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Abstract

In the present paper, we find new bounds on the modulii of the third
and fourth Taylor-Maclaurin’s coefficients of bi-starlike functions of order p and
strongly bi-starlike functions of order B. Our estimates on the third coefficient
improve upon earlier estimates found in [D.A. Brannan, T.S. Taha, On some
classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour
(Eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21,
1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science
Limited, Oxford, 1988, pp. 53-60].

1 Introduction and definitions

Let A be the class of analytic functions f(z) in the open unit disk
U={z:z€C and |z| < 1}

and represented by the normalized series:

f(z) =z+ i anz" (z e U). (1.1)
n=2

We denote by S the family of univalent functions in A. (see, for details,[5, 15]).
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For f € S the inverse function f ! is defined by

fHf@) =2z (zeU)

and
F @) =o (el <ro(f) () > 3) 151
Further more,
Y w) = w — ayw? + (223 — a3)w® — (5a5 — 5aza3 +ag)w* + -+ (|Jw| < ro(f)).

(1.2)
The function f € A is said to be bi-univalent in U if (i)f € S and (ii) f 1 (w)
has an univalent analytic continuation to |w| < 1. Let o denote the class of bi-
univalent analytic functions in U. Initial pioneering work on the class o were
done in [3, 9, 11]. Recently, Srivastava et al.[14] exhibited some interesting ex-
amples of functions in the class ¢. We add that the family of functions defined
by

At —1) (AeC A =1;z€U)

are univalent in the larger disc |z| < 7 and their inverse functions are univalent
in U. Therefore, these functions are also bi-univalent. For a brief history on the
developments regarding the class o see [7].

Earlier Brannan and Taha (cf [4], also see [16]) introduced two interesting sub-
classes of the function class ¢, in analogy to the subclasses of strongly starlike
functions of order B and starlike functions of order p of the class S. We thus have
the following definitions.

Definition 1.1. [4] The function f(z), given by (1.1), is said to be in the class

S;/S (0 < B < 1), the class of strongly bi-starlike functions of order B, if each of the
following conditions are satisfied:

feo, |arg (ZJ{;S)) ’ < /37” (z € U) (1.3)
" arg <w§(lz(;;))) ’ < ‘B% (w € U), (1.4)

where the function g is the analytic continuation of f~!(w) to U.

Definition 1.2. [4] The function f(z), given by (1.1), is said to be in the class S;(p),
the class of bi-starlike functions of order p (0 < p < 1) if each of the following
conditions are satisfied:

feo, RN <Z]j:;i§>) > p (z e U) (1.5)

and

R (wg’(w)

(@) ) > p (w e U). (1.6)
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Example 1.3. The following considerations show that the family of functions de-
fined by f(z) = z+az*> (z € U), are members of the class S (p) if |a2| < e pp)

Direct verification shows that f is a univalent starlike function of order p. More
over, we have

_ —1++/1+4a w _ ad
¢ Y(w) = o Z=w+ Y A" (wel), (1.7)
n=2
where
1 /1 1
A”ZE (121) 4"ay (n=2,3,...).
Therefore,

g(l_p)mn!
o gn—1 /4 n—1)—1 n_o)_1 L
SEE—p( np){( n—)l 2}{( ni)z 2}{ 12}|a2|n—1

4n—1’a2|n—1
1 —Pn;

1 > n—1 (1_p)n—1
<
XLz PR

<5 (5 (=) -

This shows that ¢~lis a univalent starlike function of order p. Therefore,
feSzp)-

We shall also need the class P of analytic functions p(z) of the form:

IN

z):1+ickzk (z e U)

and satisfying R(p(z)) > 0 (z € U). The class P is popularly named after
Carathéodory.
Brannan and Taha [4] found estimates for the second and third Taylor-Maclau-

rin’s coefficients of the functions f in the classes S;ﬁ and S} (p). That is:

23] < ﬂzﬁTﬁ (fes?) and ol < \2(1=p) (feSHP).  (8)

Similarly,
a3] <28 (f€S)F) and |as| <2(1—p) (f € Sk(p)). (1.9)

Srivastava et al. [14] introduced and investigated two novel subclasses of o
and found non-sharp bounds for functions in these classes. As a follow up of the
work in [14] , at present there is renewed interest in the study of the class ¢ and
its many new subclasses. For example see [1, 2, 6, 7, 8,10, 12, 13, 17, 18].

In this note we improve upon the bound on |a3|, (f € SiF ) of Brannan and Taha

[4] given at (1.9). We also find estimates for |as| when f € S;ﬁ and S} (p).
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2 Coefficient bounds for the function class Sf;ﬁ
We state and prove the following:

Theorem 2.1. If the function f(z) in SiPis given by (1.1), then

B (0<B<3),
) 2.1
ol = {—145/3 (3<B<1) 2D

and
'2 1682—38—1
o) ocped
2 _ap
ol < { % (1431982205 o5 <p<d, 22)

2 15 1682 —3p—1
?ﬁ<5ﬁf4+% % ) 3<p<).

Proof. Let f(z) € S;ﬁ (0 < B <1). Then by Definition 1.1, we have

zf'(z) B
o = Q@) 23)
and /(w)
wg'(w) _ 8

respectively, where Q(z) and P(w) belong to the class P and have the forms:
Q(z) =1+ciz++c22+--- (ze)

and
P(w) =1+ hw+ hw? +Lw’ +---  (w € V).

By equating the coefficients of }[(()) with the coefficients of [Q(z)]?, we get
a) = IBC1 P (25)

2a3 — a2 Bca + BB —1) c‘% (2.6)

and
3a4 — 3axa3 + a5 = Bes + B(B —1)cicn +

Similarly, by equating the coefficients of u)g(( )) and [P(w)]?, we have

ay — —1311, (28)
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3&% —2a3 = ﬁlz + 5 1

and

—(10&% — 12&12&3 + 3&4) = 1313 + ,3(,3 - 1)[1[2 + 'B('B — 16)(‘8 — 2) l:f (2.10)

The relations (2.5) and (2.8), together give
11 = —(C1. (211)

We shall obtain a refined estimate on |c1| for use in the estimates of |a3| and |ay|.
For this purpose we first add (2.6) with (2.9); then use the relations (2.11) and get
the following:

203 = Blea +1o) + B(B — 1)t
Putting a, = Bcp from (2.5), we have after simplification:

» G+l
1

= . 2.12
T 1B (12
By applying the familiar inequalities |c2| < 2 and |I| < 2 we get:
4 2
< = . 2.13

To find a bound on |as| we wish express a3 in terms of the coefficients of the
functions P(w) and Q(z). For this we substract (2.9) from (2.6) and get

4ay = 4a% + B(co — o) + @(C% - l%)

The relation C‘% = Z% from (2.11), reduces the above expression to
4a3 = 4a3 + B(cz — Io). (2.14)
Next putting that a, = fc; and using (2.12), we obtain
4q5 = 4‘320.’12 + ‘B(Cz — lz)
cat+1lp
=482 (== ) 4+ B(c, — 1
p ( 118 ) Blca — o)

- 5 (58 + ea+ (3~ D).

Therefore, the inequalities |cy| < 2 and |l;| < 2 give the following:

4|ﬂ3’ S {

56+1+1-3B8) =48 (0<pB
(5p+1+36-1) =15 (3<

m‘m m‘m
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which simplifies to:

)

|/\ W=
\_/

B (0<B<
'”3|§{4ﬁ2 (1<B

T+p

This is precisely the assertion of (2.1).

We shall next find an estimate on |a4|. At first we shall derive a relation con-

necting c1, ¢, c3,l and [3. To this end, we first add the equations (2.7) and (2.10)
and get

—93 + 9aza3 = B(cs + 13) + B(B — 1) (c1co + I1lo) + PE—1)(F ~2) (c; +1).

6
By putting /1 = —c; the above expression reduces to the following;:
—9a3 + 9apaz = B(cs + 13) + B(B — Vc1(c2 — Io). (2.15)

Substituting a3 = a5 + %(cz — ) from (2.14) into (2.15) we get after simplification:

96:”2 (C2 B lz) = ‘B(C?) + 13) + ,B(,B — 1)C1(C2 — 12)

Since ay = fBcy, (see 2.5) we have
2
2 er(ca — 1) = Bles + 1) + B(B — Vs (e2 — ).

Or equivalently:

4(C3 + 13)
56+4 °

We wish to express a4 in terms of the first three coefficients of P(w) and Q(z).
Now substracting (2.15) from (2.12), we get

1 (Cz - 12) = (2.16)

6ay = —lla% + 15aa3 + B(c3 — I3) + B(B — 1)(c1c2 — 1)+
IB(:B — 1)(16 — 2) (C? . 13)
6

1 .
Observing that [; = —c; we have c1 — 13 = 2C1 and therefore

6ay = —9a3 + 9azaz — 2a3 + 6araz + B(cz — I3)+
BB~ Der(er +1p) + PEZDE =2

We replace —943 + 94543 by the right hand side of (2.15), putas = p*c% + B +z(c2—1)
(see (2.14)) and a, = Pc;. This gives

6as = B(cs +13) + B(B — 1)1 (2 — 1) —2B°c; + 6Bcy <l3 'B (Cz — lz))

T Bes—Is) + BB — Der(ea + 1) + P -2 &

3
B(5p — 2) 136° — 367 + 2
2

3 1

= 2Bc3 + c1(c2 =) + BB — Derlea + 1) +
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Next, replacing c1(c2 — I2) by the expression in the right hand side of (2.16) and
¢2 by (2.12) we finally get

56 —2)4(c3+13)

6as = 2fBc3 + A +B(B—1)cr(e2 + )+

2 5B + 4
1383 —3B2+28 (co+ 1)
3 1B
= 2fc3 + M(% +13) + 165" — 36 — ﬁcl(cz +12)

5B + 4 3(1+ B)

458 +1) 2(56 —2) 168> -3 —1
_ﬁ{sﬁﬂ T 5gra BT T304 p) Cl(cﬁlz)]'

This gives
B (|4(58+1) 2(56—2) 168% — 38 —1
< 7 —~—r .
las] = ¢ 5644 3] + 5B 14 13| + 30+ ) le1l](c2 + D)
We observe that By = 3+\/_ and B = \/_ are the roots of the quadratic poly-
nomial 168% — 38 — 1, out of which B < 0 Therefore,
( (56+1) (2-5p) 16p°—3p—1
8 [4P leal + 255 2P 0a) — S el + B)I] (0 < B < HB),
[4(5p+1 (2-5B) 1682 —3p—1
as) < § B[22 o] + 2P ta) + 22 er |2+ b)) (BB <p< ),
(58+1) (58—2) 1682 —3p—1
& 465 sl + 2B 1l + B el + )| B<p<1).

By applying the inequalities |c,| < 2, |I,| < 2 (n = 2,3) and the estimate (2.13)
for |c1| we have:

2 [ 1682—38—1 | 3
¥ _%% (0<p <P,

lag] < % 1+2M (3+\/_<l3< 2),

2 -15 16 38—1
P 2] g<pe),

We get the assertion (2.2). The proof of Theorem 2.1 is, thus, completed. n

We next find an estimate for |a4| for the function class S} (p).

Theorem 2.2. Let f(z), given by (1.1), be in the class S;(p). Then

" 200) [1 +2./2(1— p)] 0<p<l o1
T 25 14401 - p)) (3<p<1).
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Proof. Let f(z) € S*+(p) (0 < p < 1). Then by Definition 1.2, we get that

Z]f(f)) —p+(1-p)Qi(2) 218)
and .
wgg’) =p+(1-p)Py(w) (2.19)
respectively, where R(Q;(z)) > 0,
Qi(z) =1+caz+cz*+--- (ze)
and R(P, (w)) > 0,
P(w) =1+hw+bLw? +--- (weU).

As in the proof of Theorem 2.1, by suitably comparing coefficients in (2.18) and
(2.19) we get

ay = (1—p)ey, (2.20)
2a3 — a5 = (1—p)cy, (2.21)
3ay —3aza3 + a5 = (1 —p)c3 (2.22)
and
—a = (1—p)h, (2.23)
3a5 —2a3 = (1 —p)l, (2.24)
—(10a3 — 12a3a3 + 3a4) = (1 — p)l3. (2.25)

Addition of (2.21) with (2.24) yields:
2a5 = (1—p)(c2 + ). (2.26)
Putting a, = (1 — p)cq from (2.20) we have after simplification:

2 c2+1p
Y2(1-p)

By applying the familiar inequalities |c2| < 2 and || < 2 we get the first bound
in the following and the second estimate is well known:

2 ( )
(1-p)
lc1| < {2 e ( )

Next, we substract (2.24) from (2.21), add the equations (2.22) and (2.25) and get
respectively:

(2.27)

AN
—_ Nl

(2.28)

IAIA

P
p <

N~ O

4az = 4a3 4+ (1 —0)(c2 — 1) (2.29)

and
—9a3 4+ 9azaz = (1 —p)(c3 +13). (2.30)
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We shall now find an estimate on |a4|. We wish to express a4 in terms of the first
three coefficients of P(w) and Q(z). For this we substract (2.25) from (2.22), and

get
6as = —11a3 + 15aza3 + (1 — p)(c3 — I3)
= —9a5 + 9azaz — 2a5 + 6azaz + (1 —p)(c3 — I3).

We replace —9a3 + 9aza3 by the right hand side of (2.30), put az = (1 — p)?c +
022 (¢ — I) (see (2.29)) and a3 = (1 — p)c1. Thus, we have;

b = (1= p)lea +12) ~ 201 = p° +6(1 = pler (1= pP + L2 (ca - 1)

+ (1 —p)(cz —13)

6(1—p)*

= 2(1— p)es +4(1 - p + 2

C1 (C2 — 12)
Next replacing C% by (2.27) we finally get

cr+ Iy 6(1 — p)Z

_ _ —_ )3 _
6as =2(1—p)cs +4(1—p) c12(1 >y + 1 c1(co — 1)
3(1—p)?
—2(1— p)es +2(1 — pYes(cr + 1) + %cl(cz 1)
7(1—p)? 1—p)?
=2(1—p)ez + %clcz + ( 2p) c1ls.

By applying the inequalities |c3| < 2, |cz] < 2 and |I;] < 2, the estimate for |cq]|
from (2.28) we have

7(1—p)? 1—p)?
olas) <201~ p)lesl + "1y ea + TP ey s

S{Ml—m+swﬂfiﬁ (0<p<)

4(1—p)+16(1 —p)? (3<p<1).

Or equivalently:
!a|<{2“3‘”[1+2¢2<1—p>] 0<p<}
4] >y 2(1—
4 -p)]  G=p<),
We get the assertion (2.17). This completes the proof of the Theorem 2.2. n

3 Concluding Remarks

By definition every bi-starlike analytic function f(z) in U is associated with a
function Q(z) in the Carathéodory class P and its inverse function g(w) is as-
sociated with another function P(w) € P. In this paper suitable relationships
between the first and second coefficients of the two functions P(w) and Q(z) are
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obtained. Using these relationships, the third Taylor-Maclaurin’s coefficient of a
bi-starlike function f(z) is expressed in terms of the first and second coefficients
of P(w) and Q(z). Similarly the fourth coefficient of f(z) is expressed in terms of
the first three coefficients of P(w) and Q(z). A refined estimate for the first coef-
ficient of the function Q(z) is also derived. These relationships and the refined
estimate yield coefficient bounds for the third and fourth coefficients of the func-

tions in the classes S;ﬁ and S} (p).
By comparing our result (2.1) with (1.9) we observe that our estimate on |a3| im-

proves upon the earlier bound of Brannan and Taha [4] for the class S;ﬁ .
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