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Abstract

In this paper, we investigate the local existence of solutions in Hs for n-
dimensional nonlinear wave equations with special nonlinear terms, such as

utt − ∆u = uk|∇u|l , x ∈ Rn, k ∈ Z+, l ≥ 2.

where ∇u = ( ∂u
∂x1

, ∂u
∂x2

, · · · , ∂u
∂xn

). Meanwhile, we obtain that the regular

index s of Sobolev space Hs satisfies s > max{ n+5
4 ; n

2 + 1 − 1
l−1}, n > 3.

1 Introduction

In the paper we are concerned with the following nonlinear wave equation

utt −△u = uk|∇u|l , (x, t) ∈ Rn × R+ (1)

with the initial value conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Rn, (2)
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where k ∈ Z+, l ≥ 2, ∇u = ( ∂u
∂x1

, ∂u
∂x2

, · · · , ∂u
∂xn

). We want to study the minimal

Sobolev regularity in order to deal with the existence of local solutions to the
problem (1)-(2) in Sobolev space Hs. Gustavo Ponce and Thomas C. Sideris [10]
show that the lower bound for the Sobolev exponent can be reduced from 5

2 to

s = s(l) = max{2, 5l−7
2l−2} in three space dimensions when the nonlinearity in

(1) grows no faster than order l. Working in three dimensions, Klainerman and
Machedon [5] show that if the nonlinearity with l = 2 satisfies an additional null
condition, the Sobolev exponent s = 2 can be achieved.

The case l = 2, k = 0 and n ≥ 5 was solved by Tataru [12] using fixed point
argument by constructing an appropriate function space. D.Tataru’s main result
read as follows:

Theorem 1.1 Assume that l = 2, n ≥ 5. then the problem (1)-(2) as k = 0 is
locally well-posed in Hs for all s >

n
2 . More precisely, given an initial data (u0, u1) ∈

Hs × Hs−1 there exists an unique Hs local solution u within the space Fs defined below.
Furthermore, the solution depends analytically on the initial data.

The most effective way to prove Theorem1.1 is to use the Xs,θ space[6,7,11]
associated to the wave equation and the nonlinear term estimates in Xs,θ space.
However, the desired estimates are true at fixed frequency; its failure in general is
due to the interaction between the high and low frequencies. Tataru’s approach is

first to find a suitable modification Fs of the Xs, 1
2 space for which the appropriate

estimates hold. Next, he prove the local wellposedness using the fixed point
argument by establishing the appropriate multiplicative estimates in Fs for the
nonlinear term.

The object of this manuscript is concerned with the local regularity of (1)-(2) in
Rn for n > 3, l ≥ 2, k ≥ 0. The Sobolev exponent s satisfying s > max{n+5

4 ; n
2 +

1− 1
l−1} is obtained in the paper. Under the assumptions on initial value ϕ(x) and

ψ(x) as in [10], the local wellposedness of the problem (1)-(2) is proved using the
contraction mapping principle by establishing estimates of linear and nonlinear
wave equations.

The following function spaces are used throughout this paper: Lp = Lp(Rn)
denotes the Lebesgue space on Rn with the norm ‖ · ‖p, 1 ≤ p ≤ ∞. For

s ∈ R and 1 < p < ∞, Let Hs,p = Hs,p(Rn) = (1 − △)−
s
2 Lp(Rn), the inho-

mogeneous Sobolev space in terms of Bessel potentials with norm ‖ · ‖Hs,p =

‖F−1(1+ |ξ|2)−
s
2F · ‖p = ‖(1−∆)−

s
2 · ‖p; let Ḣs,p = Ḣs,p(Rn) = (−△)−

s
2 Lp(Rn),

the homogeneous Sobolev space in terms of Riesz potentials with norm ‖ · ‖Ḣs,p =

‖F−1|ξ|sF · ‖p = ‖(−∆)−
s
2 · ‖p; and write Hs = Hs(Rn) = Hs,2(Rn) and Ḣs =

Ḣs(Rn) = Ḣs,2(Rn). For any Banach space X, we denote by Lr(R+; X) the space
of strongly measurable functions from R+ to X with ‖u(·)‖X ∈ Lr(R+). For any
r ∈ [1,+∞), r′ is the dual number of r, i.e. 1

r +
1
r′ = 1. Moreover, C denotes a con-

stant which can be changed from line to line. R+ is a positive real number set, Z+

is a positive integer set; F and F−1 always denote the spatial Fourier transform
and its inverse.
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2 Some Lemmas

We list up some lemmas here for the following discussion.

Lemma 2.1 ([1]) (Sobolev inequality) For n
p − s = n

q with 1 < p ≤ q < +∞, we

have ‖ f‖Lq ≤ C‖ f‖Ḣs,p . In contrast, for sp > n and p ≥ 1; Hs,p →֒ L∞.

This estimate combined with usual interpolation yields counterpart estimate
for Hs,p, i.e. Hs,p →֒ Lq with n

p − s ≤ n
q , q ≥ p and s > 0.

Lemma 2.2 ([2,4,8]) Let u0(x, t) is the solution of the following linear homogeneous
wave equation

utt − ∆u = 0, (t, x) ∈ R+ × Rn

with initial value

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Rn,

namely

u0(t, x) = cos(−∆)
1
2 tϕ + (−∆)−

1
2 sin(−∆)

1
2 tψ,

then

‖(−∆)ρu0(t, x)‖Lr(R+;Lq(Rn)) ≤ C(‖(−∆)
1
2 ϕ‖L2 + ‖ψ‖L2).

where 2
r = (n − 1)(1

2 −
1
q ), q > 2; ρ = 1

2(1 − β(q)), β(q) = n+1
2 (1

2 −
1
q ).

Lemma 2.3 ([3]) If f (x), g(x) ∈ S(Rn) and 1
p i
+ 1

q i
= 1

2 , i = 1, 2, with 2 < pi ≤

∞, then for s > 0, we have the following inequality

‖ f g‖Hs ≤ C(‖ f‖Lp1 ‖g‖Hs,q1 + ‖g‖Lp2‖ f‖Hs,q2).

In order to obtain the estimate of the solution of the inhomogeneous equation

utt −△u = uk|∇u|l , (x, t) ∈ R+ × Rn

with the initial value conditions

u(x, 0) = 0, ut(x, 0) = 0, x ∈ Rn,

we are going to use Theorem 1.3 in [9], now it reads as follows

Theorem 2.1 ([9]) The solution of the problem

utt − ∆u = h, u(0) = ut(0) = 0

fulfills

sup
t∈[0,T]

‖∇u(t)‖Hs + sup
t∈[0,T]

‖ut(t)‖Hs ≤ c
∫ T

0
‖h(t)‖Hs dt.

Here c is independent of T. We have ∇u, ut ∈ C0([0, T], Hs), if h ∈ L1((0, T), Hs).
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3 Estimates of Linear and Nonlinear Wave Equations

Theorem 3.1 Let ϕ ∈ Hs, ψ ∈ Hs−1; then the solution u0(t, x) of the Cauchy problem
for homogeneous linear wave equation

utt − ∆u = 0, u(0) = ϕ(x), ut(0) = ψ(x)

fulfills

sup
t∈[0,T]

‖u0(t)‖Hs + sup
t∈[0,T]

‖u0t(t)‖Hs−1 ≤ 2
[

‖ϕ‖Hs + (1 + T)‖ψ‖Hs−1

]

.

Proof It is well known that

‖u0(t)‖L2 =
∥

∥

∥
cos[(−∆)

1
2 t]ϕ + (−∆)−

1
2 sin[(−∆)

1
2 t]ψ

∥

∥

∥

L2

≤ ‖ϕ‖L2 + T‖ψ‖L2 ,
(3)

‖u0(t)‖Ḣs = ‖(−∆)
s
2 u0(t)‖L2

=
∥

∥

∥
(−∆)

s
2 cos[(−∆)

1
2 t]ϕ + (−∆)

s
2−

1
2 sin[(−∆)

1
2 t]ψ

∥

∥

∥

L2

≤ ‖ϕ‖Ḣs + ‖ψ‖Ḣs−1.

(4)

The fact that Hs = Ḣs ∩ L2 if s > 0 (see [1], Theorem 6.3.2) together with (3) and
(4) implies

‖u0(t)‖Hs ≤ ‖ϕ‖Hs + (1 + T)‖ψ‖Hs−1 .

Similarly, we have

‖u0t(t)‖Hs−1 ≤ ‖ϕ‖Hs + (1 + T)‖ψ‖Hs−1 .

Consequently

sup
t∈[0,T]

‖u0(t)‖Hs + sup
t∈[0,T]

‖u0t(t)‖Hs−1 ≤ 2
[

‖ϕ‖Hs + (1 + T)‖ψ‖Hs−1

]

.

Theorem 3.2 Let n > 3, s > max{n+5
4 , n

2 + 1 − 1
l−1}; and assume that u(t, x)

is a solution of the inhomogeneous equation

utt −△u = uk|∇u|l , (x, t) ∈ R+ × Rn

with the initial value conditions

u(x, 0) = 0, ut(x, 0) = 0, x ∈ Rn,

namely

u(t, x) =
∫ t

0
K(t − τ)(uk |∇u|l)(τ)dτ,

then u(t, x) satisfies the following estimate

sup
t∈[0,T]

‖u(t)‖Hs + sup
t∈[0,T]

‖ut(t)‖Hs−1 ≤ C{T sup
t∈[0,T]

‖u(t)‖k+l
Hs

+T
r+1−l

r ‖(−∆)σ− 1
2 u(t)‖l−1

Lr (0,T;Lq)
sup

t∈[0,T]

‖u(t)‖k+1
Hs },



Existence of Local Solutions of Nonlinear Wave Equations 249

where K(t) = (−∆)−
1
2 sin(−∆)

1
2 t, σ = 1

2(s − β(q) + 1), 2
r = (n − 1)(1

2 − 1
q ),

q >
2(n−1)
4s−n−5 .

Proof We get that by Theorem 2.1

sup
t∈[0,T]

‖u(t)‖Hs + sup
t∈[0,T]

‖ut(t)‖Hs−1 ≤ C
∫ T

0
‖(uk |∇u|l)(τ)‖Hs−1 dτ. (5)

From the fact Hs−1 = Ḣs−1 ∩ L2 if s > 1, it is easily to see
∫ T

0
‖(uk|∇u|l)(τ)‖Hs−1 dτ

≤
∫ T

0
‖uk|∇u|l‖L2dτ +

∫ T

0
‖(−∆)

s−1
2 uk|∇u|l‖L2dτ

≤ CT sup
t∈[0,T]

‖u(t)‖k+l
Hs +

∫ T

0
‖(−∆)

s−1
2 uk|∇u|l‖L2 dτ.

(6)

We may choose p, p̃ > 2 such that Hs →֒ Hs−1,p, Hs−1 →֒ L p̃ and 1
p + 1

p̃ = 1
2 .

From Lemma 2.1 and Lemma 2.3 we derive

‖(−∆)
s−1

2 uk|∇u|l‖L2 ≤ C‖uk|∇u|l‖Hs−1

≤ C(‖uk‖L∞‖|∇u|l‖Hs−1 + ‖uk‖Hs−1,p‖|∇u|l‖L p̃)

≤ C‖uk‖Hs‖∇u‖l−1
L∞ ‖∇u‖Hs−1 ≤ C‖u‖k+1

Hs ‖∇u‖l−1
L∞ .

(7)

We obtain n
2q +

1
2 <

1
2(s − β(q)) = σ − 1

2 from q >
2(n−1)
4s−n−5 . Using Sobolev inequal-

ity, we find

‖∇u‖L∞ ≤ C
∥

∥

∥
(1 − ∆)

( n
2q )

+

∇u
∥

∥

∥

Lq

≤ C‖u‖Lq + C‖(−∆)
( n

2q+
1
2 )

+

u‖Lq

≤ C‖u‖Hs + C‖(−∆)σ− 1
2 u‖Lq .

(8)

Substituting the inequality (8) into the estimate (7) and observation (6) yields
∫ T

0
‖(uk|∇u|l)(τ)‖Hs−1 dτ

≤ CT sup
t∈[0,T]

‖u(t)‖k+l
Hs + C sup

t∈[0,T]

‖u(t)‖k+1
Hs

∫ T

0
‖(−∆)σ− 1

2 u‖l−1
Lq dt.

(9)

Application of Hölder’s inequality obtains finally
∫ T

0
‖(−∆)σ− 1

2 u‖l−1
Lq dt ≤ T

r+1−l
r ‖(−∆)σ− 1

2 u(t)‖l−1
Lr (0,T;Lq)

. (10)

Substituting (10) into (9), and we have by (5)

sup
t∈[0,T]

‖u(t)‖Hs + sup
t∈[0,T]

‖ut(t)‖Hs−1 ≤ C{T sup
t∈[0,T]

‖u(t)‖k+l
Hs

+T
r+1−l

r sup
t∈[0,T]

‖u(t)‖k+1
Hs ‖(−∆)σ− 1

2 u(t)‖l−1
Lr (0,T;Lq)

}.
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4 Main Result and Its Proof

Our main result reads as follows:
Theorem 4.1 Suppose that n > 3, l ≥ 2, k ≥ 0 and (ϕ, ψ) ∈ Hs × Hs−1 with

s > max{n+5
4 ; n

2 + 1 − 1
l−1}; then there exists T > 0 depending on s, ‖ϕ‖Hs and

‖ψ‖Hs−1 such that (1)-(2) has a unique solution u(t, x) satisfying

u(t, x) ∈ C([0, T]; Hs(Rn)) ∩ C1([0, T]; Hs−1(Rn))

and
‖(−∆)σ− 1

2 u(t)‖Lr (0,T;Lq) < +∞,

where σ = 1
2(s − β(q) + 1), 2

r = (n − 1)(1
2 −

1
q ), q >

2(n−1)
4s−n−5 .

Proof For s > n
2 + 1, it is clear that Theorem 4.1 holds by means of the classi-

cal energy method. Thus we only consider the case of s ≤ n
2 + 1.

For T, M > 0, we define the space

X = {u| u ∈ C([0, T]; Hs) ∩ C1([0, T]; Hs−1); ‖u‖X ≤ M},

where

‖u‖X = sup
t∈[0,T]

‖u(t)‖Hs + sup
t∈[0,T]

‖ut(t)‖Hs−1 + ‖(−∆)σ− 1
2 u(t, x)‖Lr (0,T;Lq).

To solve our problem, we may rewrite (1)-(2) in the equivalent integral equa-
tion of the form

u(t, x) = u0(t, x) +
∫ t

0
K(t − τ)(uk |∇u|l)(τ)dτ. (11)

where K(t) is defined in Theorem 3.2.
Defining the following map by the integral equation (11)

Φ : u −→ Φu = u0(t, x) +
∫ t

0
K(t − τ)(uk |∇u|l)(τ)dτ. (12)

We have from Theorem 3.1 and 3.2

sup
t∈[0,T]

‖Φu(t)‖Hs + sup
t∈[0,T]

‖Φut(t)‖Hs−1

≤ ‖ϕ‖Hs + (1 + T)‖ψ‖Hs−1 + CT sup
t∈[0,T]

‖u(t)‖k+l
Hs

+CT
r+1−l

r ‖(−∆)σ− 1
2 u(t)‖l−1

Lr (0,T;Lq)
sup

t∈[0,T]

‖u(t)‖k+1
Hs .

(13)

Noting

‖(−∆)σ− 1
2 u(t)‖Lr (0,T;Lq) ≤ ‖(−∆)σ− 1

2 u0(t, x)‖Lr(R+;Lq)

+

(

∫ T

0
‖(−∆)σ− 1

2

∫ t

0
K(t − τ)(uk |∇u|l)dτ‖r

Lq dt

)
1
r

= I + I I.
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From Lemma 2.2

I ≤ C(‖(−∆)
s
2 ϕ‖L2 + ‖(−∆)

s−1
2 ψ‖L2) ≤ C(‖ϕ‖Hs + ‖ψ‖Hs−1), (14)

Using the Minkowski integral inequality first in space and then in time, we can
estimate I I by

I I ≤

(

∫ T

0
(
∫ t

0
‖(−∆)σ− 1

2 K(t − τ)(uk |∇u|l)(τ)‖Lq dτ)rdt

)
1
r

≤
∫ T

0

(

∫ T

0
‖(−∆)σ− 1

2 K(t − τ)(uk |∇u|l)(τ)‖r
Lq dt

)
1
r

dτ.

Applying the identity K(t − τ) = K(t)K′(τ) − K′(t)K(τ) and the fact that K′(τ)

and (−∆)
1
2 K(τ) are bounded in L2 to get

I I ≤ C
∫ T

0
‖(−∆)

s−1
2 (uk|∇u|l)‖L2 dt,

we also used Lemma 2.2 in the above estimation.
It follows that from (9) and (10)

I I ≤ C(T sup
t∈[0,T]

‖u(t)‖k+l
Hs + T

r+1−l
r sup

t∈[0,T]

‖u(t)‖k+1
Hs ‖(−∆)σ− 1

2 u(t, x)‖l−1
Lr (0,T;Lq)

).

(15)
Combining (13) and (14) with (15), we conclude that

‖Φu‖X ≤ C
{

‖ϕ‖Hs + (1 + T)‖ψ‖Hs−1 + (T + T
r+1−l

r )‖u‖k+l
X

}

≤ C
{

(1 + T)(‖ϕ‖Hs + ‖ψ‖Hs−1) + (T + T
r+1−l

r )‖u‖k+l
X

}

.
(16)

Setting M = 2C(1 + T)(‖ϕ‖Hs + ‖ψ‖Hs−1) and choosing sufficiently small T > 0

such that C(T + T
r+1−l

r )Mk+l−1 ≤ 1
2 ; then we obtain from (16)

‖Φu‖X ≤ M.

That is, Φ maps X into itself.
For any u, v ∈ X; we get similarly as the above estimation

‖Φu − Φv‖X ≤ C(T + T
r+1−l

r )Mk+l−1‖u − v‖X,

Under the same restrictions on T and M; we have

‖Φu − Φv‖X ≤
1

2
‖u − v‖X .

Consequently, Φ is a contraction map from X to X.
By Banach fixed point theorem, there exists a unique fixed point u ∈ X of Φ

such that Φu = u; which implies that u is a solution of the integral equation (11)
corresponding to (1)-(2) and fulfills

u(t, x) ∈ C([0, T]; Hs(Rn)) ∩ C([0, T]; Hs−1(Rn)).

The proof of Theorem 4.1 is finished.
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