <|- || M2,y Consider now the e-Ball UX" (f) =

{g:1lg— f“Mx , SepinEyp(E 2 K, F) and we restrict to the diagonal x = h = n

and identify U™" with U",

We show that for arbitrary n € Nsg and np > ny := 2n, for each ¢ > 0 and

f € U}(0) there exists § > 0 such that U3>(f) N U} (0) € U (f).

By assumption f € U}(0) = U;{"(0) we have |f|l, < nM} and || f|||sp <
nA b for all a,b € N. Consider ¢ € Uj2(f) NUJ(0) = U;>"(f) N

a+b+1
Uy (0), then ||g|la < n"MY, b < n”+b+1MZ+b+1 and moreover ||g — f|ls <

onsMy2, |1g — flllap < (5n”+b+1M"2 for all 2,b € IN. We estimate similarly as

a+b+1
in [6, Proposition 4.1. (3) o for g1ven e > 0 consider N € IN (minimal) with
ZLN < sandputd:=e (n—1>

clearly by definition || - ||

Fora > N we have 5, < lN < (*), so use triangle-inequality to get

NIm

1
g = flla < lglla + [1flla < 20" MG = 2niM7 =2 < eniMy < eniMy'
(%)

and the last inequality holds since n; = 2n > n and so M < M;' for alla € IN.
For a < N we have

1
o < nAMy? < en Ma < enf <enf
g — fll 2 12 1
N

N-1
because M}} < MY, <%> < <%> since a < N < 1 and finally M;' > 1.

Analogously we can use the same estimates for ||| - || |a,b instead of || - ||, for each
a,b € N.

(4) In the Beurling-case we have a projective limit of Fréchet spaces, in the Roumieu-
case a projective limit of (LB)-spaces, which are all compactly regular by (3) and
so complete, too. Since projective limits of complete spaces are complete we are
done.

(5) This holds precisely by the same proof as given in [6, Proposition 4.1. (5)] =
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Let E, F be convenient, U C E be c™-open, then define

Eyp) (U, F) ::{fES(U,F):VB:VKQUHEB:VxeAVh>O:

&) (a)(vq,...,0 - -
{f ( )h(ki/lz K) ckeN,aeKk,|vlp < 1}1sbounded in F}

={f€S(U,F):VB:VKQUOEB:VxeAVh>O:

d
{ vf(a)é:;v}z %) e Nya e K |fog]l < 1}is bounded in F}.

and

£y (U, F) ::{feé’(U,F):VB:VKgUﬂEB:3x€A3h>O:

&) (a)(vq,...,0 . :
{f ( )h(k]i/[;cc K) ke N,a €K, | vl < 1}1sb0unded1n F}

= {fE€EWF):VB:VKCUNE;: Ix€ATh>0:

k
{dvf(a)}fi)zl\//[é -/ k) ke N,a €k, ||Uz'||B < 1}is bounded in F}.

B runs through all closed absolutely convex bounded subsets in E, Ep is the com-
plete vector space generated by B with the Minkowski-functional || - ||g. Finally K
runs through all sets in U N Eg which are compact w.r.t. the norm || - ||g. If E and
F both are Banach spaces and U C E open we have &P, (U, F) = Em U, F),

[(M]
where the latter space is introduced in (3.I).
Now we give the most important definition:

Epy(U,F) = {feS(U,F) Vo €F :VB:aofoipe 8[M}(UB,]R)},

where B is running again through all closed absolutely convex bounded subsets
in E, the mapping ip : Ep — E denotes the inclusion of Eg in E and we write
Up := iz'(U). The initial locally convex structure is now induced by all linear

mappings

E[M}(Z’B,OC) :S[M](U,F) —)5[M}(UB,IR), f»—)ocofoiB.

Epm (U, F) C Ia & (Up, R) are convenient vector spaces as c*-closed sub-
spaces in the product: Smoothness can be tested by composing with inclusions
Ep — E and a € F* as mentioned in [4, 2.14.4, 1.8]. Hence we obtain the repre-
sentation

EmU,F):={feF": VaeF VB:aofoip e &, (Up R)}. (3.2)

All definitions given here are clearly generalizations of the definitions in [6} 4.2.]
for constant matrices.
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4 Projective descriptions for &,

In this section we are going to study one of the most important new techniques in
this work. Using abstract families of sequences of positive real numbers we prove
projective representations for the Roumieu-class & q,. This technique is very
important since we want to get rid of both existence quantifiers in the definitions
of &y so we want to generalize [6, Lemma 4.6.]. Furthermore we are going
to prove analogous results for the Beurling-case & () and generalize [6, Lemma
4.5.]. To do so we have to show variations and generalizations of [4, Lemma 9.2.]
(for the Roumieu-case) and of the Lemma between Lemma 4.5. and Lemma 4.6.
in [6] (for the Beurling-case).

We will obtain different projective representations for &,. The choice of the
appropriate representation depends on the application in the proofs. To show
closedness under composition in section 5, see Theorem 5.8/and Theorem 5.9, we
will have to use the versions using the Fa-di-Bruno-property (M[FdB])- For the
exponential laws in section [l the versions only assuming [(M )| or [(M,)| for M
are sufficient.

First we have to introduce several classes of sequences of positive real numbers
(r¢)x and (sg)k. It is no restriction to assume rg = 1 resp. sp = 1 (normalization)
for all occurring sequences.

Rroum = {(re)x € R, : rpt" — 0 ask — oo for each t > 0}

RRoum,sub = {(rk)k € RRoum : Titk < Tkt Vike N}

Rpewr = {(ri)x € RY, : r¢tk — 0 as k — oo for some ¢t > 0}

RBeur,sub = {(rk)k € Rpeur : Titk < TrTj Vike N}

Sfm =k €RY,:VXEATCy>0VkeN:sim) <Ck}

S ={ €RY:VxeEATCy>0VkeN:sM! <Ck}
Slji\glum,sub = {(Sk)k € Slji\glum :dD>0VjkeN: Sj+k < Dj+ijSk}
SIJ{\(/)lum,FdB = {(Sk)k € Srj{\glum - (§k)k € Srj{\glum dD>0VkeN:s < Dk(§0)k}
S ={(si)r ERY,: Ix € AT Cy>0VkeN:sumi <Ck}

S ={(st)k ERY;: Ix € AT Cy >0Vk e N:sM; <Ck}
S]é\élur,sub = {(sk)x € Sé\élur :dD>0VjkeN: Sjtk < D]+ijSk}

S]é\e:lur,FdB = {(Sk)k < S]'é\glur ;3 (§k)k € S]'é\glur dD >0VkeIN: S < Dk(§0)k}

For (si)x € St SM

Roum~” ~"Beur we have p ut

(So)k := min{sse, - 50, 1 @; € Nug g + -+ +a; =k}, (so)o := 1.

By definition [Sp? | C Slé\/l:um and (sp)x €S if and only if (klsy)x €
respectively for the Beurling-case. If (sg)x € Ség , holds for x € A, then
also for all y < x, too. All occurring sets are stable w.r.t. (x)r — (BF-x)) for
arbitrary B > 0.

Using [6, Lemma 4.6.] directly we get:

Proposition 4.1. Let M = {M* : x € A} be[(M)} E, F be Banach spaces, U C E
openand f : U — F a E-mapping. Then the following are equivalent:

(1) f is S{/\/l} = (‘:EM}
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(2) For each compact K C U there exists x € A such that for each (ry )y €

(k)
{f (a)(vl,);..,vk)i’k cacKkc N;HUI'HE < 1}
Mk

is bounded in F.

(3) For each compact K C U there exists x € A such that for each (ry.); €
there exists € > 0 such that

(k) k
{f (a)(vll\,/l.li.,vk)rke acKkeN,|og < 1}

is bounded in F.

Note that & () = 5? M) holds by Lemma [5.4 below, but for our approach in this
work we also have to get rid of the second existence quantifier.

4.2 Roumieu-case with (M r4p})

We prove the following generalization of [4, Lemma 9.2.]:

Lemma 4.3. Let M = {M* : x € A} be|(Msc)|with A = N~ and (M (ggpy )} Fora
formal power series } y( ay tk = Y k>0 lf—n’;itk, S0 ay = AZ—";{C, the following are equivalent:

(1) There exists x € A such that Y~ a; t* has positive radius of convergence.
(2) Lo kr" k converges absolutely for all (r)x € [Rroumland (sx)x €
(8) The sequence (%)k is bounded for all (ry)x € [Rroumland (sx)x €

(4) For each (ri)x € [Rroum,subl @d for each (si)x € S{{\g‘umleB there exists ¢ > 0
such that (bkrksk k>k is bounded.

Proof. (1) = (2) For the given series (x € A coming from (1)) and arbitrary (r¢)g
and (sg)x as considered in (2) we have

birisk k Tk k Ce\*
Y. i =Y aimirese = Y (ait*) (spmy) ® < ) (@t e Tx ,
k>0 k>0 k>0 Hf—’«:k k>0 ‘ ,
—0,as k—c0

hence the first sum converges for t > 0 sufficiently small.

(2) = (3) = (4) are clearly satisfied.

(4) = (1) Since|[(Mgqp})|is satisfied and m* < mY for x < y we can associate to
each x € A the index a(x) := min{y € A : (m*)I=mY}. Since (m*)° < (m¥)° for
x < y we also have a(x) < a(y) for such indices and limy_co a(x) = +-o00.



488 G. Schindl

On the other hand for y > a(1) we can define Bf(y) := max{x € A : a(x) < y}
which is clearly well-defined. So B(y1) < B(y2) for y1 < o, limy 00 B(y) = 400
and finally by construction for each x € IN-, x > «(1), there exist y € Ny,
y < x, with (m¥)I=m*. Note that this does not imply Wlo.g. we
could assume that a(x) = x+ 1 and so B(y) = y — 1. If M has in addition
i.e. the real analytic functions are contained in £ v}, then we can take

w.lo.g. M! = (p!),en, so m%, = 1foreach pand (1) = 1.
We prove by contradiction. So assume that each } - a; t* would have radius of

k
convergence 0. Then we would get Y 4~ |af| (%) = +o0 for each n € N+ and

each x € A = IN-. Consider now n € N~ and x := n + a(1) and so we find an
increasing sequence (ky, ),>0 with kg = 1, limy, 0 k, = +o00 such that

kn—1 k
VineNsg: Y |artW) (%) > 1. (4.1)
k=ky 1

We put now

1 k
re = <ﬁ) for k,_1 <k<k,—1,n¢€ Ny,

k
and show () € For k, 1 < k < k, — 1 by definition r tk = (%) ,

and so 7t* — 0ask — oo and all t > 0. Clearly (ry); is also log-sub-additive.

In addition one can see that (/7)x € and so for all ¢ > 0 there exists
ke € IN such that for all k > k, we have \/ﬁ,%k <1& /g <

No we define s := (sx)r. We put sp = %, where y(k) = n+ a(1) for
m

kp 1 <k<k,—1,n€N-g, and show (sg)x € Sé\glum FdB

So let x € A be arbitrary (large) but fixed, then for k,_; < k < k;, — 1 we get
x . omy Mg . M k oo

sy = 0 = For all k € IN we can estimate i < C§ with some

constant Cy > 0, because limy_,o, y(k) = +oco. This proves (s;)x €[Sz} Define

S 1= B(7(0) for k,_1 <k <k,—1,n€ Ny,

my

and similarly we find a constant D, > 0 such that §ym; < D§ for each x € A
and k € IN because limy .. B(7(k)) = +oo. This proves () € |Spl | For

Roum

61+ +96; = kweobtain for k € N withk, 1 <k <k,—1,1n€ N

1 1
Sk = < Ch*
mz(k) mf(“r(k))mgl(v(k)) mgj('y(k))
1
< it = Ch*8;85 - -85,
= mf(“r(j))mgl(v(él)) mfj(y((sj)) 5jS6y """ 5
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which precisely shows §=,. The first inequality holds by [(M (g4 )| and by defi-
nition of B, the second because j,d, .. ., 6 < k. So s is as desired.
Moreover

Z |bk|7’kSk kil |bkl|:'ksk _ Z kil aZ+zx( ( ) 21_+oo

= K n>1k=k,_; : n>1k=k,_; n>1

| bk
M}r{lﬂx
n(k) = n+ (1) for k € [ky_1,kn — 1]).

because by definition |z—’;‘sk = |a”+“ | for k,, 1 < k <k, — 1 (note that

Finally we show that (%\/r_ksk(ZS)k ) . cannot be bounded for any ¢ > 0. First we
get

But if the sequence would be bounded for some ¢, then for all k € IN we would
get o \/_skek < zk’ hence ) j~o ¢ 1] k' \/_skek < Zk>0 % = = 2C, a contradiction. [ |
We use Lemma4.3]to generahze [6 Lemma 4.6.].

Proposition 4.4. Let M = {M* : x € A} be|(Msc)|with A = N~ and
Let E, F be Banach spaces, U C E openand f : U — F a E-mapping. Then the following
are equivalent:

(1) fis Eppy = EQpgy-

(2) For each compact K C U, for each (ry)x € [Rrouml|and each (si)x € the set

(k)
{f (a)(vlf“"vk)rksk:aEK,keN,HUiHE31}

k!

is bounded in F.

(8) For each compact K C U, for each (ry)x € and for each
(sk)k € Sﬁ\gum/FdB there exists € > 0 such that the set

(k)
{f (a)(z;cl'r“"vk)rkskek ca € KkeN,|vg < 1}

is bounded in F.

Proof. (1) = (2) Let f be &y and K C U compact, then estimate as follows
(where we use Lemma 5.4 below):

(k) (k) (k)
Hf k'(a) i f;miﬁ |k sm | < fhik]éﬁ) }rk(th)k‘
L¥(E,F) Uk LK (E,F) . k ALk (E,F) ~—~—
<Cx —0, as k—co
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fora € K, x € Aand h > 0large enough (depending on K and f) and for arbitrary
(re)x and (sg )y as considered in (2).

(2) = (3) Take e = 1.

(3) = (1) We use (4) = (1) in Lemmal4.3l Let K C U be an arbitrary compact

. Then there exists i > 0 and
LK(E,F)

x € A such that sup; % < 090, hence fis &y - n

set but fixed and put by := sup, g Hf(k) (a)

4.5 Roumieu-case without (M g4p,)

Lemma 4.6. Let M = {M* : x € A} be|(Msc) with A = N. For a formal power
series Y y>o aj K =Y=0 &—%tk the following are equivalent:

1) There exists x € A such that )y~ a; t* has positive radius of convergence.

(1)

(2) k>0 birisy converges absolutely for all (ri)x € [Rroumla1d (sk)k €
(3) (bxresk)x is bounded for all (ri) € [Rroumland (si)x € SI/{\(/)lum,sub
(4)

4) For each (r)x € [Rroum,sub 1d for each (sp)k € |S{0um sup| there exists & > 0
such that (brisge®) is bounded.

If M is[(M)} then in (3) and (4) we replace|Si 1. <ol VY [Shcum

Proof. (1) = (2) = (3) = (4) is the same as in Lemma For (4) = (1)
we prove again by contradiction. In (4.I) consider x = n € IN5, take the same
r = (rx)x and for s = (s)x we put s 1= M%’g ifk, 1 <k <k,—1 If Mis|(Ms)
then we have M;‘M,f < M’.“Jrk for each j,k € N and x € A and M* < MY for
x < y. This implies (sg); € Sﬁgumrsub. If M is|(M)| then (s;)x € holds by

]

definition.

So we can prove a new version of Proposition

Proposition 4.7. Let M = {M* : x € A} be with A = Ns. Let E,F
be Banach spaces, U C E open and f : U — F a E-mapping, then the following are
equivalent:

(1) f is E{M} = SFM}
(2) For each compact K C U, for each (ry)i € [Rroum|and for each (si)x € the

set
[fW@ @, 00msa € KkeN, ojle <1}

is bounded in F.

(3) For each compact K C U, for each (ry), € and for each
(s)x €S there exists € > 0 such that the set

Roum,sub

(9@ (@, onse sa e Kk e N[l <1}

is bounded in F.
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If Mis then in (3) we replace|Sp? | bV |Spumt

Proof. Use precisely the same arguments as in Proposition 4.4, for (3) = (1) we
use (4) = (1) in Lemmal4.6l ]

4.8 Beurling-case with (M p))

Lemma 4.9. Let M = {M* : x € A} be|(Msc)|with A = R~ and Fora

formal power series Yy~ alt = Y= AZ;I—",;tk, 50 ay := AZZI—",;, the following are equivalent:

(1) The series Yy~ art* has infinite radius of convergence for each x € A.

(2) Foreach (ry)i €[Rpeur,subland for each (si)i € Sé\é’ur,FdB the sequence (%rksk§k> ;
is bounded for each 6 > 0.

Proof. (1) = (2) Let (rx)x and (sk)x be given as considered in (2), then

6C\F
Zk — tk x
Zk'rkské Y af (miise) (ret®) < ) Y oap (rx < ; )

> > >
k=0 k=0 ngg k=0 —0, as k—o0

is absolutely convergent for each § > 0. The index x € A was Chosen such
that sym? < Ck holds for all k € N and it is depending on (sy); € The

real number ¢ > 0 was chosen in such a way that 7t — 0ask — oo. Hence
(%rkskdk) is bounded for each § > 0.

(2) = (1) Assume that there would exist x € A such that Y~ a¥t* would have fi-
nite radius of convergence. Then there would exist /1 > 0 such that ¥~ [af[n* =
+oo for each n > h. Put now ry := # for some n > h and s := miﬁ
Clearly (r)x € [Rpeur,subholds.

Also (sg)x is as desired. By (M%Fde) for all x € A there existsy € Aand D > 0
such that for allay + - - - + a; = k we get

1 k 1 kA A
Sk:—ng m_ DS]Slxl"'SDCj/
mk m]_mlxl...mtxj
where we have put §; = # We have y < «x, since (m¥)° < (m*)° for
]

y < x. Clearly (§;)x € hence (sg)x € S'BAélurleB and so both sequences
are as considered in (2). But then there would exist C > 0 such that for all k € IN:

bi 21k k > 2Kk Kok
C> Fskrk(Zn )= k!m,frk(zn )k = afrn®2k = a¥nkok,
Hence Y [a¥|nf < C Y=g % = 2C, a contradiction. u

Using the previous result we can show:
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Proposition 4.10. Let M = {M* : x € A} be|[(Mg.)|with A = R~q and|(M g4p))

Let E, F be Banach spaces, U C E openand f : U — F a E-mapping, then the following
are equivalent:

: _¢b

(1) f A S(M) = E(M)

(2) For each compact K C U, for each (ry)ix € [Rpeudand for each (si)i € the

set
(k)
{f @10 e Kk e N, o < 1}

k!

is bounded in F.

(3) F}(l)r each compact K C U, for each (ry )i € [RBeur,subl@nd for each (si)x € Sé\élur,FdB
the set

(k)
f (a)(z;jf-“’vk)rkskdk ca €K keN,|villg < 1}

is bounded in F for each § > 0.

Proof. (1) = (2) Let f be £ () and (74 ), (sk)k given by (2), then we can estimate
as follows (where we use Lemma 5.2l below):

() (a (*) (a
Hf kl( : ;;mﬂghl)c ek sy | < H Mxhk) )rk(th)k)
LK(E,F) kT LK (EF) ek LK(E,F) ~—~——
<Gy —0, as k—o0

for a € K. We have chosen x € A depending on (si)x € such that s;m; < ck
and h > 0 depending on given (r¢)x € [Rpendsuch that r(Cyh)¥ — 0as k — oo.
(2) = (3) Replace in (2) the sequence (ry) by (70%);.

(3) = (1) Use (2) = (1) in Lemma 4.9 Let K C U be a compact set, arbitrary

but fixed. Then put by := sup, g Hf(k)(a) HLk(E F)

x € A we have that su be +00, hence f is £ vq. [ ]
PreN MERK (M)

and so for each & > 0 and each

4.11 Beurling-case without (M g4p))

Lemma 4.12. Let M = {M* : x € A} be|(Msc) with A = R~. For a formal power
series Y > th = Y k>0 A};I—kztk, ag == Ab/l_%, the following are equivalent:

(1) The series Yy art* has infinite radius of convergence for each x € A.

(2) For each (ry)x € [RBeur,subland for each (si) Sgé’ur <up|the sequence (byrisid® )
is bounded for each 6 > 0.

If M is|[(M)] then in (2) we replacelS31 . |by|SzA

Beur,sub
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Proof. Proceed as in Lemma 4.9 For (2) = (1) we put s := ML;;' where x € A'is

the index arising by the contradiction argument.
Hence (s¢); € IS holds whenever M is|(M,.)|since each M* is log-convex.

beur,sub _
If M is[(M)] then (sy)x € IS3 is clear. ]

So we are able to prove:

Proposition 4.13. Let M = {M* : x € A} be[(Ms)| with A = Rs. Let E,F
be Banach spaces, U C E open and f : U — F a E-mapping, then the following are
equivalent:

(1) fisEpmy = S?M).
(2) For each compact K C U, for each (ry); € [Rpeud and for each (si)y € the

set
[O@ @1, o0ms 0 € Kke N, ojle <1}

is bounded in F.

(3) For each compact K C U, for each (ri) € [Rpeur,subland for each (sy )i € S]é\élur,sub
the set

{f(k)(ll)(l)l,. . .,Uk)i’kskék ca € K, keN, ||viHE < 1}

is bounded in F for each § > 0.

If M is[(M)] then in (3) we replace|S3! by S

Beur,sub

Proof. The proof is the same as for Proposition For (3) = (1) we use
(2) = (1) in Lemma.12 ]

5 Closedness under composition

5.1 First observations

First we generalize [6, Lemma 4.2.]:

Lemma 5.2. Let M be[(M)] then €\ = EFM)'

Proof. Let E,F be convenient, U C E a c*-open subset and let f : U — F be
a £-mapping. Then we obtain the following equivalences, where the set B runs
through all closed absolutely convex bounded subsets in E and K runs through
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all sets in Up which are compact w.r.t. the norm || - ||p:

fE(‘:(M)(U,F)
= VacF"VBYKCUgVxc€AVh>0:

(k)
a0 a)(vy,...,0 . .
{( D IikB\E[zl 2 ra € K keN, v < 1} is bounded in R

<~ VBYKCUgVxceAVh>0VacF*:

&) (a)(vq,...,0 : -
" ({f ( )h(kji/[;f k) cae K keN,| vl <1 is bounded in R

<—VBVYKCUgVxeAVh>0:

(k)
{f (a)h(l?zi/’p'culvk) ra € KkeN,|ovp < 1} is bounded in R
k

= f € Eyy (U F). n

But in general we do not have £\, = 5? My To see this we show the following
result; for the case M := {M} see [6, Example 4.4.].

Lemma 5.3. Let M = {M* : x € A} be|(Mqc)|with A = N~,.

Then there exists f : R> — RN>0 which is £ (M), but there is no reasonable topology on
Eqpmy (R, IRN>0) such that the associated mapping f : R — Egpqy (R, RN>0) is S?M}.
For a “reasonable topology” on &} (R, RN>0) we assume only that all point-

evaluations evt : £y (R, RN>0) — RN>0 are bounded linear mappings.

Proof. Consider f : R? — RN-0 defined by f(s,t) := (0x(st))xea,
0 € E{g]l\zl,)f 1(IR,]R), see |(chf) f is clearly &/, since each linear functional on
RN>0 depends only on finitely many coordinates. If f¥ : R — & (R, RN>0)
would be £P, ., then there would exist 1 > 0 and some y € A such that the set

{my
Vv (k) 0
(0200, en)

would be bounded in £ () (R, RN>0). But if we apply the bounded linear func-
tion ev; for t = 2h, then

(B _ (enfeo)] o (2M
hkMZ - hkMZ xXeA - MZ xXeA

and so the coordinates are unbounded as k — co whenever x > y. n

To get Eqagy = 5? My We have to assume additional assumptions, see [6, Lemma
4.3.] for the constant case.



The convenient setting for ultraditferentiable functions 495

Lemma 5.4. Let M be let E, F be convenient and let U C E be a c®-open subset.
Assume that there exists a Baire-vector-space-topology on the dual F* for which the point
evaluations evy are continuous for all x € F. Then f : U — F is & \qy if and only if f

.. cb
is € My
Proof. («<=) is clear.

(=) Let B a closed absolutely convex bounded subset of E, furthermore consider
a compact set K in Up (w.r.t. || - ||g) and introduce the sets

(k)
. |(ao a)(vy,...,0
Ax,h,C = {[XEF : |( f) ]’(lkB\EI;; k)| <C, VkEN,IZEK,Hviuggl}.

These sets are closed in F* for the Baire-topology and Uycp jcs0 Axnc = F*
holds. Then, by the Baire-property of F*, there exist xg € A, hy, Cy > 0 such that

the interior Ay, c, is non-empty. Let ag € Ay p,c,, then for all « € F* there

exists ¢ > 0, such that we get ea € Ay, c, — %0 < ex + &g € Ay 1y,Co-
Thus for alla € K, k € N and ||v;||g < 1 we get

(o /)9 (@) (o1, ..., 0p)]

1

< 2 (I((e) +a0) o AP (@) + (o0 P (@)]) < 20

k
niM,
hence bounded. Since B was arbitrary we get f € S? M- u

So the set {w :k€N,a €K, |vi]|p < 1} is weakly bounded (in F),

If the matrix is non-constant and has infinite index set, e.g. if M is coming from
w dWlwhich does not have - see [9, Section 5], then another phenomenon
appears.

Proposition 5.5. Let M = {M* : x € A =N~} be (Mesc)|with (M:{strict%)l
— E that are not

Then there exist locally convex vector spaces E and E qy-curoves c :
Eqpey forany x € A e E (R E) C Uyen Equny (R, E).

Proof. By we have that for each x € A we can find x; € A, x; > ¥,
such that &y & Eqpmy. Iterating we obtain a strictly increasing

sequence (x;);>p with xp = x and lim; ., X; = 400, w.l.o.g. one could assume
that M = {M% :i € N}.

So let x € A be arbitrary but from now on fixed and set E := RN. Consider
acurvec : R — RN, ¢(t) = (¢;(t))ien = (co(t),c1(t),...), with the following
property: cy is S?Mxo}, and for eachi > 1 we assume ¢; € £ { Mxi}\E (MFi-1}-

The curve cis £ ) since each o € (RN)* = RMN) depends only on finitely many
coordinates. Let i be the maximal of these coordinates. Thenxoc € £ (M1} (R,R),
thus c € E{M}(]R, IRN).

If there would exist some y € A such that c is &), then for each & € RMN)
we would get that a o ¢ € &) (R, R). According to this y we choose a linear
functional « depending on at least iy + 1 many coordinates where x;, > y. m
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5.6 Closedness under composition of &,

Definition 5.7. Let E be a convenient vector space. A & yq-Banach-plot in E is a map-
ping ¢ : D — E such that ¢ € &y and D denotes an open set in some Banach space F.
1t is sufficient to consider the open unit ball D = oF.

Using the definitions and projective representations of section4we can generalize
[6, Theorem 4.8.].

Theorem 5.8. Let M be with A = R, let U C E be a c™®-open subset in a
convenient vector space E and F be a Banach space.

If M has (Mggg)) and f : U — F, then f € &y implies foc € Epy for all
& m-Banach plots c.

The converse implication holds always by the definitions given in(3.3]

Proof. We follow the proof of [6, Theorem 4.8.] and apply Proposition 4.4 for the
Roumieu- and Proposition 4.10/for the Beurling-case.

(a) Beurling-case & 4.

We have to show that f oc is &) for each £y -Banach-plotc: G 2 D — E,
where D denotes the open unit ball in an arbitrary Banach-space G. By (3) in
Proposition we have to prove that for each compact K C D and for each

(i) € (st)k € [Shaurap) the set

(k)
{(fOC) (alzfvll--'lvk)rkskék = K’k c ]N" ||vi||E S 1}

is bounded in F for each § > 0. So let § > 0, the sequences (x), (s )k, and finally
a compact (w.l.o.g. convex) set K C D be given, arbitrary but from now on fixed.
Then for each « € E* by assumption and by (2) in Proposition applied to
the sequence (r;(2D3)*); and (8 )x € where the constant D is coming from

sk < DK(8,)x (since (sp)x € Sé\élur,FdB , the set

{ (aoc)®(a)(v1,. .., 00)r8c(2DS)*
k!

:aEK,kEN,HUiucgl} 6.1)

is bounded in R. So the set

{ c®(a)(vq,...,00)r8c(2DO)k
ki

a€e K ke N/“Uz’HG < 1}

is contained in some closed absolutely convex bounded subset B of E, hence

Hc(k)(a)HLk(G,EB)rk§k5k< 1

k! = (2D)k (5-2)

We proceed now as in [6, Theorem 4.8.]. ¢(K) is compact in Ep since the mapping

¢ : K — Ep is Lipschitzian: For alla,b € K we get c(a) —c(b) € QaD;fSJSB. Then
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we estimate for all § > 0 and k € IN- ¢ as follows:

(k)
"(fOC) (@), 4 o
k!
LK(G,F)
Hf<f>< )] I -
k Li(Eg,F) lc (ﬂ)||L“i(G,EB)ra,-Szxi5’
< ;} ] 2 D j! H ;!
12V 4eN O’Zz L= — _

) (c(a))
1\* Hf ‘ R
<)z ¢ T 5
120 yeN/ O,Z 1 &=k I J JH’_/
i= ~— gC]
(x)<Chi 1
1\* k—1 1\F L
<chen (3) X (§77)me = ey (5) @+ e
=N~

< ey (L2E0Y'

We have to choose x € A according to (3;); € (arising in Sé\é’ur rqp) such that

§m; < C]i for some constant C; > O and all j € IN. Since f € £(,4), we obtain the
estimate (%) with this index x and arbitrary # > 0 for a Constant C = Cyjandall

j € IN. Finally we can choose 1 := Cll and so the expression at the beginning is
bounded by C = C, 1/¢,-

(b) Roumieu-case &y 3
Use Proposition 4.4 and by (3) there it is sufficient to show that each compact
K C D and for each (1) € (sk)k € ISRL rqpl there exists e > 0 such
that the set '

(k)
{ (fOC) (a]z'(vl" ’ "Uk)i’kSkEk ca€ K,kelN, ||Ui||E < 1} (53)

is bounded in F.

We use the same proof as above and replace in (2) in Proposition 4.4 the sequence
(r)x by ((2D)*r )i, where D i is the constant arising in s, < D¥(3, )y (since (sg)x €
Sﬁ\gumerB and so (§¢)x € |S%.). Then we take 6 = 1 in G.), in (52) and in
the Lipschitz-argument. We can use now precisely the same estimate as for the
Beurling-case (for 6 = 1) and so we have shown (5.3) for ¢ = (1+27C1h) Note that
f € & amy, hence we have to consider x € A and h > 0 sufficiently large to obtain
estimate (x ( ) for some constant C. According to this chosen x € A we can estimate

§my < C] for a constant Cy and all j € IN, since (§;); €[St ]

Roum

Using Theorem 5.8 we can generalize [6, Theorem 4.9.].
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Theorem 5.9. Let M be with A = R. Let E, F, G be convenient vector spaces,
UCEandV C Fbec®openand f:U —F,g:V — Gwith f(U) C V.

(a) IffM(gap)) then f,8 € E ) implies go f € Epy).
(b) IfMrapy) then f,g € Eqpqy implies go f € Eq .-

Proof. By definition of £, we have to show that for all closed absolutely convex
bounded subsets B C E and for all &« € G* the compositeawogo foip: Up — Ris
& pm)- By assumption f oip € &g and a0 g € &y hold, so we can use Theorem

to obtain the desired implication. Note that f oip is a &-Banach plot. n

6 Exponential laws for &,

We start with the generalization of [6, Lemma 5.1.].

Lemma 6.1. Let M be|(M)|or |(Msc)| with A = Ry, let E be Banach and U C E
open. Let F be convenient and B a family of bounded linear functionals on F which
together detect bounded sets, i.e. B C E is bounded in E if and only if «(B) is bounded
in R for all « € B. Then we have

ng[M}(U,F)@&Ong[M}(U,]R) VaebB.

Proof. For £-curves this follows by [4] 2.1., 2.11.], and so by composing with such
curves for £-mappings f : U — F.

In the Roumieu-case we use (1) < (2) in Proposition 4.7l Hence for arbitrary
a € F* the mapping a o f is & vy, if and only if for each compact K C U the set

{(‘XOf)(k)(a)(vlz---/vk)rksk ca € K ke N, |vi][g < 1}

is bounded in R for each (r4); € [RRroum] and for each (sp); € |Spt,. | So the
smooth mapping f : U — F is & 4y if and only if the set

{f(")(a)(vl,...,vk)rksk ra € KkeN,|olg < 1}

is bounded in F, for each compact K C U, (ry)x € and for each

(si)i €

Because B detects bounded sets we can replace in the above equivalences F* by

B.

For the Beurling-case proceed analogously and use (1) < (2) in Proposition 4.13|
n

Now we are able to prove Cartesian closedness for classes £, and so generalize
[6, Theorem 5.2.].

Theorem 6.2. Let M be (M) with A = R, let U; C E; be c®-open subsets in
convenient vector spaces E; for i = 1,2 and moreover let F be also a convenient vector
space. Then we obtain:
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(a) If then

f < S{M}(Ul X UZ,F) <— f\/ < E{M}(Ul,g{M}(UQ,F))

(b) If then

f e &y x Uy, F) <= £V € Epygy (U, Epgy (Ua, F)).

Important remarks:

(i) Inboth cases («<=) holds also without|(M e )| respectively [(M )

(ii) To prove («=) it is sufficient to assume that M is|(M)|and (M ).

(iii) For the proof it is not necessary to assume that £ v respectively &) isa
category, i.e. closedness under composition.

(iv) If M is with A = R, (M) and (Mgqp)), then by Theorem 6.2
and Theorem .9 the category &) is cartesian closed.

Proof. The technique and methods are completely analogous to [6, Theorem 5.2.],
for convenience of the reader we give the full proof.

As shown in [4] 3.12.] we have £(U; x Uy, F) = £(Uy,E(Uy, F)). So we as-
sume form now on that all occurring mappings are smooth. Let B C E; x E; and
B; C E;,i = 1,2, where B, By, B, run through all closed absolutely convex bounded
subsets. Similarly as shown in [6, Theorem 5.2.] we get:

f e S[M](ul X UQ,F)
& Vae FFVB: [J(OfoiBEg[M}((LhXUZ)B,]R)
& VaeFr V B1,B> : (XOfO (iBl X iBz) S 5[/\4]((1/[1)31 X (UZ)BZ,R)

and

fY € Ep(Un, Epgg (U, F))
& V By fYoip € Epng((Uh)py, Epg (U, F))
< Ya€F VBy,B;: E[M}(ilgz,tx) Ofv oZ'B1 S S[M]((ul)Bl,S[M]((Uz)BZ,IR)),

where Lemma[6.1]is used and note that the linear mappings £ (i5,, #) generate
the bornology.

With these preparations we are able to restrict ourselves to U; C E; open sets in
Banach spaces E; and F = R. We start now with (=) for both cases.

Let f € & (Uy x Uz, R), then clearly f takes values in the space & (U2, R).
First we show that ,

Claim. f¥ : Uy — Epg(Uz, R) is € with d/f = (9} f)V.

E (M] (Uz,R) are convenient vector spaces, hence by [4] 5.20.] it suffices to prove
that the iterated unidirectional derivatives d},f (x) exist, are equal to @, f (x, -) (v/),
and are separately bounded for x and v in compact subsets. For j = 1 and x,v,y
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fixed we consider the smooth curve ¢ : t — f(x + tv,y). Then, by the fundamen-
tal theorem of calculus, we obtain:

PRt =0 ) - @y e = D740 )

= t/ / (tsr)drds = t/ / 02 f(x + tsrv, y) (v, v)drds.

(02f)V(K1)(0o(Ey x Eq)) is bounded in Em(Uz,R) and for each compact set
K; C U this expression is Mackey-convergent to 0 in £z (U, R) as £ — 0.
Hence d, f ¥ (x) exists an is equal to 91 f (x, -) (v).

The induction argument is completely the same as in [6, Theorem 5.2.].

We distinguish now between the Roumieu- and the Beurling-case.
The Beurling-case.
We have to show that f* : Uy — &) (Ua, R) is E gy

By Lemma it suffices to prove that f¥ : Uy — Ey=p(E2 2 Ky R) is
SFM) = E(M) for each K, C U, compact, eachh > 0 and x € A = R.(. This
holds, because each a € (&) (Uz, R))* factorizes over Eyxj(E2 2 Ky, R) for
some Ky, h and x.

So we have to show that for each compact sets K; C Uy, Ko C Uy, each hy, hy > 0
and each x1, x, € A, the set

{ dh fY (ay) (0}, ..., o} )

. 1
o a1 € Ky, ky € N, ||oj[g, < 1} (6.1)
1

is bounded in the space Eypx ,(E2 2 Ky, R). Equivalently, for all compact sets
K1, Ky, for all hy,hy > 0 and all x1, x, € A the set

ok2gks (a,a2)(0},..., 0L ;0%,...,02) .
{21f ! 1 90 € Kiki € N, ||oillg, < 1;i=1,2

Hkpk M2 M
(6.2)
is bounded in R.
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Let a; € Ky, k1 € IN, then we obtain the following estimate:

J
dklfv(al)(v%,...,v}q)
kq 5 rx1
hl Mkl MXZIKZ/hZ
ko ~k
‘Bzzallf(al,ag)(v%,...,v,ll;v%,...,viz) )
= sup P Pe——— 1y € Ko,k € N, |0, <1
hlthZMkl MkZ
1 2
ko ~k
- ‘Bzzallf(al,az)(v%,...,v}q;v%,...,viz)
< sup ¢ C 11752 -
(Mimg))

a2 € Ko, by € N, || 02|, < 1}

k
{ ’agzallf(al,az)(v%,...,vil;v%,...,viz)

ki+ko afY
Wate My 4

12 € Ko, kp € N, ||o?|g, < 1} < 400,

where we have put h := %min{hl,hz}. Note that f is 1) and so for arbitrary
hi,hy > 0and x1,x, € Awecanfindy € A and h > 0 such that the last inequality
is valid. This shows that f" is ().

The Roumieu-case.
By Lemma [6.Tit suffices to prove that f¥ : U; — m mngzlhz(Ez DO Ky R)is
Xy EAhy >0
S? M} c ¢ (M) for each compact set K; C Up. This holds because each
& € (Eppqy (U, R))* factorizes over some hgq ligqf,'sz’hz(Ez 2O Ky, R).
Xp €Ay >0
So we have to prove that for all K; C Uy, K, € U, compact there exist 1; > 0 and
some x1 € A such that the set in (6.1)) is bounded in @ @S =2, (E2 2 Kz, R).
Xy €Ay, >0
Equivalently, we have to show that for all Ky, K3 compaczt there exist hy,h, > 0
and x1, xo € A such that the set in (6.2) is bounded in R.
We can use now the same estimate as for the above Beurling-case and use|(M (1)
First, because f is £, and by (3) in Proposition 8.4 we obtain that there exist
some h > 0 and y € A, such that the last set

ko -~k
‘Bzzallf(al,az) (U%,...,U%l;v%,...,viz) ’
sup

kq+k Y
b1 2Mk1 +k2

in the Beurling estimate is bounded. For this y € A we obtain by that
there exist some x1,x, € A and C > 0 such that M]y 0 S Ci J“"M]’.C1 lez holds for
all j,k € N. So we can put in the estimate now h; := Ch fori = 1,2 to get, that
is& {M}-

Now we start with (<=) for both cases.

tay € Ky ko € 1N,||v]2||EZ < 1}
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Let fY : Uy — &Epg(Ua, R) be & . The mapping f* : Uy — (U2, R) —
E(Uy,R) is &, hence it remains to show that f € S[M](Ul x Uy, R).

The Beurling-case.

For each compact K; C U, each hp > 0 and each x; € A, the mapping
fVu — Eppap, (B2 2 K, R) is E?M) = 5(/\/1)- This means that for all compact
Ky C Uy, Ky C Uy, each hy,hy > 0 and each x1, x, € A the set in (6.1) is bounded
in Eppa p, (E2 2 Ko, R). Because it is contained in the space Eyx, g, 4, (U2, R) :=
{f € E(U2,R) : j*(f)|k, € Emz2py(E2 2 Ky, R)} with semi-norm ||f||{vp(211<21h2 =

1% (F) &, M\/I x, 1,7 it is also bounded in this space and so the set in (6.2) is bounded
in R.

By assumption each M* is log-convex and so M]"M,’f < M]’F i forall j,k € IN.
For the next estimate |(M|,,))| would be sufficient. Leta; € K, ky € N and

||ZJ]1HE1 < 1, then:

J
df¥(ay) (o, ..., 04)

ki a 121
hy' My

+oc0 >
MxZ/KZth

ko ~k
950 f(ar, @) (01, o iR, o)
= sup

kl kz X X1 X2
hy'h, Mkle2

ar € Ky, kp € N,

ko ~k
950 f(ar, @) (01, . o iR, o)
> sup

kq+k Yy
harRe M L,

2
Y

<1f
Ep

ar € Ky, kr € N, UJZ

<1f
Ep

where we have put y := max{xy,x} and h := max{hy, hy} (put h =
Cmax{hy, ha}, where y € A and C > 0 are coming from |(M,,))). So we have
shown that f is & vq).

The Roumieu-case.
For each compact K C U, the mapping f : Uy — lim lim Eppea p, (E2 2 Ko, R)
xXpEAhy >0
is £ py- By (3) in Proposition 3.4 the dual space ( lim lim Eppe j, (E2 2 Ko, R))"
Xp€Ahy >0
can be equipped with the Baire-vector-space-topology of the countable limit of
Banach spaces lim lim (Enpan, (E2 2 Ko, R)) ™
xXp €Ay >0

Now we can use Lemma 5.4 to conclude that the mapping f¥ : U; — m m

Xp€Ahy >0

Enray (E2 2 Ko, R) is EP 5.

By (3) in Proposition 3.4 this inductive limit is countable and compactly regular
and so for each compact K; C Uy there exist 1; > 0 and x; € A such that the set in



The convenient setting for ultraditferentiable functions 503

is bounded in Eyyx, j, (E2 2 Kz, R) for some h; > 0 and x; € A. Because it is
contained &£yx thz(uz, ) = {f € E(Uy, R) : j*(f)|k, € Eman,(E2 2 Ko, R) }
with semi-norm || ]|’ w2 ko = 17 )k ||§W21h2, it is also bounded in this space
and so the set in (6.2) is bounded (in IR) with those given k1, hy, x1, x7.

But now we can use the same estimate as in the above Beurling-case to conclude
that f is £ y. Similarly [(M (4, )| would be sufficient for this step. ]

Using Theorem [6.2l we can prove now the matrix generalization of [6, Corollary
5.5.]:

Corollary 6.3. Let M be a weight matrix as assumed in Theorem[6.2) Let E, F,E;, F;, G
be convenient vector spaces and let U and V be c®-open subsets. Then we get

(1) The exponential law
S[M](U,S[M](V, G)) = E[M}(U X V, G)

holds, it is a linear &y -diffeomorphism of convenient vector spaces.
The following mappings are & x4
2) ev: & (U, F) x U — F given by ev(f,x) = f(x).
3) ins: E — & (F, E X F) given by ins(x)(y) = (x,y).

5

(2)
(3)
4) ()" EmU Epg(V, G)) = Epng(U x V, G).
(5) ()Y : EmgU x V,G) = E g (U, Epg (V, G)).
(6)

6 H Hz (EZ,F) — g[M (Hz Ezsz )
If M has also (M gqp)), then we get
(7) comp : E[M}(F, G) X E[M}(U, F) — S[M](U, G)

is given by (f,g) — (h+— fohog).

Remark: (7) proves the claim of [9, Remark 4.23.].
6.4 Comparison of conditions (mg) and (Mg} )
In [6, Example 5.4.] it was shown that cartesian closedness fails for M = {M} if

M does not satisfy In the weight matrix case we can prove the following
(counter)-example:
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Example 6.5. There exist (non-constant) weight matrices M with|(M {m}) but
such that no M* € M satisfies|[(mg)|

Proof. Let M = Q be coming from w € W such that does not hold, see
[9, 5.5., Corollary 5.8. (2)]. The weights w(t) := max{0,log(t)*}, s > 1, are
concrete examples, see also [2] for the consequences of =

In the next step we generalize [6, Example 5.4.]. We show that is neces-
sary for Theorem

Lemma 6.6. Let M be with A = N but such that [( M (g1 )| does not hold.
Then there exists f € &y (R%,C) such that the associated mapping
fv 'R — (‘:{M}(IR,C) is not S{M}

Proof. We follow the proof of [6, Example 5.4.]. The negation of gives
3x€AVC>0VyeAIjkeN: M, > MM (6.3)

For this x € A and the choice C = y = n, n € IN+(, we obtain sequences (jx)n
and (k, ) such that (j, ), is increasing, j, — o0, k, > 1 for each n € N~ and with

X 1/ (kn+jn)
M; ok, .
M" M7 -
WM,

Define a linear functional a : £} (R,C) — C by

)= v

—
n>1 M]-nn]n

Claim. & is bounded. For given f € & (R,C) we choose i > 0and | € A large
enough and estimate

M;n I\ I
A = 2o M (;) < oo

n>0

Z (\/_—1)3jn f(jn) (0)

——
n>0 Mjn”]” n

Note that M! < M" for | < n and Y >0 <%>]n < +oo foreach i > 0.
We apply a to 0, € £ ?EE?I(R, C) (see (2.4)), where x € A is the index from (6.3).

For s,t € R define (s, t) = 0y(s +1t) and so ¢, € Sfﬁb}al(Rz,C) with
pP#(0,0) = (V=D)PrHPasy L forall (By, p2) € N2,
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Claim. a oy isnot £ (m)- Leth > 0and | € A be arbitrary (large) but fixed and
estimate as follows:

(o p))® (1)
laco sl pg - pyn = sup
ML LALR te[—1,1],keN hkM;lc
1 , (jnrk)(o 0)
Su - \/_1 3]”x7/
kox X
1 5, (V™ 1)]"+ itk 1 Fe Sitk
— sup—— | ¥ (V=I) —sup—— | (V=1)
ke hEML n; M i ke hEML n; M i
= sup ! Z ;Cn—kk > sup L M;{Zn S;Cn+kn
keN HEM o1 My kg{ neNsxg hk”le(n My, M
M” MY* Jntkn M
> ntn sup e kn = +o0. m

> su >
neleo hk””]”Ml Mn Mn neN- hfnin Ml

7 Remarks and special cases

7.1 More results for &,

Let M be with A = R(. Using the closed graph theorem [4] 52.10] the
matrix generalization of the uniform boundedness principle [6, Theorem 6.1.] is
valid for £ (M), See [12, Theorem 12.4.1.]. All further results from [6, Chapter 8] can
be transferred to the matrix-case, see [12, 12.4.,12.6., 12.7.]. For the generalization
of [6, Theorem 2.2.] see [12, Proposition 9.4.4.].

Let M be[(M)]and assume that
(i) Mis[(Mso)|with A = R~ and has
(i1) (Mimg) (= (M[dc]))
(iii) for the Roumieu-case|(My )| for the Beurling-case '
(iv) (Mpgg)) or equivalently (/\/l[ral ) (see [10, Lemma 1]).

Using [10, Theorems 5,6], where we characterized the required stability proper-
ties for £ (M) all results from [6, Chapter 9] can be transferred to the £ [Mm]-Case, see
[12, 12.8.] for full proofs. Note that the characterization theorem for the Beurling-
case shown in [12, Chapter 8] is weaker than [10, Theorem 6].
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7.2 Special cases M = {M} and M = Q)

To apply all previous results to the constant case M = {M} we have to assume
that

(i) M dLC

(ii) iminf, e (mp)/P > 0 in the Roumieu-, lim, e (1mp)!/? = 400 in the
Beurling-case;

(iii) M has|(mg)((= [(dc)),

(iv) M has|[(FdB)|or equivalently [(rai)](see also [9, Chapter 3]).
fM=0Q= {(Qg)] : 1 > 0} with Q; = exp(1/1¢f, (1)), then we assume that
w WM and

(i) [(w2)]in the Roumieu-, [(ws)|in the Beurling-case to guarantee (Mg, )| respec-
tively (see [9] Corollary 5.15.]);

(if) i.e. w is equivalent w.r.t. = to a sub-additive weight, see [10, Theo-
rems 3,4] and [9, Chapter 6].

7.3 Weight matrices in the sense of Beaugendre, Schmets and Valdivia

Beaugendre in [1] and Schmets and Valdivia in [13] have considered weight ma-

trices in the following sense: Let ® : [0,+o0) — R be a convex and increas-

ing function with lim;_, % = 400 and $(0) = 0 (wlo.g. - replace ® by

Y (t) := P(t) — P(0), see [13, Definition 16.]). We introduce the following weight
matrix

M?® = {(p!mg;)peN ca >0} mg; = exp(P(ap)).
In the literature the Beurling-case £ (o) was considered. We summarize some
properties:

(i) M®is[(Mgc)land (M cwy)|holds.

(i) [((Myry)|and [(M 1) both are satisfied, compare this with [9, Lemma 5.9.
(5.10)] where condition (w1 )|is needed. As shown in [13, Lemma 17] we get
both

Va>0vVh>03b>0(b>a)3D>0VpeN.yg:
log(D) 1

log(h) — ~p < " (®(bp) — P(ap))

and

Vb>0Vh>03a>0(a<b)3dD>0VpeNyg:

log (1) — @ < 4 (@(bp) — D(ap)),
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since convexity of ® yields

Yab>0,b>a: O(bp) — @(ap) > O(bp) o
p(b—a) pb
d(bp) — P(ap) _ D(bp)
; > ob (b—a) —» o0 (7.1)

as p — oo.

(iif) 1mp11es also that all sequences are pairwise not equivalent. If
(m up)(mbp) for all a,b > 0, then we would get

Va>0vVb>0dC>1VpeN: mbP<C map<:>
1

p (®(bp) — P(ap)) <1log(C),

but the left hand side tends to infinity as p — oo whenever b > a. So M®
has both |(M {strict} )l and |(M (strict) )l

(iv) M? has (Mg )|and [(M )] By convexity of @ we get ®(ap + aq) <
1®(2ap) + 3®(2aq) < ®(2ap) + ®(2aq) foralla > 0and p,q € N and so

M3, g < Mjp, - My & ®(a(p +4q)) < D(bp) + D(bq)

holds with b = 2a.

(v) [(Mrgpy)|and |(M ggp) )|both are satisfied. This is clear since each (m p)p is
log-convex, see e.g. [9, 2.2. Lemma (1)].

Thus also for £ (e| the exponential laws in Theorem[6.2]and the consequences in
Lemmal6.3are valid. Moreover the characterizing results [10, Theorems 5,6] and
all further generalizations of the results from [6] hold.

As special case one may consider ® = ¢ for w €Vl Then on the one hand
one has the matrix M® as defined before, on the other hand the weight matrix
O = {(Q})p = exp(1/agg(ap)) : a > 0} as the approach in [3]. By definition

we have

gy, == exp(®(ap)) = exp(1/agy,(ap))" = ()",

As we have already pointed out the weights w, := max{0,log(t)°}, s > 1, gener-

ate an infinite non-constant weight matrix. We denote the associated matrices by
M@ and Qg and prove:

Lemma 7.4. For any s > 1 the matrices ME and Qs are equivalent w.r.t. both[{~}and
(=)

Proof. Let s > 1 be arbitrary but fixed. For t > 0 we get ¢, (t) = ws(exp(t)) =
(log(exp(#)))* = #*, hence ¢, (x) = sup{xy —y* 1y > 0} =:sup{fus(y) 1y = 0}

for all x > 0. A straightforward computation shows

0= e (2)77) =2 (2 - () = (L 1)

Ss—1
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and so

Q; = exp (ll/(s_l)ps/(s_l)R(s)> m?; = exp(I¥/CVp/=UR(s)).  (7.2)
The case s = 2 gives Qé = (exp(lR(Z)))’"2 = (exp(l/4))7’2 and
mp, = (exp(I2/4))F".

Qf=HME. Let] € N+ (large) and get Qé, < (Qé,)l < (Qé,)lp! = p!m?; for each
p E]Nsincte > 1foreach! >0,p € IN.

M@) Let I > 0, then we have to find n > [ > 0 and > 1 such
that for all p € N we get plm} < C'Qj & plexp(I/EVps/-UR(s)) <
CPexp(n!/(5=1ps/(5=1)R(s)). So the choice n = 2°~1I° is sufficient and analo-
gously M=) holds, too.

QJ(Z)ME. For each I > 0 (small) there exists C > 1 and n > 0 such that for all
p € N we get

Q) < CPplm) < exp(n!/ =V p*/EUR(s)) < CPplexp(1/C-Vp* C-DR(s)),

so the choice n = I° is sufficient. n
If w €V, then Q) has always both| Mmg)|and |(M )} But Q=0 for all

I,n > 0 holds if and only if[(mg)| for some/each O/ and 1f and only if [(ws )| for w,
see [9, Chapter 5].

For M this is not true any more. As we have already seen the sequences in M®
are always pairwise not equivalent.

On the other hand, since (m ap) peN is log-convex, holds for this sequence

if and only if m®_ < C?*(m®)? & Ld(2av) — Ld(av) < log(C) for a constant
y a2p P 2p p p p g

C>1landall p € N, see [8, Theorem 1, (3) = (2)]. So if ® satisfies

AD>1Vt>0: ®(2t) <29(t) + Dt, (7.3)

then each (m up )pen has|(mg)] In [1] a weight with (Z.3) is called a weight of mod-
erate growth (Z3) is valid for ® = ¢, if and only if w € Wlhas This holds
by the proof of (5.11.) in [9, Lemma 5.9.] and by applying the conjugate operator
to (Z.3) (note that ¢} = ¢).

Finally consider ®(t) := tlog(t) for t > 1 and ®(t) := 0for 0 < t < 1. Each
(m,%)peN has since 21—p<I>(2ap) — %CI)(ap) = alog(2). More precisely Stir-
ling’s formula and mg; = exp(P(ap)) = (ap)? show that this yields the Gevrey-
matrix G and which should be compared with [9, 5.19.].
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