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Abstract

We study the mapping properties of the maps f(z) = £, g(z) = |z| f(z)

and h(z) = —zf(z) with |z| <1,z # 1.

Introduction

In this paper we are concerned with the mapping properties of some non-holo-
morphic continuous functions on the open unit disk D = {z € C : |z| < 1} and
their behaviour at the boundary T = {z € C : |z| = 1} of D. Our first example
is the function f(z) = (z —1)/(z — 1) which played a prominent role in Earl’s [2]
constructive solution to the famous interpolation problem for bounded analytic
tunctions, originally solved by L. Carleson [1], [3]. Earl considered finite Blaschke
products of the form

28 18
Bu(z,¢) _ﬂl_gkzl_‘:k'

In contrast to the usual rotational factors — ||/, these new unimodular factors
(1 — &)/ (1 — &) were chosen so that B,(z,&) = 1 atz = 1, a fact fundamental
for his solution to work. These factors reappeared in [4] in a similar context when
studying the value distribution of interpolating Blaschke products. To see this,

let
1+z
S(z) =exp (—1 — Z)
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be the atomic inner function. Choose o € T, # 1, so that S(c) = 1. Then the
rotated Frostman shift

B(z) = S((T_Z) —_b 1-b

1—-bS(oz) 1 -0
of S is an interpolating Blaschke product with singularity at ¢ that has the prop-
erty that B(1) = 1. Moreover, as we did want that B additionally satisfies

lim B(or) = a,
r—1

we were led to study the equation

1-0
b T, =%

(Note that lim,_,; S(r) = 0.) This gave me the motivation to study in the present

note the mapping properties of the function h(z) = —z(z —1)/(z — 1).

It turns out that the map & also provides a solution (see Proposition 3.1) to the
following question:

Do there exist continuous involutions of ID onto itself (these are continuous
functions ¢ for which 1 o+ = id, where id is the identity map), such that : has a
continuous extension with constant value at a largest possible subset of T, namely
T\ {1}? ! Note that the elliptic automorphisms ¢,(z) = (a —z)/(1 — az) of D
are involutions with ¢,(T) = T; so these functions are more or less opposite to
that class of functions we were looking for.

Now let us come back to the function f(z) = (z —1)/(z — 1). It is clear that
|f(z)| =1 forevery z € D. So in order to describe and better visualize the global
mapping properties of f, I “added” the factor |z|. In this way we are led to study
the function

8(z) = |21 ==

As we shall see, g has a totally different behaviour than 4. One striking fact, is
that the image of ID under g is no longer an open set. We will explicitly determine
¢(D). It turns out that certain rhodonea curves (roses) as Diirer’s folium, r =
sin(0/2), play an important role in studying the image properties of g.

We include in our paper six figures that help to visualize and understand the
calculations and results achieved.

1 Themap f(z) =(z—1)/(z—1)

Lemma 1.1. Consider for z € D the function f(z) = (z—1)/(z—1)andlet 0 < a <
1. Then

1. maxp;—,Re f(z) = 1,

2. miny,_,Re f(z) = 1—24%

!Later we shall see that one cannot achieve the constancy of the involution on the entire bound-
ary of D.
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3. max; |, Im f(z) = 1ifand only zf% <a<1land

max|,|—, Im f(z) = 2av/'1—a? ifand only if 0 < a < %;

4. minj;|_, Im f(z) = — max;_, Im f(z).

Figure 1: The domain of variation of ¢, t close to 7t /2.

Figure 2: The domain of variation of t, ¢ close to 7

Proof. Letz = 1+ pe'*,0 < t < 27. Then f(z) = e~?*. Hence Re f(z) = cos(2t)
and Im f(z) = —sin(2t). Let T* be the two tangents to the circle |z| = a passing
through the point 1. The intersection points of T* with the circle are given by

a

Pt = get (1.1)

for some 6 € [0, r/2]. Consider the triangle A whose end-points are 0,1 and P,
and let B be the angle formed by the segment [0, 1] and the tangent T™". Using that
0+ B = 7/2, there exists p > 0 with |1+ pe'*| = aifand onlyif T — B <t < T+ p.
(If t # 7 £ B, then there are exactly two such radii p). The side-lengths of A
are 1 (the hypotenuse), a and L := |ae®® — 1|. Since L? 4+ a> = 1, we see that
L = +/1 — a2. On the other hand,

L2 =3a%+1—2acosh.
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Hence a = cos 6. Now let tmax := 7T — B. Note that tmax is close to 7 if a is close
to 0 and tax 1S close to 7t/2 if a is close to 1.
Since tmax = 0 + 71/2, we obtain

08 (2tmax) = €0s(20 + 71) = —cos(26) = 1 —2cos*(f) = 1 — 24°.

Thus min,_,Re f(z) =1 — 242. The other identity max .|, Re f(z) = 1is clear
by looking at the figure; it also follows from the fact that forz = a, f(z) = 1.
Now c0s(2fmax) = 0 if tmax = 371/4. Hence

1
max Im Z:1<:>1—2a2<0<:>—<a<1,
f(z) < 5 <

|z|=a

and

maxIm f(z) = /1 (1-202)2 = 20V/1—a? =0 <a <

|z[=a

Nlis

Finally, for all a €]0,1],

|rzr‘11:r;1m f(z) = —mglm f(z). n

We can also use cartesian coordinates to find these extremal values: in fact, let
z = x 41y, |z| = a. Then

-1 _ (z-1) _ (1P
Re z—1 Re [z—1]2 T 24y +1-2x
x2—2x+1—(a?—x?) — 1+ 2x% 242

a?+1-2x a?+1-2x

Now

( x2 — g2 )’: 2(x —1)(a? — x)

a2 +1-—2x (a2 +1 —2x)?2

The zeros of this derivative are x = 1 and x = a2. Since —a < x < a, we deduce
that

z—1 2x? — 242
in R =14+ 55— =1-24°
i Sl B g 1 N ‘
and 5 5
z—1 2x° —2a
R =14 5 =1.
Ei); €71 +a2—|—1—2x x==a

As a consequence, the cartesian coordinates of P;" are (a2, +av/1 — a2).

Corollary 1.2. Let 0 < a < 1. The image of the circle |z| = a under the map

is the arc ’
A= {7 :|o| < m—2arccosa},

where arccosa € |0, 7t/2].
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Remark. We also note that if T runs from 0 to 277, then f(ae'™) runs on A from 1
to the upper end-point

ET -— ei(n—Zarccosu) — 1242 4+ 2iav/1 — a2

of A, reaches this point when T = arccos a (thatis f(P,”) = E™)), then turns back,
passes through the point 1 (when T = 77) until it reaches the lower end-point

E~ = g i(m-2arccosa) _ 1 952 9ig\/1 — g2

of A when T = 271 — arccos a (thatis f(P,) = E7)), then turns back again up to
the point 1, that is attained for T = 27r. In particular, with the exception of the
two end-points of A, each point of A is traversed twice.

2 The map g(z) = |z|f(2)

Theorem 2.1. Let the map g : ID — C be defined by

z—1
1

8(2) = I2] -
Then g is a continuous map of ID onto the set

O=D\K"
where K is a closed region whose boundary is given by the curve
v(a) = a(1 —2a%) +2i P2V1-a2, 0<a<]l,
which is one half of the rhodonea (rose)
r=sin(6/2), 0 <6 < 2m.
Moreover, g is a homeomorphism of
H:={zeD:|z—05]>05}onto D\ K

and a homeomorphism of

{zeD:|z—-0.5] <05} onto D\ K.

Let C = {z € D: |z —0.5| = 0.5}. Then the function g|c has an injective continuous
extension to the whole circle C. The image of this extension coincides with oK (see figures
3 and 4).

Finally, for |z| =1, z # 1, g(z) = —Zz; thus g interchanges two points on the unit
circle whenever they have same imaginary part.
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Ny

Figure 3: The mapping properties of ¢

Figure 4: Creation of the image domain ()

Proof. The first assertion on the image follows at once when we have noticed that
by Lemma 1.1 and Corollary 1.2 the end-points of the image curve of |z| = a
under the map (z —1)/(z — 1) are given by

1202 £i\/1- (1-22)2 =1 2% £i 2071~ a2
(see figure 4). Note also that the boundary of g(ID) is given by the set

JdDUR,
where R is parametrized by the curve
v(a) = a(l —2a%) +2ia*/1—a2, 0<a<l.

Hence g(D) = Q.
The locus of the points P, = ae
center 1/2 and radius 1/2, because

farccosa ywhere 0 < a < 1, equals the circle of

i arccosa

'——ae 5

1 .
= |= —acos(arccos a) — ia sin(arccos a)



Mappings on the disk 123

Ao —ievisa)

5 :\/(%—az)z—i—az(l—az):%.

By Corollary 1.2 and its remark,
g(aeiarccosu) _ aei(n—Zarccosa) — ,)/(a), a # 1.

Thus g(C) = 0K. Moreover the open disk |z — 1/2| < 1/2 is mapped bijectively
onto (); the same holds for theset {z € D : |z —1/2| > 1/2}.

It remains to show that y(a) coincides with (one part) of the rhodonea r =
sin(¢/2), also called Diirer’s folium, 0 < ¢ < 27.

Solety(a) = ae'?,0 < ¢ < 27. Note that y(a) = g(P;°). Since cos ¢ = 1 — 242,
we deduce that, in polar coordinates,

r(p) =a= %(1—cosg0):sin<§). -

At first glance (by looking at the picture), K seems to be a cardioid. This is
not the case, though. The relation of K with the domain bounded by the classical
cardioid, given by the parametrization

z(t) = —%(cosgl)—i—l)cosgl)—i—i%(cosqb—l—1)sincp, 0<¢<2m

or in polar coordinates
1
r(¢) = 5(1—cosg)

is shown in the following figure (the cardioid is inside the domain K bounded by
the”left part” of the rhodonea; the full rhodonea, called Diirer’s folium, is given
in the right picture.

Figure 5:
Cardioid, rhodonea and unit circle Figure 6: Diirer’s folium
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3 Themap h(z) = —z+

zZ

If one replaces in the definition of

z—1

g(z) = |z| Y
the factor |z| by —z, then the new function has a very different behaviour. Part
of the following result is from my previous joint work with P. Gorkin [4]. For the
readers convenience, we recapture its short proof here. Recall that the cluster set,
C(u,a), of a continuous function u : ID — C at the point « € T is the set of all

values w € C such there exists a sequence (z,) in ID for which u(z,) — w as
n — oo.

Proposition 3.1. Let h : ID — D be given by

z—1
z—1

h(z) = —z

Then h is a bijective involution (that is hoh = id) of D onto ID. The map h has a
continuous extension to D \ {0} with constant value 1. The cluster set C(h,1) of h at 1
equals the unit circle T.

Proof. The first assertion follows from the fact that (z) = a implies |z| = |a| and
the following equivalences:

z—1 )
—zz_1:a<:>—z+|z| —a+az=0<+=
) a—1
—2z + |a —a—i—az:0<:>z:—aa_1.
z—1 —1+4z .
If |z| =1,z # 1, then i =T = 1. Thus we may define h(A) =1

whenever [A| = 1,1 # 1.
Since the cluster set of /1 at 1 is a decreasing intersection of continua, namely,

C(h,1) = ﬁ WDy,
n=1

where D, = {z € D : |z— 1| < 1/n}, we see that C(h, 1) is a nonvoid connected
compact set. Now lin} h(x) = —1and éirr}) h(e®) =1.
x— —
0<x<1
Since p € C(h,1) if and only if 7 € C(h,1) (note that h(z) = h(z)), and
|h(z)| = |z| — 1if z — 1, we conclude that C(h,1) = T. ]

We note that a continuous involution F of ID onto ID is an open map. There-
fore, F cannot have a continuous extension to T that is constant there. In fact, if
this would be the case, say F = 1 on T, then we choose a sequence w, € F(D)
converging to a boundary point, B, of F(ID) different from 1. Let z, € ID satisfy
F(zy) = wy for all n. We may assume, by passing to a subsequence if necessary,
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that (z,) converges to a € D. Since we have assumed that F has a continuous
extension to ID, we conclude that F(a) = B. Because B # 1, the constancy of F on
T implies that 2 € ID. But this contradicts the fact that F is an open map.
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