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Abstract

We consider the fourth-order problem

{
ǫ4∆2u + V(x)u = f (u) + γ|u|2∗∗−2u in R

N

u ∈ H2(RN),

where ǫ > 0, N ≥ 5, V is a positive continuous potential, f is a function with
subcritical growth and γ ∈ {0, 1}. We relate the number of solutions with
the topology of the set where V attain its minimum values. We consider the
subcritical case γ = 0 and the critical case γ = 1. In the proofs we apply
Ljusternik-Schnirelmann theory.

1 Introduction

In this paper we are concerned with the following class of elliptic Schrödinger
biharmonic equation

(P)

{
ǫ4∆2u + V(x)u = f (u) + γ|u|2∗∗−2u in R

N

u ∈ H2(RN),

where ǫ > 0, N ≥ 5, V is a positive continuous potential, f is a function with
subcritical growth and γ ∈ {0, 1}. To the related second order problems involv-
ing either the Laplacian or the p-Laplacian operator, there are so many works
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dealing with questions like existence, concentration and multiplicity of nontriv-
ial solutions. Among them we could cite [13, 16, 19, 20, 8], in which they deal
with existence and concentration of solutions and [4, 5, 7] in which they get mul-
tiplicity results by studying some topological information of V−1(0). On this last
issue, we can also mention the works of Alves and Figueiredo [2, 3] in which they
study the multiplicity and concentration of positive solutions of

{
−ǫp∆pu + V(x)|u|p−2u = f (u) in R

N

u ∈ W1,p(RN), 1 < p < N,

where V satisfies a global assumption in the first work and a local condition in
the second one. They succeed in use similar arguments to Cingolani and Lazzo
in [7] in order to get multiplicity of solutions, taking advantage of the richness of
the set V−1(0) in a topological way.

Recently, Pimenta and Soares in [17, 18] studied the existence and the concen-
tration of solutions of (P) assuming that the potential V satisfies a global and a
local condition, respectively. In the first work, the authors have been inspired by
Rabinowitz in [19] and Wang in [20], in which they use some alternative methods
in order to overcome the lack of a maximum principle to the biharmonic operator.
Later, they use the penalization method developed by del Pino and Felmer in [8]
to prove the same kind of results, but now considering a local type condition in
V. The works just described have induced us to wonder if would be possible to
prove some similar multiplicity results to [3], but now to the biharmonic problem
(P), considering even nonlinearities with critical growth. In this sense, the intend
of this work is to give an affirmative answer to this question.

In the first part of this paper we are concerned with the existence of multiple
solutions for the fourth-order problem

(Pǫ)

{
ǫ4∆2u + V(x)u = f (u) in R

N

u ∈ H2(RN),

where ǫ > 0, N ≥ 5 and

∆2u =
N

∑
i=1

∂4

∂x4
i

u +
N

∑
i 6=j

∂4

∂x2
i x2

j

u.

is the bi-Laplacian operator. In order to make precise assumptions on the contin-
uous potential V we define

V0 := inf
x∈RN

V(x),

V∞ := lim inf
|x|→+∞

V(x).

and suppose that V satisfy

(V0) V0 > 0 and the set
M := {x ∈ R

N : V(x) = V0}

is nonempty.

(V1) V0 < V∞.
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Here we consider two cases: V∞ < ∞ or V∞ = ∞. We can state our hypothesis
on f ∈ C1(R, R) in the following way.

( f1) f (0) = f ′(0) = 0,

( f2) There exist constants c1, c2 > 0 and q ∈ (2, 2∗∗), such that | f (s)| ≤ c1|s| +
c2|s|q−1, for all s ∈ R, where 2∗∗ =

2N
N−4 ,

( f3) There exists µ > 2 such that 0 < µF(s) ≤ s f (s), for all s 6= 0,

( f4)
f (s)

s
is increasing for s > 0 and decreasing for s < 0,

( f5) f ′(s)s2 − f (s)s ≥ C|s|q̄ for C > 0, q̄ ∈ (2, 2∗∗) and s 6= 0.

We recall that, if Y is a closed set of a topological space X, catX(Y) is the
Ljusternik-Schnirelmann category of Y in X, namely the least number of closed
and contractible sets in X which cover Y. We denote by

Mδ := {x ∈ R
N : dist(x, M) ≤ δ}

the closed δ-neighborhood of M and we shall prove the following multiplicity
result.

Theorem 1.1. Suppose that (V0) − (V1) and ( f1) − ( f5) hold. Then, for any δ > 0,
there exists ǫδ > 0 such that, for any ǫ ∈ (0, ǫδ), the problem (Pǫ) has at least catMδ

(M)
solutions.

Note that the problem (Pǫ) has a variational structure and therefore the solu-
tions can be found as critical points of a functional Iǫ defined on an appropriated
subspace of H2(RN). In order to obtain such critical points we use a technique
introduced by Benci and Cerami [4], which consists in making precise compar-
isons between the category of some sublevel sets of Iǫ and the category of the
set M. This kind of argument for a scalar Schrödinger equation has appeared in
[7]. Since we are intending to apply Ljusternik-Schnirelmann theory, we need to
prove some compactness property for the functional Iǫ. Following the ideas of
[17], [19] and [7], we prove that the levels of compactness are strongly related
with the behavior of the potential V at infinity.

In the second part of the paper we deal with a critical version of (Pǫ), namely
the problem

(CPǫ),

{
ǫ4∆2u + V(x)u = f (u) + |u|2∗∗−2u in R

N

u ∈ H2(RN),

In order to deal with the critical growth of the nonlinearity we assume the
same technical condition of [15], namely

( f6) f (s) ≥ λsq1−1 for all s ∈ R, with q1 ∈ (2, 2∗∗) and λ satisfying

( f6a) λ > 0 if max{ N
N−4 , 8

N−4} < q1 < 2∗∗,

( f6b) λ is sufficiently large if 2 < q1 ≤ max{ N
N−4 , 8

N−4}.



522 G. M. Figueiredo – M. T. O. Pimenta

The critical version of Theorem 1.1 can be stated as follows.

Theorem 1.2. Suppose that (V0) − (V1) and ( f1)− ( f6) hold. Then , for any δ > 0
given, there exists ǫδ > 0 such that, for any ǫ ∈ (0, ǫδ), the problem (CPǫ) has at least
catMδ

(M) solutions.

The proof of Theorem 1.2 follows the same lines of the subcritical case. How-
ever, this new problem has an extra difficulty when compared with the subcritical
one. This occurs because the level of non-compactness is affected by the critical
growth of the nonlinearity. This problem is overcame by using the ideas of Brezis
and Nirenberg [6] with some adaptations of the calculations performed in [21].
We will prove that the number

S := inf
u∈H2(RN)\{0}

∫

RN
|∆u|2dx

(∫

RN
|u|2∗∗dx

)2/2∗∗

plays an important role when dealing with critical problems as in (CPǫ).

2 Variational framework

In order to simplify the notation, we write only
∫

u instead of
∫

RN u(x)dx.
Hereafter, we will work with the following problem equivalent to (Pǫ), which

is obtained under the change of variables z 7→ ǫx

(P̂ǫ)

{
∆2u + V(ǫx)u = f (u) in R

N

u ∈ H2(RN).

For any ǫ > 0, we consider the Sobolev space

Xǫ :=

{
u ∈ H2(RN) :

∫
V(ǫx)|u|2 < ∞

}

endowed with the norm

‖u‖ǫ :=

(∫
|∆u|2 +

∫
V(ǫx)|u|2

)1/2

.

The growth condition ( f2) implies that, for some constant C > 0,

|F(s)| ≤ C(|s|2 + |s|q) for all s ∈ R. (2.1)

Hence, the weak solutions of the problem (P̂ǫ) are related with the critical points
of the functional Iǫ : Xǫ → R given by

Iǫ(u) :=
1

2
‖u‖2

ǫ −
∫

F(u).

We introduce the Nehari manifold associated to Iǫ by setting

Nǫ :=
{

u ∈ Xǫ \ {0} : 〈I ′ǫ(u), u〉 = 0
}
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and define the minimax level cǫ as being

cǫ := inf
u∈Nǫ

Iǫ(u).

In what follows, we present some properties of cǫ and Nǫ whose proofs can be
carried out as in [17]. First of all, we note that there exists r > 0, independent of
ǫ, such that

‖u‖ǫ ≥ r > 0 for any ǫ > 0, u ∈ Nǫ. (2.2)

Since Iǫ satisfies the Mountain Pass geometry, from [17], cǫ can be alternatively
characterized by

cǫ = inf
γ∈Γǫ

max
t∈[0,1]

Iǫ(γ(t)) = inf
u∈Xǫ\{0}

max
t≥0

Iǫ(tu) > 0, (2.3)

where Γǫ := {γ ∈ C([0, 1], Xǫ) : γ(0) = 0, Iǫ(γ(1)) < 0}. Moreover, for any
u 6= 0, there exists a unique t > 0 such that tu ∈ Nǫ, which has the property that
the maximum of t 7→ Iǫ(tu) for t ≥ 0 is achieved at t = t.

2.1 The Palais-Smale condition

We start this subsection by recalling the definition of the Palais-Smale condition.
Let E be a Banach space, V be a C1-manifold of E and I : E → R a C1-functional.
We say that I|V satisfies the Palais-Smale condition at level d ((PS)d for short)
if any sequence (un) ⊂ V such that I(un) → d and ‖I ′(un)‖∗ → 0 contains a
strongly convergent subsequence. Here, we are denoting by ‖I ′(u)‖∗ the norm of
the derivative of I restricted to V at the point u.

If V∞ < ∞, let us set X∞ =
(

H2(RN), 〈·, ·〉∞

)
, where

〈u, v〉∞ =
∫

(∆u∆v + V∞uv) ,

is an inner product which gives rise to the norm

‖u‖∞ =

(∫ (
|∆u|2 + V∞|u|2

)) 1
2

.

Let us consider the limit functional I∞ : X∞ → R, given by

I∞(u) :=
1

2

∫ (
|∆u|2 + V∞|u|2

)
−

∫
F(u),

and denote by c∞ the ground state level of I∞, namely

c∞ := inf
u∈N∞

I∞(u) = inf
u∈X∞\{0}

max
t≥0

I∞(tu) > 0,

where N∞ := {u ∈ X∞ \ {0} : 〈I ′∞(u), u〉 = 0}. If V∞ = ∞, we set c∞ := ∞.
Now we state an important result which can be found in [17].

Proposition 2.1. The functional Iǫ satisfies the (PS)d condition at any d < c∞.
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We state below our compactness result for Iǫ constrained to Nǫ.

Proposition 2.2. The functional Iǫ constrained to Nǫ satisfies the (PS)d condition at
any level d < c∞.

Proof. Let (un) ⊂ Nǫ be such that

Iǫ(un) → d and ‖I ′ǫ(un)‖∗ → 0.

Then there exists a sequence (λn) ⊂ R such that

I ′ǫ(un) = λn J′ǫ(un) + on(1) in X∗
ǫ ,

where Jǫ(u) = ‖u‖2
ǫ −

∫
f (u)u. Hence

0 = 〈I ′ǫ(un), (un)〉 = λn〈J′ǫ(un), (un)〉+ on(1)

= λn

(∫
f (un)un −

∫
f ′(un)u2

n

)
+on(1).

This expression, ( f5) and (2.2) imply that λn → 0, and therefore I ′ǫ(un) → 0 in the
dual space X∗

ǫ .
Therefore, (un) is a (PS)d sequence for Iǫ and the result follows by Proposition

2.1.

Corollary 2.3. The critical points of the functional Iǫ constrained to Nǫ are critical
points of Iǫ in Xǫ

Proof. It suffices to argue as in the second part of the above proof. We omit the
details.

3 Proof of Theorem 1.1

As we will see, in order to relate the Ljusternik-Schnirelmann category of the
sub-levels of Iǫ and of the subset Mδ, an important role will be played by the
ground-state solution of an autonomous problem. More precisely, let us consider

(A)

{
∆2u + V0u = f (u) in R

N

u ∈ H2(RN).

We will denote by X0 the space H2(RN) endowed with the norm

‖u‖0 :=

(∫ (
|∆u|2 + V0|u|

2
))1/2

and let us consider I0 : X0 → R the functional given by

I0(u) :=
1

2
‖u‖2

0 −
∫

F(u).
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Associated with I0 we have the minimax level

c0 := inf
u∈N0

I0(u) = inf
u∈X0\{0}

max
t≥0

I0(tu) > 0,

where N0 := {u ∈ X0 \ {0} : 〈I ′0(u), u〉 = 0} is the Nehari manifold associated to
I0. As one can see, in [17] the authors succeeded in proving that this minimax
level is achieved.

Let us state a technical result.

Lemma 3.1. Let ǫn → 0+ and (un) ⊂ Nǫn be such that Iǫn(un) → c0. Then there
exists (ỹn) ⊂ R

N such that the translated sequence

(ũn(x)) := (un(x + ỹn))

has a strongly convergent subsequence in X0. Moreover, up to a subsequence, (yn) :=
(ǫnỹn) is such that yn → y ∈ M.

Proof. Since 〈I ′ǫn
(un), (un)〉 = 0 and Iǫn(un) → c0, the sequence (un) is easily

shown to be bounded in Xǫ. Moreover, since c0 > 0, we cannot have un → 0.
Hence, using Lemma I.1 of [14], we obtain a sequence (ỹn) ⊂ R

N such that

ũn ⇀ ũ in H2(RN),

where (ũn(x)) := (un(x + ỹn)) and ũ 6= 0.
Let (tn) ⊂ (0,+∞) be such that ûn := tnũn ∈ N0. If we set yn := ǫnỹn we can

use the change of variables z 7→ x + ỹn to get

I0(ûn) ≤
t2
n

2

∫
|∆ũn|

2 −
∫

F(tn ũn)

+
t2
n

2

∫
V(ǫn(x + ỹn))|ũn|

2

= Iǫn(tnun) ≤ Iǫn(un) = c0 + on(1).

Since c0 ≤ I0(ûn) we conclude that I0(ûn) → c0.
Since (ũn) and (ûn) are bounded and ũn 6→ 0, the sequence (tn) is bounded.

Thus, up to a subsequence, tn → t0 ≥ 0. If t0 = 0 were true, by using the
boundedness of (ũn) we would obtain that (ûn) = tnũn → 0, which contradicts
the fact that I0(ûn) → c0 > 0. Thus, t0 > 0. We notice that, up to a subsequence,
ûn ⇀ t0ũ = û weakly in X0. Since t0 > 0 and ũ 6= 0, we have concluded that

I0(ûn) → c0 and ûn ⇀ û 6= 0 weakly in X0.

We can now use the same calculations performed in [1, Theorem 3.1] to conclude
that ûn → û in X0, which implies that ũn → ũ in X0.

It remains to show that (yn) has a subsequence such that yn → y ∈ M. We
start by proving that (yn) is bounded. Indeed, suppose by contradiction that there
exists a subsequence, still denoted by (yn), such that |yn| → +∞. A contradiction
will be obtained in each of the following cases:
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Case 1: V∞ = ∞.

Since (un) ∈ Nǫn

∫
f (un(x + ỹn))un(x + ỹn) ≥

∫
V(ǫnx + yn)|un(x + ỹn)|

2.

Applying Fatou’s lemma we obtain

lim inf
n→∞

∫
f (un(x + ỹn))un(x + ỹn) ≥ ∞.

On the other hand, the boundedness of (un) and ( f2) imply that the left hand side
in the above expression is bounded. Thus, we obtain a contradiction.

Case 2: V∞ < ∞.

In this case, since ûn → û strongly in X0 and V0 < V∞ we have

c0 = I0(û) < I∞(û)

≤ lim inf
n→∞

[
1

2

∫
|∆ûn|

2 −
∫

F(ûn)

+
1

2

∫
V(ǫnx + yn)|ûn|

2

]

= lim inf
n→∞

Iǫn(tnun) ≤ lim inf
n→∞

Iǫn(un) = c0,

(3.1)

which does not make sense.
Then we conclude that (yn) is bounded and therefore, up to a subsequence,

yn → y. If y 6∈ M then V0 < V(y) and we have that

c0 <
1

2

∫ (
|∆û|2 + V(y)|û|2

)
−

∫
F(û).

This inequality and the same kind of calculations performed in (3.1) provide a
contradiction. Thus, y ∈ M and we succeeded in proving the lemma.

Fix δ > 0 and choose a cut-off function η ∈ C∞
0 (R, [0, 1]) such that η(s) = 1 if

0 ≤ s ≤ δ/2 and η(s) = 0 if s ≥ δ. Let ω ∈ X0 be the solution of (A). For each
y ∈ M we define

Ψǫ,y(x) := η(|ǫx − y|)ω

(
ǫx − y

ǫ

)
.

If tǫ denotes the unique positive number satisfying

max
t≥0

Iǫ(tΨǫ,y) = Iǫ(tǫΨǫ,y),

we introduce the map Φǫ : M → Nǫ by setting

Φǫ(y) := (tǫΨǫ,y).

Since I0(ω) = c0, by using Lebesgue’s theorem and the compactness of M, we
can proceed as in [12] to check that

lim
ǫ→0+

Iǫ(Φǫ(y)) = c0, uniformly for y ∈ M. (3.2)
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We take now ρ = ρδ > 0 such that Mδ ⊂ Bρ(0) and consider Υ : R
N → R

N

defined as Υ(x) := x for |x| < ρ and Υ(x) := ρx/|x| for |x| ≥ ρ. We define the
barycenter map βǫ : Nǫ → R

N as being

βǫ(u) :=

∫
Υ(ǫx)|u(x)|2

∫
|u(x)|2

.

Lemma 3.2. The function Φǫ satisfies

lim
ǫ→0+

βǫ(Φǫ(y)) = y uniformly for y ∈ M. (3.3)

Proof. Suppose the assertion of the lemma is false. Then, there exist δ0 > 0,
(yn) ⊂ M and ǫn → 0 such that

|βǫn(Φǫn(yn))− yn| ≥ δ0.

By using the change of variables z := (ǫnx − yn)/ǫn, we can write

βǫn(Φǫn(yn)) = yn +

∫

RN
(Υ(ǫnz + yn)− yn) |η(|ǫnz|)|2|ω(z)|2dz

∫

RN
|η(|ǫnz|)|2|ω(z)|2dz

.

Since M ⊂ Bρ(0) and Υ|Bρ(0) ≡ Id, we can use the above expression and Lebesgue’s

theorem to conclude that

|βǫn(Φǫn(yn))− yn| = on(1),

which contradicts our assumption and hence proves the lemma.

Following [7], we take a function h : [0, ∞) → [0, ∞) such that h(ǫ) → 0 as
ǫ → 0+ and set

Σǫ := {u ∈ Nǫ : Iǫ(u) ≤ c0 + h(ǫ)}.

Given y ∈ M, we can use (3.2) to conclude that h(ǫ) = |Iǫ(Φǫ(y)) − c0| is such
that h(ǫ) → 0+ as ǫ → 0. Thus, Φǫ(y) ∈ Σǫ and we have that Σǫ 6= ∅ for any
ǫ > 0. Moreover, the following holds

Lemma 3.3. For any δ > 0 we have that

lim
ǫ→0+

sup
u∈Σǫ

dist(βǫ(u), Mδ) = 0.

Proof. Let (ǫn) ⊂ R be such that ǫn → 0+. By definition, there exists (un) ⊂ Σǫn

such that
dist(βǫn(un), Mδ) = sup

u∈Σǫn

dist(βǫn(u), Mδ) + on(1).

Thus, it suffices to find a sequence (yn) ⊂ Mδ such that

|βǫn(un)− yn| = on(1). (3.4)
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Since (un) ⊂ Σǫn ⊂ Nǫn , we have that

c0 ≤ cǫn ≤ Iǫn(un) ≤ c0 + h(ǫn),

and therefore Iǫn(un) → c0. We may now invoke Lemma 3.1 to obtain a sequence
(ỹn) ⊂ R

N such that (yn) := (ǫn ỹn) ⊂ Mδ. We set

(ũn(x)) := (un(ǫnx + ỹn))

and observe that, since ũn → u in X0 and ǫnx + yn → y ∈ M, a direct calculation
shows that βǫn(un) = yn + on(1). Hence, the lemma is proved.

We are now ready to present the proof of the multiplicity result in the subcrit-
ical case.

Proof of Theorem 1.1. Given δ > 0 we can use (3.2), (3.3), Lemma 3.3, and argue as
in [7, Section 6] to obtain ǫδ > 0 such that, for any ǫ ∈ (0, ǫδ), the diagram

M
Φǫ−→ Σǫ

βǫ
−→ Mδ

is well defined and βǫ ◦ Φǫ is homotopically equivalent to the embedding
ι : M → Mδ. Using the definition of Σǫ and taking ǫδ small if necessary, we may
suppose that Iǫ satisfies the Palais-Smale condition in Σǫ. Standard Ljusternik-
Schnirelmann theory provides at least catΣǫ(Σǫ) critical points ui of Iǫ restricted to
Nǫ. The same ideas contained in the proof of [5, Lemma 4.3] show that catΣǫ(Σǫ) ≥
catMδ

(M). By using Corollary 2.3 we conclude that ui is a solution of (P̂ǫ) and this
proves the theorem.

4 The critical case

In this section, in order to avoid repetition we just describe the differences be-
tween the critical and subcritical cases, since the calculations are almost the same.

We first consider the critical version of problem (A), namely

(CA)

{
∆2u + V0u = f (u) + |u|2∗∗−2u in R

N,

u ∈ H2(RN)

whose solutions are related with the critical points of J0 : X0 → R defined as

J0(u) :=
1

2
‖u‖2

0 −
∫

F(u) −
1

2∗∗

∫
|u|2∗∗ .

We denote by m0 the ground state level of J0, that is,

m0 := inf
u∈X0\{0}

max
t≥0

J0(tu) > 0.

As usual, we denote by S the best constant of the embedding H2(RN) →֒
L2∗∗(RN). By Gazzola and Berchio [10],

S := inf
u∈H2(RN)\{0}

∫
|∆u|2

(∫
|u|2∗∗

)2/2∗∗
.
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Lemma 4.1. Let (un) ⊂ X0 be a (PS)d sequence for the functional J0 with d <
2

N
SN/4.

Then we have either

(i) ‖un‖0 → 0, or

(ii) there exists a sequence (yn) ⊂ R
N and constants R, γ > 0 such that

lim inf
n→∞

∫

BR(yn)
|un|

2 ≥ γ > 0.

Proof. Suppose that (ii) does not hold. Using Lemma I.1 in [14], we can prove
that

∫
f (un)un = on(1) and

∫
F(un) = on(1). Since (un) is bounded, we get

〈J′0(un), (un)〉 → 0. Taking a subsequence, we obtain l ≥ 0 such that

‖un‖
2
0 → l and

∫
|un|

2∗∗ → l. (4.1)

Since J0(un) → d, we can use (4.1) to conclude that l = N
2 d. Recalling the defini-

tion of S we get

‖un‖
2
0 ≥ S

(∫
|un|

2∗∗

)2/2∗∗

.

Taking the limit we conclude that l ≥ Sl2/2∗∗ . If l > 0 we obtain

N

2
d = l ≥ SN/4,

which does not make sense. Hence l = 0 and therefore (i) holds.

Proposition 4.2. The problem (CA) has a nontrivial weak solution.

Proof. Since J0 has the Mountain Pass geometry, there exists (un) ⊂ X0 such that

J0(un) → m0 and J′0(un) → 0.

We claim that the number m0 satisfies

m0 <
2

N
SN/4.

Assuming for a moment that this is true, we can use Lemma 4.1 and argue as in
the proof of Theorem 4.23 in [19] to obtain the desired solution.

What is left is to show that m0 <
2
N S

N
4 . In view of the definition of m0 it

suffices to obtain u ∈ X0 such that

max
t≥0

J0(tu) <
2

N
SN/4.

We proceed as in [11, Lemma 3] and firstly recall (see [9]) that, for any δ > 0, the
instanton

wδ(x) := CNδ(N−4)/2
(

δ2 + |x|2
)(4−N)/2

,
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satisfies the problem
{

∆2w = |w|2∗∗−2w in R
N,

w ∈ D2,2(RN), w(x) > 0 for all x ∈ R
N,

and ∫
|∆wδ|

2 = S and
∫

|wδ|
2∗∗ = 1.

Let η ∈ C∞
0 (RN , [0, 1]) be such that η ≡ 1 on BR(0) and η ≡ 0 on R

N \ B2R(0).
Setting

ψδ(x) :=
η(x)wδ(x)

‖ηwδ‖2∗∗

,

we can use the definition of ψδ and ( f6) to get

J0(tψδ) ≤
t2

2
Dδ −

t2∗∗

2∗∗
− λtq1

∫

B2R(0)
|ψδ|

q1 ,

where q1 ∈ (2, 2∗∗) is given by condition ( f6) and

Dδ =
∫

|∆ψδ|
2 + V0|ψδ|

2.

Let hδ(t) be the t-function on the right hand side of the above expression and
denote by tδ the maximum point of hδ on (0, ∞). Since h′δ(tδ) = 0 we have that

tδ := D
1/(2∗∗−2
δ ) ≥ tδ > 0.

Since the function t 7→ t2Dδ/2 − t2∗∗/2∗∗ is increasing in (0, tδ), we can use the
definition of hδ to get

hδ(tδ) ≤
2

N
DN/4

δ − Cλtq1

∫

B2R(0)
|ψδ|

q1 . (4.2)

If a, b ≥ 0 and s ≥ 1, then (a + b)s ≤ as + s(a + b)s−1b. Therefore, there exists
C1 > 0 such that

DN/4
δ ≤ SN/4 + O(δ(N−4)) + C1

∫

B2(0)
|ψδ|

2.

Moreover, we can obtain ρ > 0 such that tδ > ρ for any δ small. Hence, it follows
from the above inequality and (4.2) that

hδ(tδ) ≤
2

N
SN/4 + δ(N−4)

[
C2 +

C3

δ(N−4)

(∫

B2(0)
|ψδ|

2 − λC4|ψδ|
q1

)]
,

for positive constants C2, C3 and C4. In view of the hypotheses on λ > 0 given in
( f6), we can argue as in the proof of [15, Claim 2] to check that, if δ is sufficiently
small, the second term in the right hand side above is negative. Thus,

max
t≥0

J0(tψδ) ≤ max
t≥0

hδ(t) = hδ(tδ) <
2

N
SN/4

and the proposition is proved.
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In order to obtain solutions for (CPǫ) we will consider the problem
{

∆2u + V(ǫx)u = f (u) + |u|2∗∗−2u in R
N,

u ∈ H2(RN)
(ĈPǫ)

and look for critical points of the functional Jǫ : Xǫ → R given by

Jǫ(u) :=
1

2
‖u‖2

ǫ −
∫

F(u) −
∫

|u|2∗∗ ,

where Xǫ as in Section 2.
The critical points of Jǫ belong to the Nehari manifold

Mǫ :=
{

u ∈ Xǫ \ {0} : 〈J′ǫ(u)u〉 = 0
}

and the ground state level is given by

mǫ := inf
u∈Mǫ

Jǫ(u) = inf
u∈Xǫ\{0}

max
t≥0

Jǫ(tu) > 0.

As before, the Palais-Smale condition for the functional Jǫ is related with V∞.
When this quantity is finite we define the limit functional J∞ : X∞ → R as being

J∞(u) :=
1

2

∫ (
|∆u|2 + V∞|u|

2
)
−

∫
F(u) −

1

2∗∗

∫
|u|2∗∗ ,

and its ground state level

m∞ := inf
u∈X∞\{0}

max
t≥0

J∞(tu) > 0.

If V∞ = ∞, we set m∞ := ∞.
Since the function u 7→

∫
|u|2∗∗ is 2∗∗-homogeneous, we can argue as in Sub-

section 2.1 to get a compactness result for the functional Jǫ. We only notice that,
in some arguments, we need to use an analogous of Lemma 4.1 to Jǫ, rather than
Lions Lemma. Hence, the following result holds.

Proposition 4.3. The functional Jǫ constrained to Mǫ satisfies the (PS)d condition at
any level d < min{m∞, 2SN/4/N}. Moreover, critical points of Jǫ constrained to Mǫ

are critical points of Jǫ in Xǫ.

We are now ready to prove our second multiplicity result.

Proof of Theorem 1.2. Since the proof is very similar to that presented for Theorem
1.1, we only sketch it. Fix δ > 0 and choose η ∈ C∞

0 (R, [0, 1]) such that η(s) = 1
if 0 ≤ s ≤ δ/2 and η(s) = 0 if s ≥ δ. Let ω̃ ∈ X0 be the ground-state solution of
(CA) given by Proposition 4.2 and define, for each y ∈ M,

Ψ̃ǫ,y(x) := η(|ǫx − y|)ω̃

(
ǫx − y

ǫ

)
.

We introduce the map Φ̃ǫ : M → Mǫ by setting

Φ̃ǫ(y) := t̃ǫΨ̃ǫ,y,
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where t̃ǫ is the unique positive number satisfying

max
t≥0

Jǫ(tΨ̃ǫ,y) = Jǫ(t̃ǫΨ̃ǫ,y).

The following holds

lim
ǫ→0+

Jǫ(Φ̃ǫ(y)) = m0 uniformly for y ∈ M.

Let Υ : R
N → R

N be the function defined in Section 3 and consider the
barycenter map β̃ǫ : Mǫ → R

N given by

β̃ǫ(u) :=

∫
Υ(ǫx)|u(x)|2dx
∫

|u(x)|2dx
.

As before we can check that

lim
ǫ→0+

β̃ǫ(Φ̃ǫ(y)) = y uniformly for y ∈ M

and
lim

ǫ→0+
sup
u∈Σ̃ǫ

dist(β̃ǫ(u), Mδ) = 0,

where
Σ̃ǫ := {u ∈ Mǫ : Jǫ(u) ≤ m0 + h̃(ǫ)}

and h̃ : [0, ∞) → [0, ∞) satisfies h̃(ǫ) → 0 as ǫ → 0+.
The above equations provide ǫδ > 0 such that, for any ǫ ∈ (0, ǫδ), the diagram

M
Φ̃ǫ−→ Σ̃ǫ

β̃ǫ
−→ Mδ

is well defined and β̃ǫ ◦ Φ̃ǫ is homotopically equivalent to the embedding

ι : M → Mδ. Hence we conclude that cat
Σ̃ǫ
(Σ̃ǫ) ≥ catMδ

(M). In view of Proposi-

tion 4.3 and recalling that

m0 <
2

N
SN/4,

we may suppose that ǫδ is small in such a way that Jǫ satisfies the Palais-Smale

condition in Σ̃ǫ. The proof now follows from Ljusternik-Schnirelmann theory and
the same arguments used in the subcritical case.
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