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Abstract

In this paper, we investigate the local existence of solutions in H® for n-
dimensional nonlinear wave equations with special nonlinear terms, such as

utt—Au:uk\Vu\l, xeR", kez", 1>2.

OQu  ou ., Ou
dx1’ dxp’ 7 0xy

index s of Sobolev space H* satisfies s > max{”TJ’S ;51— %}, n> 3.

where Vu = ( ). Meanwhile, we obtain that the regular

1 Introduction

In the paper we are concerned with the following nonlinear wave equation
up — Au = u*|Vul!, (x,t) € R" x R*

with the initial value conditions

u(x,0) = @(x), ut(x,0) = ¢(x), x € R",

(1)

(2)
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wherek € Z%,1>2, Vu = (837”1, 8‘97”2, e, a%). We want to study the minimal
Sobolev regularity in order to deal with the existence of local solutions to the
problem (1)-(2) in Sobolev space H®. Gustavo Ponce and Thomas C. Sideris [10]
show that the lower bound for the Sobolev exponent can be reduced from % to
s = s(I) = max{2, 3=} in three space dimensions when the nonlinearity in
(1) grows no faster than order /. Working in three dimensions, Klainerman and
Machedon [5] show that if the nonlinearity with | = 2 satisties an additional null
condition, the Sobolev exponent s = 2 can be achieved.

The case | = 2, k = 0 and n > 5 was solved by Tataru [12] using fixed point
argument by constructing an appropriate function space. D.Tataru’s main result
read as follows:

Theorem 1.1 Assume that | = 2, n > 5. then the problem (1)-(2) as k = 0 is
locally well-posed in H® for all s > 5. More precisely, given an initial data (1o, u;) €
H® x H*~! there exists an unique H® local solution u within the space F* defined below.
Furthermore, the solution depends analytically on the initial data.

The most effective way to prove Theorem1.1 is to use the X*? space[6,7,11]
associated to the wave equation and the nonlinear term estimates in X*? space.
However, the desired estimates are true at fixed frequency; its failure in general is
due to the interaction between the high and low frequencies. Tataru’s approach is

first to find a suitable modification F* of the X2 space for which the appropriate
estimates hold. Next, he prove the local wellposedness using the fixed point
argument by establishing the appropriate multiplicative estimates in F°® for the
nonlinear term.

The object of this manuscript is concerned with the local regularity of (1)-(2) in

R" forn >3, 1> 2, k > 0. The Sobolev exponent s satisfying s > max{ ”T*S; 5

1— 1} is obtained in the paper. Under the assumptions on initial value ¢(x) and
P(x) as in [10], the local wellposedness of the problem (1)-(2) is proved using the
contraction mapping principle by establishing estimates of linear and nonlinear
wave equations.

The following function spaces are used throughout this paper: L? = LP(R")

denotes the Lebesgue space on R" with the norm || - ||,, 1 < p < oco. For
s € Rand1 < p < oo, Let H? = H%'(R") = (1 — A)"2LP(R"), the inho-
mogeneous Sobolev space in terms of Bessel potentials with norm || - |[gsr =

IF 1A+ 1E2) 72 F Iy = (1= A) 73 lp;let HY? = H*P(R") = (—=A)3LP(R"),
the homogeneous Sobolev space in terms of Riesz potentials with norm || - || jys,p =
|IFYEEF - |l = [[(=A)~2 - ||»; and write H® = H%(R") = H**(R") and H® =
H*(R"™) = H%?(R"). For any Banach space X, we denote by L (R™; X) the space
of strongly measurable functions from R to X with ||u(-)||x € L"(R™). For any
r € [1,4+00), ¥’ is the dual number of 7, i.e. % + % = 1. Moreover, C denotes a con-
stant which can be changed from line to line. R is a positive real number set, Z*
is a positive integer set; F and F ! always denote the spatial Fourier transform

and its inverse.
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2 Some Lemmas

We list up some lemmas here for the following discussion.

Lemma 2.1 ([1]) (Sobolev inequality) For % —5 = g withl < p < g < 400, we
have || f||La < C||f|| gys.p- Inn contrast, for sp > nand p > 1; H*P — L.

This estimate combined with usual interpolation yields counterpart estimate
for H%?,i.e. H%P — L1 with % —s< %, g > pands > 0.

Lemma 2.2 ([2,4,8]) Let ug(x, t) is the solution of the following linear homogeneous
wave equation

uy —Au =0, (t,x) € RT x R"
with initial value
u(x,0) = @(x), u(x,0) =19(x), x € R",

namely
ug(t, x) = cos(—A) 7t + (—A) T sin(—A) 2y,

then
1
[(=8)Puo(t, )| r g+ Larnyy < CU[(=8) 2912 + [[9][12)-

where 2 = (n—1)(} ~ 1), q>2 p=1(1- (@), plg) = "£2(3 - 1).
Lemma 2.3 ([3]) If f(x), g(x) € S(R") and %i + %i =1,i=12with2 < p; <
oo, then for s > 0, we have the following inequality

1781l < CULfller lIgllesm + [IglLr [Lf 1l o2)-
In order to obtain the estimate of the solution of the inhomogeneous equation
uyp — Au = uf|Vul', (x,t) € Rt x R"
with the initial value conditions
u(x,0) =0, us(x,0) =0, x € R",

we are going to use Theorem 1.3 in [9], now it reads as follows
Theorem 2.1 ([9]) The solution of the problem

uy —Au=h, u(0) =u(0) =0

fulfills

T
sup [[Vu(t)||gs + sup [Jue(t)| ns SC/ [ (t) || st
te[0,T] te[0,T] 0

Here c is independent of T. We have Vu, u; € C°([0, T, H®), if h € L1((0,T), H®).
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3 Estimates of Linear and Nonlinear Wave Equations

Theorem 3.1 Letgp € H®, ¢ € H51: then the solution ug (t, x) of the Cauchy problem
for homogeneous linear wave equation

ug —Au =0, u(0) = @(x), us(0) = ¢(x)
fulfills

sup [[uo(t)|[ms + sup |luor(t) st < 2[[@llns + (1 + T) ]| g ]
te[0,T] te(0,T]

Proof It is well known that
luo(®)ll2 = [[cosl(=a)e]g + (—4) 2 sin[(~a)}e]y
< llgllz + Tl ll.2,
o ()l = I1(=4)2uo(8)ll2

= [|(=2)% cosl(~a) i + (~a)F sin[(—a)bely

o (3)

(4)

< ellps + [l

The fact that HS = H* N L? if s > 0 (see [1], Theorem 6.3.2) together with (3) and
(4) implies
Juo(O)llms < ll@llms + (1 + T[]l -1

Similarly, we have

[0t ()] grs=1 < Nl @llezs + (1 + T) ][ -

Consequently
sup [uo(t)[|rs + sup [fuor ()1 < 2[[l @]l + (1 + D9l 1]
te[0,T] te(0,T]

Theorem 3.2 Letn > 3, s > max{®f2, % +1— 1.}, and assume that u(t, x)

is a solution of the inhomogeneous equation
up — Au = u*|Vul!, (x,t) € RT x R"
with the initial value conditions
u(x,0) =0, us(x,0) =0, x € R",
namely
u(t,x) = /OtK(t—r)(uk|Vu|l)(T)dr,
then u(t, x) satisfies the following estimate

sup [[u(t)|[ms + sup [lue(t)|lgsr < C{T sup [lu(t)|
te[0,T] te[0,T] te[0,T]

r+1-1 _1 _
TN R sup IOI)
te|0, T



Existence of Local Solutions of Nonlinear Wave Equations 249

where K(t) = (—A)"Isin(-A)2t, ¢ = J(s—B(q) +1), 2 = (n—1)(3 — ),
2(n—1)
9> Z=n—s

Proof We get that by Theorem 2.1

sup [lu(t)l|ps + sup Ju(t ||Hsl<c/ |5 Vul) () g . (5)
te[0,T] te[0,T)

From the fact H*~! = H"1 N L2 if s > 1, it is easily to see

[ 1) @) e

T T 1
S/O ||uk|Vu!l||der+/ (=AY T uk|Vul!|| 2dT (6)
< CT sup [|u(t)|& + / ATVl | ad.

te[0,T]

We may choose p, i > 2 such that H® < H*~'P, H"! < [P and % —I—% = %
From Lemma 2.1 and Lemma 2.3 we derive
1(=2) 2 [ Vull| 2 < Clluk|[Vul! || s

< C | NVl N s + Nl gsrn V2l 15) - (7)

) k 1—
< Cllut e | Va1 Ve g < CllulliE [ Vullis"

We obtain 5 + 1 <3(s—B(g) =0 — 3 fromg > 45( ) . Using Sobolev inequal-
ity, we find

71

V]| o chu— (3 w”
n l
< Clful|ps + CJl (=) EFE D Ty (8)

< Cllullsss +Cll(=2)""2u| .
Substituting the inequality (8) into the estimate (7) and observation (6) yields

16Vl () e

)
< CT sup [u(t)llf! +C sup [u()ll" [ 11(-8) bullz e
te[0,T] te[0,T]
Application of Holder’s inequality obtains finally
T 1 _
| =2y bl =87 a5k 1 (10)

Substituting (10) into (9), and we have by (5)
sup [[u(t)[lgs + sup [[us(t)|l g < C{T sup [lu(t)|
te[0,T] te[0,T] te[O,T}
r+1-1

+T7 sup [lu(t)|[E(—4)72 ()||lr0m)}-
te[0,T]
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4 Main Result and Its Proof

Our main result reads as follows:

Theorem 4.1 Suppose that n > 3,1 > 2, k > 0and (¢,¢¥) € H® x H*~1 with
s > max{®2; 24+ 1— ;L}; then there exists T > 0 depending on s, | ¢| = and
19| gs—1 such that (1)-(2) has a unique solution u(t, x) satisfying

u(t,x) € C([0, T]; H*(R™)) n C ([0, T]; H*~Y(R™))

and .
[(=8)7"2u(t) |- 0,;00) < +00,
whereo = 3(s —B(q) +1), 2= (n—1)(3 - %), q > %'

Proof Fors > 5 + 1, it is clear that Theorem 4.1 holds by means of the classi-
cal energy method. Thus we only consider the case of s < 7 + 1.
For T, M > 0, we define the space

X ={u|lueC([0,T;H) N CY([0, T}; H*™1); |Jullx < M},
where

_1
lullx = sup [lu(t)|gs + sup [Jur(t) || o1 + [1(=A)72ult, )| r0,1.19)-
te[0,T) te[0,T]

To solve our problem, we may rewrite (1)-(2) in the equivalent integral equa-
tion of the form

u(t,x) = ug(t,x) + /OtK(t — 1) (uF|Vul") (t)dr. (11)

where K(t) is defined in Theorem 3.2.
Defining the following map by the integral equation (11)

: u— du=ug(t,x)+ /OtK(t — 1) (5| Vul') (1)dr. (12)

We have from Theorem 3.1 and 3.2
sup [|[Du(t)|gs + sup [[Pur(t)| ys—

te(0,7] te[0,T]
< gl + (0 +T)9ller +CT sup O g3
te[0,T)
r+1-1 1 .
+CT | (=A) 7 28| 5 {y gy sup ()5
t[0,T]
Noting

1

I(=8)72u(®)l|r@ran < 1(=8)72uo(tx) | (g

1

r

(1 [k =Dk Tl
=I+1I
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From Lemma 2.2

F<C((=8)2gll2 + 1(=8) T ¢ll2) < Cll@llus + 1lle),  (14)

Using the Minkowski integral inequality first in space and then in time, we can
estimate II by

< ([ 12 K ) Va0 e

1
r

1
T v
< [ () 162 K = ) ) o )
0 \Jo
Applying the identity K(t — 7) = K(#)K'(t) — K'(t)K(7) and the fact that K'(7)
and (—A) %K(T) are bounded in L? to get

—1

1< c/ ) (K VD[ 2dt,

we also used Lemma 2.2 in the above estimation.
It follows that from (9) and (10)

r+1—

! o—
1< C(T sup [u()E + T sup u()Il | (=8)"2ult, )17 1)
te[0,T] te[0,T]
(15)
Combining (13) and (14) with (15), we conclude that

r+1-1

[@ullx < C{lllle + (1 + Tl + (T +T5) full ) -

16
—1

<c{@+T)(glus +1la) + )l

Setting M = 2C(1 + T)(||¢||gs + |||l gs—1) and choosing sufficiently small T > 0
such that C( e YMKH=T < %; then we obtain from (16)

[@ullx < M.

That is, ® maps X into itself.
For any u,v € X; we get similarly as the above estimation

|Pu — ®o||x < C(T+ T+ )M — oy,

Under the same restrictions on T and M; we have
1
|bu = @of|x < 5lju—olx.

Consequently, ® is a contraction map from X to X.

By Banach fixed point theorem, there exists a unique fixed point u € X of ®
such that ®u = u; which implies that u is a solution of the integral equation (11)
corresponding to (1)-(2) and fulfills

u(t,x) € C([0,T]; H*(R")) NnC(]o, T];Hs_l(R”)).
The proof of Theorem 4.1 is finished.
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