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Abstract

Recently, Abardia and Bernig introduced the notion of mixed complex
projection bodies and established a number of important geometric inequal-
ities for them. In the present paper we prove several new isoperimetric type
inequalities for volume differences of mixed complex projection bodies.

1 Introduction

Projection bodies in R” have and a long history and are widely studied. An ex-
tensive article that details this is by Bolker [9]. Bolker’s article, prompted even
more intensive investigations of projection bodies and also generalizations to the
L, Brunn-Minkowski theory (see, e.g., [6], [8], [11-13], [15], [17], [20-21], [27], [31],
[33-34], [37], [39-41], [48] and [51])). New applications have appeared in com-
binatorics (see Stanley [49]), in stereology (see Betke-McMullen [8]), in stochastic
geometry (see Schneider [42]), and even in the study of random determinants (see
Vitale [50]). In 1988, a fascinating paper of Alexander [5] demonstrates a close
relationship between the study of projection bodies and work on Hilbert’s fourth
problem. We also refer to Goodey and Weil [16], Martini [36] and Schneider and
Weil [43] for related results.

Mixed projection bodies are related to projection bodies in the same way as
mixed volumes are related to ordinary volume. The definition and elementary
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properties of mixed projection bodies can be found in [10]. The support functions
of mixed projection bodies were studied by Chakerian [14]. Lutwak had system-
atically studied mixed projection bodies and their polars and obtained a number
of elegant results (see, for example, [26-31]). Many recent important results have
appeared in [3], [19], and [32].

Moreover, it is well-known that the projection operator is a Minkowski valua-
tion. In fact, Ludwig [23] characterized the projection body map as the unique
continuous Minkowski valuation which is contravariant with respect to non-
degenerate linear transformations (see [1], [18], [25] and [47]). See the references
[23-24] and [44-45] for more information on Minkowski valuations.

Let V be a real vector space of dimension n. Let (V) denote the space of
non-empty compact convex bodies in V, endowed with the Hausdorff topology.

The projection body of K € K(V) is the convex body ITIK € K(V*) whose
support function is defined by

h(TIK, u) = gV(K[n — 1], Ju)u € V.

Here V(K[n —1],J,) = V(K,...,K,],) is the mixed volume of (n — 1) copies of K
and one copy of the segment ], = [—u, u] joining —u and u. The support function
of K € (V) is the function h(K, ) : V* — R defined by

h(K/ ‘:) = Supx€K<§/ x>/

where (G, x) denotes the pairing of { € V*and x € V.

In more intuitive terms, suppose that V is endowed with a Euclidean scalar
product. Then we can identify V* with V and the support function of IIK in
the direction u € S"~! is the volume of the orthogonal projection of K onto the
hyperplane u*.

In [2], Abardia and Bernig studied projection bodies in complex vector spaces:
The real vector space V of real dimension 7 is replaced by a complex vector space
W of complex dimension m and the group SL(V) = SL(n,R) is replaced by the
group SL(W,C) = SL(m,C). Note that SL(m,C) C SL(2m,R), so that each ele-
ment in SL(m, C) is volume preserving. A complex version of Ludwig’s charac-
terization theorem of the projection operator (see [23]) was established by Abar-
dia and Bernig.

Theorem A Let W be a complex vector space of complex dimension m > 3. A map
Z : K(W) — K(W*) is a continuous translation invariant and SL(W, C)-contravariant
Minkowski valuation if and only if there exists a convex body C C C such that Z = I,
where I1cK € K(W*) is the convex body with support function

h(IcK, w) = V(K[2m —1],C-w), Yw € W, (1.1)

where C - w := {cw|c € C} C W, and C is unique up to translations.

The mixed complex projection bodies of Kj, ..., Ky, _1 were also defined by
Abardia and Bernig;:

Definition 1.1 Let Ky,...,Ky,—1 € K(W) and C C C. The mixed complex
projection body Il¢(Ky, ..., Kyy—1) € K(W*) is the convex body whose support
function is given by

h(HC(Kl,...,KZm_l),w> —V(Ky, ..., Kom1,C-w), V€ W. (1.2)
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In this paper we also fix a Euclidean scalar product on W, and denote its unit
ball by B. Let Ky,...,Kyp1 € K(W)and 0 < i < 2m—1. If Ky = --- =
Koy-1-i = K, Kyyyy_j = -+ = Ky;y_1 = L, Ky, = M, then the mixed volume
V(K3,...,Kyy) will be written as V(K[2m — 1 —i], L[i], M). In particular, when
L = B, W;(K, M) denotes the mixed volume V(K[2m — 1], B[i], M). Moreover
W;(K[2m — i], B[i]) will be written as W;(K) and is also called the i-th quermass-
integral of K.

If Ki € K(W),1 <i < 2m —1, then the mixed complex projection body of K;
is denoted by Hc(Kl, .. .,sz_l). It K1 == KZm—l—i = K and KZm—i ==
Kyp—1 =L, then TI(Ky, ..., Kyy,—1) will be written as T1c(K[2m —i],L) .

Abardia and Bernig [2] also showed geometric inequalities of Brunn-Minkow-
ski, Aleksandrov-Fenchel and Minkowski type.

Theorem B (Brunn-Minkowski type inequality) If K, L € (W), then

1/2m(2m—1) >1/2m(2m—1) )1/2m(2m—1)

V(HC (K + L)) > V(HCK + V(HCL (1.3)
If K and L have non-empty interior and C is not a point, then equality holds if and only
if K and L are homothetic.

Theorem C (Aleksandrov-Fenchel type inequality) If Ky, ..., Kyyu—1 € K(W),

0<i<2m—1and2 <r <2m—2,then

r r
Wi (HC(KL e ,sz_1)> > HWZ (Hc(K] [1’],KH_1, ce ,sz_1)> . (14-)
=1
Theorem D (Minkowski type inequality) If K,L € (W) and 0 <i < 2m —1,
then _—
Wi (HC(K[zm — 7], L)) > W;(IIcK)?" 2 W;(T1cL). (1.5)

If K and L have non-empty interior and C is not a point, then equality holds if and only
if K and L are homothetic.

Indeed, Lutwak’s seminal work on Brunn-Minkowski type inequalities for
the classical projection bodies was generalized to the much more general class of
Minkowski valuations intertwining rigid motions (see [4], [38] and [46]).

In 2004 Leng [22] defined the volume difference function of two compact do-
mains D and K, where D C K. The following Minkowski and Brunn-Minkowski
type inequalities for volume difference functions were also established by Leng
[22].

Theorem E If K, L, D and D' are compact domains, D C K,D" C L, and D" is a
homothetic copy of D, then

(Vi(K, L) = Vi(D, D))" > (V(K) = V(D))""}(V(L) = V(D")),
and
(V(K+L) = V(D+D)Y" > (V(K) = V(D))" + (V(L) — V(D")"/".

In each case, equality holds if and only if K and L are homothetic and (V(K), V(D)) =
u(V(L),V(D')), where u is a constant.
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Recently, Lv [35] introduced the dual volume difference function for star
bodies and established the following dual Minkowski and Brunn-Minkowski
type inequalities for them:

Theorem F If K, L, D and D’ are star bodies in R",and D C K,D' C L,and Lisa
dilation of K, then

(V1(K,L) = (Vi(D,D"))" = (V(K) = V(D))""{(V(L) = V(D"))

with equality if and only if D and D' are dilates and (K, D)) = u(L, D), where y is a
constant, and

(V(KFL) = (V(DFD')" > (V(K) — V(D))" + (V(L) — V(D))"

with equality if and only if D and D’ are dilates and (V(K), V(D)) = u(V(L),V(D’)),
where y is a constant.

Moreover, the Aleksandrov-Fenchel type inequalities for volume differences
functions were established in [53]. Motivated by the work of Leng and Ly, in this
paper we establish some new affine isoperimetric inequalities in complex vector
space.

Theorem 1.1 Let K, L, D, D’ € K(W). If D' is a homothetic copy of D, V(I1cD) <
V(I1cK) and V(I1cD') < V(IIcL), then

[V (Hc(K + L)) — V(HC(D n D’))} 1/2m(2m—1)

1/2m(2m—1) 1/2m(2m—1)
> [V (HCK) _ V(HCD)} + [V(HCL) - V(HCD’)} .
(1.6)
If K and L have non-empty interior and C is not a point, then equality holds if and only if
K and L are homothetic and (V(HCK), V(HCD)> =u (V(HCL), V(HCD’)> , where
W is a constant.
If D and D' are singletons, then (1.6) becomes (1.3).
Theorem 1.2 Let K, L, D, D’ € K(W). If D is a homothetic copy of D, W;(I1cD) <
W;(I1cK) and W;(T1cD') < W;(I1cL), then for 0 < i < 2m — 1,

{wi (HC(K[zm =3 L)) — W (HC(D[zm —7], D’))rm_1

2m—2
> [Wi(HCK) - Wi(HCD)] [Wi(HCL) - Wi(HCD/)] (1.7)

If K and L have non-empty interior and C is not a point, then equality holds if and only
if K and L are homothetic and (W,-(HCK), Wi(HCD)> = (W,-(HCL), Wi(HCD’)),
where y is a constant.
If D and D' are singletons, then (1.7) becomes (1.5).
Theorem 1.3 Fori=1,...,2m — 1, let K;, D; € K(W).
IfV(Hc(K], e ,K]', KH—II ce /KZm—l)) > V(Hc(D], ey D], Dr+1/ ey DZm—l))r and
S——~— S———

r r
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D; (G = 1,...,r) are homothetic copies of each other, then for 0 < i < 2m — 1 and
2<r<2m-—2,

[v(nc(Kl, - Kom_1)) = V(IIc(Dy, . . -,Dzm—l))] r

7

> [V(HC(K]-,...,K]-,KHl,...,KZm_l))—V(HC(Dj,...,D].,Dm,...,DZm_l))]

=1 Y ;
(1.8)
It D;(j=1,...,r)are singletons, then (1.8) becomes (1.4).
2 Auxiliary Results
The following results will be required to prove our theorems.
Lemma 2.1 ([7, p.38]) Let
¢(x) = (x] —xh = —ax)VP, p > 1,
and suppose that
(a) x; >0,
(b) x1 > (xf +xb+ -+ xp)VP.
Then for x,y € R", we have
¢(x +y) > ¢(x) + (), (2.1)

with equality if and only if x = uy where u is a constant.
Lemma 2.2 ([52]) Let a,b,c,d > 0,0 < a <1,0< B <1 and a+p = 1.
If a>0b and c > d, then

a*cP —v*dP > (a — b)*(c — d)P, (2.2)

with equality if and only ifa/b = c/d.
Lemma 2.3 ([7, p.26]) If x; > 0,y; > 0, then

" 1/n " 1/n " 1/n
(H(xi+yi)> 2(119@) -I-(Eyi) , (2.3)

i=1

with equality if and only if c1 /by = c2/by = -+~ = ¢cn /by .

3 Inequalities for mixed complex projection bodies

3.1 Brunn-Minkowski-type inequality

In the following we establish the Brunn-Minkowski-type inequality, Theorem 1.1,
for complex projection bodies.
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Theorem 3.1 Let K, L, D, D’ € K(W). If D" is a homothetic copy of D, V(I1cD) <
V(I1cK) and V(I1cD") < V(I1cL), then

[V(Hc(K + L)) — V(Hc(D n D/)ﬂ 1/2m(2m—1)

> [v(11cK) - V(HCD)}l/zm(zm_l) +[v(rer) - V(HCD’)TW(M_D.

(3.1)
If K and L have non-empty interior and C is not a point, then equality holds if and only if

K and L are homothetic and (V(HCK), V(HCD)) =u (V(HCL), V(HCD’)>, where

J is a constant.
Proof. If K, L € K(W), then, by Theorem B,

>1/2m(2m—1) >1/2m(2m—1) >1/2m(2m—1)

v(Te(K+1) > v (T1cK + V(L (32)

If K and L have non-empty interior and C is not a point, then equality holds if

and only if K and L are homothetic.
Notice that D’ is a homothetic copy of D, thus

>1/2m(2m—1) (3 3)

)1/2m(2m—1) )1/2m(2m—1)

V(HC(D+D’) - V(HCD +V<HCD’

From (3.2) and (3.3), we obtain

v(Me(K +1)) = V(Te(D + D)) >

>1/2m(2m—1) >1/2m(2m—1)}2m(2m—1)

[V (HCK + V(HCL

>1/2m(2m—1) >1/2m(2m—1)]2m(2m—1)

_ [V (HCD TV (HCD’ (3.4)
If K and L have non-empty interior and C is not a point, then equality holds if
and only if K and L are homothetic.

From (3.4) and Lemma 3.2, we now obtain

V(Te(K+1)) = v(Ie(D+ D)) 1/2m(2m-1)

> { {V(HCK)UMM_D +v(nee)” Zm(zm‘”rm@m—n

>1/2m(2m—1)

_ [V(HCD + V(HCD’

> [V<1’ICK> B V(ﬂcD)r/zm(zm—l) N [V(Hd) B V(HcD/)}l/zm(zm_l)

In view of the equality conditions of inequalities (3.4) and (2.1), it follows that if
K and L have non-empty interior and C is not a point, then equality in (3.1) holds

if and only if K and L are homothetic and (V(HCK), V(HCD)) = y(V(HCL),

) 1/2m(2m—1)} 2m(2m—1) }1/2m(2m—1)

V(I1cD’ )) , where y is a constant.
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3.2 Minkowski-type inequality

In the following we establish the Minkowski-type inequality, Theorem 1.2, for
mixed complex projection bodies.

Theorem 3.2 Let K, L, D, D’ € IC(W). If D is a homothetic copy of D, W;(I1cD) <
W;(I1cK) and W;(I1cD') < Wi(I1cL), then for 0 <i < 2m —1,

[wi (HC(K[Zm ~ 2, L)) —w (HC(D[Zm — 2], D’))} "

2m—2
> [Wi(HCK) - Wi(HCD)} [Wi(HCL) - Wi(HCD/)] (3.5)
If K and L have non-empty interior and C is not a point, then equality holds if and only
if K and L are homothetic and ( (TTcK), Wi(l—ICD)> y( (TIcL), Wi(l—ICD’)),

where y is a constant.
Proof. If K, L € K (W), then, by Theorem D,

2m—1

W; (HC(K[2m — 7], L)) > W;(I1cK) 2" ~2W; (TTcL). (3.6)

If K and L have non-empty interior and C is not a point, then equality holds if
and only if K and L are homothetic.
Since D' is a homothetic copy of D, we have

2m—1

Wi (HC(D[Zm — 7], D’)) — W;(I1cD)?"2W;(I1cD’), (3.7)
hence
Wi (HC(K[zm — 7], L)) — W (HC(D[zm =3 D’))
> Wi(HCK)(Zm_z)/(Zm_l)Wi(HCL)l/(Zm_l)
_ Wi (HCD)(Zm_Z)/(Zm_l)Wi (HCD/)l/(Zm_l). (38)

If K and L have non-empty interior and C is not a point, then equality holds if

and only if K and L are homothetic.

Since %Z % + 2m =1, it follows from Lemma 2.2, that

[Wi (Hc(K[Zm —2], L)) - W; (HC(D[Zm -2], D’))rm_l
> {Wi(HCK)(2m—2)/(2m—1)Wi(HCL)l/(Zm—l)

2m—1
_ Wi(HCD)(Zm_z)/(zm_l)Wj(ncD/)l/(zm_l):|

> [Wi(I1cK) — W;(T1eD) "2 [W;(ITc L) — Wi(ITcD')].

From the equality conditions of inequalities (3.8) and (2.2), it follows that if K and
L have non-empty interior and C is not a point, then equality holds if and only if
K and L are homothetic and ( (TTcK), Wi(l—ICD)> y( (TIcL), Wi(l—ICD’)),

where y is a constant.
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3.3 Aleksandrov-Fenchel-type inequality

Theorem 3.3 Fori = 1,...,2m — 1, let K;,D; € K(W). IfV(HC(K]', K Ky,
—_——

r

ce /KZm—1>) > V(Hc(D], .. .,D]', Dr—i—lr .. -/DZm—l))/ and D] (] = 1, .. .,I’) are ho-
——
T
mothetic copies of each other, then for 0 <i <2m —1and2 <r <2m —2,

[V(HC(Kl, o Ko 1)) = V(IIe(Dy, .. -/DZm—l))] r

r
> [V(HC(Kj,...,Kj,KM,...,KZm_l))—V(HC(Dj,...,D]-,DrH,...,DZm_l))]
S——— S———

] r r

(3.9)
Proof. For 0 <i <2m —1and 2 <r <2m — 2, we have by Theorem C

r
W, (HC(Kl,...,sz_l))r > TIw: (HC(Kj,...,Kj, Kr+1,...,K2m_1)). (3.10)
j=1

Since D; (j = 1,...,r) are homothetic copies of each other, we have
r r
W (HC(Dl, N .,DZm_l)) —TIw (HC(Dj, ...,D;,Dyi1, .. .,DZm_l)). (3.11)
=1

From (3.10) and (3.11), we obtain

V(I1c(Ky, ..., Kop—1)) = V(IIe(Dy, ..., Dap—1))

1/r
r
> HV(HC(KjI“‘/Kj/K7’+1I“‘/sz—l))
i=1 Ar,_/
1/r
r
— [ [IVv(I1e(Dj,...,Dj, Dyt ..., Dom—1)) . (3.12)
Thus using Lemma 2.3, we obtain
r
V(Ilc(Ky, ..., Kam—1)) = V(Ic(Dy, - - ., Dom-1))
1/r
r
> HV(HC(Kj/'~~/Kj/K7’—|—1/'”/K2m—1))
1/r] "

r

— | [IV(I1c(Dj,...,Dj,Drs1, ..., Dop—1))
N——

j=1 M

r
> [V(HC(K]-,...,Kj,Kr+1,...,K2m_1))—V(I—IC(Dj,...,Dj,DrH,...,DZm_l))].
S——~— S———

-
j y ;
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