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Abstract

By using the Symmetric Mountain Pass Theorem, we establish some ex-
istence criteria to guarantee the second-order discrete p-Laplacian systems
△(ϕp(∆u(n − 1))) − a(n)|u(n)|p−2u(n) + ∇W(n, u(n)) = 0 has infinitely
many homoclinic orbits, where p > 1, n ∈ Z, u ∈ R

N, a : Z → R and
W : Z × R

N → R are not periodic in n. Our conditions on the nonlinear
term W(n, u(n)) are rather relaxed and we generalize some existing results
in the literature.

1. Introduction

Consider the second-order discrete p-Laplacian system

△(ϕp(∆u(n − 1)))− a(n)|u(n)|p−2u(n) +∇W(n, u(n)) = 0, (1.1)

where p > 1, ϕp(s) = |s|p−2s, n ∈ Z, u ∈ R
N, a : Z → R and W : Z ×

R
N → R, ∆ is the forward difference operator defined by ∆u(n) = u(n + 1)−
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u(n), ∆2u(n) = ∆(∆u(n)). As usual, we say that a solution u(n) of (1.1) is homo-
clinic (to 0) if u(n) → 0 as → ±∞. In addition, if u(n) 6≡ 0 then u(n) is called a
nontrivial homoclinic solution.

In general, system (1.1) may be regarded as a discrete analogue of the follow-
ing second order Hamiltonian system

d

dt

(

|u̇(t)|p−2u̇(t)
)

− a(t)|u(t)|p−2u(t) +∇W(t, u(t)) = 0, t ∈ R, u ∈ R
N. (1.2)

When p = 2, system (1.2) reduces to second-order Hamiltonian system

ü(t)− a(t)u(t) +∇W(t, u(t)) = 0. (1.3)

In recent years, the existence and multiplicity of homoclinic orbits for Hamil-
tonian systems (1.2) have been investigated in many papers via variational meth-
ods and many results were obtained based on various hypotheses on the potential
functions, see, e.g., [ 3-6, 8-11, 13, 14, 17-19, 26-36].

In some recent papers [7, 12, 15-17, 21, 22], the authors studied the existence
of periodic solutions and homoclinic solutions of some special forms of (1.1) by
using the critical point theory. These papers show that the critical point method is
an effective approach to the study of periodic solutions for difference equations.
Ma and Guo [20] (with periodicity assumption) and [21] (without periodicity as-
sumption) applied the critical point theory to prove the existence of homoclinic
solutions of the following special form of (1.1) (with N = 1)

△[p(n)△u(n − 1)]− q(n)u(n) + f (n, u(n)) = 0, (1.4)

where n ∈ Z, u ∈ R, p, q : Z → R and f : Z × R → R.
Using the original ideas of Omana and Willem [26], Ma and Guo [21] used

mountain pass theorems and compact imbedding lemma to prove following the-
orem.

Theorem A[21]. Assume that p, q and f satisfy the following conditions:

(p) p(n) > 0 for all n ∈ Z;

(q) q(n) > 0 for all n ∈ Z and lim|n|→+∞ q(n) = +∞;

(f1) f ∈ C(Z × R, R) and there is a constant µ > 2 such that

0 < µ
∫ x

0
f (n, s)ds ≤ x f (n, x), ∀ (n, x) ∈ Z × (R \ {0});

(f2) limx→0 f (n, x)/x = 0 uniformly with respect to n ∈ Z.

(f3) f (n,−x) = − f (n, x), ∀ (n, x) ∈ Z × R.

Then there exists an unbounded sequence of homoclinic solutions for (1.4).

In the last decade there has been an increasing interest in the study of ordinary
differential systems driven by the p-Laplacian (or the generalization of Laplacian)
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and with periodic boundary conditions, see [2, 7, 23, 24, 35, 37] and the references
cited therein. However, as the authors are aware, there are few papers discussing
the existence of homoclinic solutions for the discrete p-Laplacian systems. In
the present paper, we are interested in the existence of homoclinic solutions for
system (1.1), where a(n) and W(n, x) are non periodic in n. The intention of this
paper is that, under some relaxed assumptions on W(n, x), we establish some
existence criteria to guarantee that system (1.1) has infinitely many homoclinic
solutions by using the Symmetric Mountain Pass Theorem. In particular, when
p = 2, our results generalize Theorems A by relaxing condition (f1) and (f2).

When W(n, x) is an even function on x, however, generalize or improve Theo-
rem A by using the Symmetric Mountain Pass Theorem, there has not been much
work done up to now, because it is often very difficult to verify the last condi-
tion of the Symmetric Mountain Pass Theorem, different from the Mountain Pass
Theorem.

Motivated by the above papers, we will obtain some new criteria for guar-
anteeing that (1.1) has infinitely many homoclinic orbits without any periodic-
ity and generalize Theorem A. Especially, W(n, x) satisfies a kind of new su-
perquadratic condition which is different from the corresponding condition in
the known literature.

Our main results are the following theorems.

Theorem 1.1. Assume that a and W satisfy the following assumptions:

(A) a(n) → +∞ as |n| → ∞;

(W1) W(n, x) is continuously differentiable in x, and

1

a(n)
|∇W(n, x)| = o(|x|p−1) as x → 0

uniformly in n ∈ Z;

(W2) For any r > 0, there exist b = b(r), c = c(r) > 0 and ν < p such that

0 ≤

(

p +
1

b + c|x|ν

)

W(n, x) ≤ (∇W(n, x), x), ∀ (n, x) ∈ Z × R
N, |x| ≥ r;

(W3) For any n ∈ Z

lim
s→+∞

[

s−p min
|x|=1

W(n, sx)

]

= +∞;

(W4) W(n,−x) = W(n, x), ∀ (n, x) ∈ Z × R
N.

Then there exists an unbounded sequence of homoclinic solutions for system (1.1).

Theorem 1.2. Assume that a and W satisfy (A), (W4) and the following assumptions:

(W1’) W(n, x) = W1(n, x) − W2(n, x), W1 and W2 are continuously differentiable in
x, and

1

a(n)
|∇W(n, x)| = o(|x|p−1) as x → 0

uniformly in n ∈ Z;
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(W5) There is a constant µ > p such that

0 < µW1(n, x) ≤ (∇W1(n, x), x), ∀ (n, x) ∈ Z × R
N \ {0};

(W6) W2(n, 0) ≡ 0 and there is a constant ̺ ∈ [p, µ) such that

W2(n, x) ≥ 0, (∇W2(n, x), x) ≤ ̺W2(n, x), ∀ (n, x) ∈ Z × R
N.

Then there exists an unbounded sequence of homoclinic solutions for system (1.1).

Theorem 1.3. Assume that a and W satisfy (A), (W4) and (W5) and the following
assumptions:

(W1”) W(n, x) = W1(n, x)− W2(n, x), W1 and W2 are continuously differentiable in
x, and there is a

bounded set J ⊂ Z such that

1

a(n)
|∇W(n, x)| = o(|x|p−1) as x → 0

uniformly in n ∈ Z \ J;

(W6’) W2(n, 0) ≡ 0 and there is a constant ̺ ∈ (p, µ) such that

(∇W2(n, x), x) ≤ ̺W2(n, x), ∀ (n, x) ∈ Z × R
N.

Then there exists an unbounded sequence of homoclinic solutions for system (1.1).

Remark 1.1. If assumption (AR) holds, that is to say, there exists a constant µ > p such
that

0 < µW(n, x) ≤ (∇W(n, x), x), ∀ (n, x) ∈ Z × R
N \ {0}.

Then (W2) also holds by choosing b > 1/(µ − p), c > 0 and ν ∈ (0, p). In addition, by
(AR), we have

W(n, sx) ≥ sµW(n, x) for (n, x) ∈ Z × R
N, s ≥ 1.

It follows that for any n ∈ Z

s−p min
|x|=1

W(n, sx) ≥ sµ−p min
|x|=1

W(n, x) → +∞, s → +∞.

This shows that (AR) implies (W3). Therefore, Theorem 1.1 also generalize Theorem A
by relaxing conditions (f1) and (f2).

Remark 1.2. Obviously, both conditions (W1), (W1’) and (W1”) are weaker than (f2)
even if N = 1. Therefore, both Theorem 1.2 and Theorem 1.3 generalize Theorem A by
relaxing conditions (f1) and (f2).

The rest of the this paper is organized as follows: in Section 2, we introduce
some notations and preliminary results. In Section 3, we complete the proofs of
Theorems 1.1-1.3. In Section 4, we give some examples to to illustrate our results.

Throughout this paper, we let q ∈ (1, ∞) such that 1/p + 1/q = 1.
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2. Preliminaries

Let
S =

{

{u(n)}n∈Z : u(n) ∈ R
N, n ∈ Z

}

,

E =

{

u ∈ S : ∑
n∈Z

[|∆u(n − 1)|p + a(n)|u(n)|p ] < +∞}

and for u ∈ E, let

‖u‖ =

{

∑
n∈Z

[|∆u(n − 1)|p + a(n)|u(n)|p ]

}1/p

. (2.1)

Then E is a uniform convex Banach space with this norm, then E is a reflexive
Banach space with this norm.

As usual, let

lp(Z, R) =

{

u ∈ S : ∑
n∈Z

|u(n)|p < +∞

}

,

and

l∞(Z, R) =

{

u ∈ S : sup
n∈Z

|u(n)| < +∞

}

,

and their norms are defined by

‖u‖p =

(

∑
n∈Z

|u(n)|p

)1/p

, ∀ u ∈ lp(Z, R); ‖u‖∞ = sup
n∈Z

|u(n)|, ∀ u ∈ l∞(Z, R),

respectively.
Let I : E → R be defined by

I(u) =
1

p
‖u‖p − ∑

n∈Z

W(n, u(n)). (2.2)

If (A) and (W1), (W1’) or (W1”) hold, then I ∈ C1(E, R) and one can easily check
that

〈I ′(u), v〉 = ∑
n∈Z

[

|∆u(n − 1)|p−2(∆u(n − 1), ∆v(n − 1))

+a(n)|u(n)|p−2(u(n), v(n)) − (∇W(n, u(n)), v(n))
]

.(2.3)

Furthermore, the critical points of I in E are classical solutions of (1.1) with
u(±∞) = 0.

We will obtain the critical points of I by using the Symmetric Mountain Pass
Theorem. We recall it and a minimization theorem as:
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Lemma 2.1.[31] Let E be a real Banach space and I ∈ C1(E, R) satisfy (PS)-condition.
Suppose that I satisfies the following conditions:

(i) I(0) = 0;

(ii) There exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(iii) For each finite dimensional subspace E′ ⊂ E, there is r = r(E′) > 0 such that
I(u) ≤ 0 for u ∈ E′ \ Br(0), where Br(0) is an open ball in E of radius r centered at 0.

Then I possesses an unbounded sequence of critical values.

Remark 2.1. A deformation lemma can be proved with condition (C) replacing the usual
(PS)-condition, and it turns out that Lemma 2.1 hold true under condition (C). We say I
satisfies condition (C), i.e., for every sequence {uk} ⊂ E, {uk} has a convergent subse-
quence if I(uk) is bounded and (1 + ‖uk‖)‖I ′(uk)‖ → 0 as k → ∞.

Lemma 2.2. For u ∈ E
‖u‖∞ ≤ a−1/p‖u‖ = λ‖u‖, (2.4)

where a = infn∈Z a(n), λ = a−1/p.

Proof. Since u ∈ E, it follows that lim|n|→∞ = 0. Hence, there exists n∗ ∈ Z such
that

‖u‖∞ = |u(n∗)| = max
n∈Z

|u(n)|.

By (2.1), we have

‖u‖p ≥ ∑
n∈Z

a(n)|u(n)|p ≥ a ∑
n∈Z

|u(n)|p ≥ a‖u‖
p
∞ = a|u(n∗)|p. (2.5)

It follows from (2.1) and (2.5) that (2.4) holds.

Lemma 2.3. Assume that (W5) and (W6) or (W6’) hold. Then for every (n, x) ∈
Z × R

N,

(i) s−µW1(n, sx) is nondecreasing on (0,+∞);

(ii) s−̺W2(n, sx) is nonincreasing on (0,+∞).

The proof of Lemma 2.3 is routine and so we omit it.

3. Proof of theorems

Proof of Theorem 1.1. We first show that I satisfies condition (C). Assume
that {uk}k∈N ⊂ E is a (C) sequence of I, that is, {I(uk)}k∈N is bounded and
(1 + ‖uk‖)‖I ′(uk)‖ → 0 as k → +∞. Then it follows from (2.2) and (2.3) that

C1 ≥ pI(uk)− 〈I ′(uk), uk〉

= ∑
n∈Z

[(∇W(n, uk(n)), uk(n))− pW(n, uk(n))] . (3.1)

By (W1), there exists η ∈ (0, 1) such that

|∇W(n, x)| ≤
1

2
a(n)|x|p−1 for n ∈ Z, |x| ≤ η. (3.2)
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Since W(n, 0) = 0, it follows that

|W(n, x)| ≤
1

2p
a(n)|x|p for n ∈ Z, |x| ≤ η. (3.3)

By (W2), we have

(∇W(n, x), x) ≥ pW(n, x) ≥ 0 for (n, x) ∈ Z × R
N, k ∈ N, (3.4)

and

W(n, x) ≤ (b + c|x|ν)[(∇W(n, x), x)− pW(n, x)] for (n, x) ∈ Z × R
N, |x| ≥ η.

(3.5)
It follows from (2.2), (2.4), (3.1), (3.2), (3.3), (3.4) and (3.5) that

1

p
‖uk‖

p = I(uk) + ∑
n∈Z

W(n, uk(n))

= I(uk) + ∑
n∈Z(|uk(n)|≤η)

W(n, uk(n)) + ∑
n∈Z(|uk(n)|>η)

W(n, uk(n))

≤ I(uk) +
1

2p ∑
n∈Z(|uk(n)|≤η)

a(n)|uk(n)|
p

+ ∑
n∈Z(|uk(n)|>η)

(b + c|uk(n)|
ν)[(∇W(n, uk(n)), uk(n))

−pW(n, uk(n))]

≤ C2 +
1

2p
‖uk‖

p + ∑
n∈Z

(b + c|uk(n)|
ν)[(∇W(n, uk(n)), uk(n))

−pW(n, uk(n))]

≤ C2 +
1

2p
‖uk‖

p + (b + c‖uk‖
ν
∞) ∑

n∈Z

[(∇W(n, uk(n)), uk(n))

−pW(n, uk(n))]

≤ C2 +
1

2p
‖uk‖

p + C1(b + c‖uk‖
ν
∞)

≤ C2 +
1

2p
‖uk‖

p + C1{b + λνc‖uk‖
ν}, k ∈ N. (3.6)

Since ν < p, it follows that there exists a constant A > 0 such that

‖uk‖ ≤ A for k ∈ N. (3.7)

So passing to a subsequence if necessary, it can be assumed that uk ⇀ u0 in E.
For any given number ε > 0, by (W1), we can choose ξ > 0 such that

|∇W(n, x)| ≤ εa(n)|x|p−1 for n ∈ Z, and |x| ≤ ξ. (3.8)

Since a(n) → ∞, we can also choose an integer Π > 0 such that

a(n) ≥
Ap

ξp , |n| ≥ Π. (3.9)
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By (2.1), (3.8) and (3.9), we have

|uk(n)|
p =

1

a(n)
a(n)|uk(n)|

p

≤
ξp

Ap ∑
n∈Z

a(n)|uk(n)|
p

≤
ξp

Ap ‖uk‖
p

≤ ξp for |n| ≥ Π, k ∈ N. (3.10)

Since uk ⇀ u0 in E, it is easy to verify that uk(t) converges to u0(t) pointwise
for all n ∈ Z, that is

lim
k→∞

uk(n) = u0(n), ∀ n ∈ Z. (3.11)

Hence, we have by (3.10) and (3.11)

|u0(n)| ≤ ζ for |n| ≥ Π. (3.12)

It follows from (3.11) and the continuity of ∇W(n, x) on x that there exists k0 ∈ N

such that

Π

∑
n=−Π

|∇W(n, uk(n)) −∇W(n, u0(n))||uk(n)− u0(n)| < ε for k ≥ k0. (3.13)

On the other hand, it follows from (3.2), (3.3), (3.5), (3.6), (3.7) and (3.8) that

∑
|n|>Π

|∇W(n, uk(n)) −∇W(n, u0(n))||uk(nt)− u0(n)|

≤ ∑
|n|>Π

(|∇W(n, uk(n))| + |∇W(n, u0(n))|)(|uk(n)| + |u0(n)|)

≤ ε ∑
|n|>Π

a(n)(|uk(n)|
p−1 + |u0(n)|

p−1)(|uk(n)| + |u0(n)|)

≤ 2ε ∑
|n|>Π

a(n)(|uk(n)|
p + |u0(n)|

p)

≤ 2ε(‖uk‖
p + ‖u0‖

p)

≤ 2ε(Ap + ‖u0‖
p), k ∈ N. (3.14)

Combining (3.13) with (3.14) we get

∑
n∈Z

|∇W(n, uk(n))−∇W(n, u0(n))| |uk(n)− u0(n)| → 0 as k → ∞. (3.15)

Using the Hölder’s inequality

ac + bd ≤ (ap + bp)1/p(cq + dq)1/q,
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where a, b, c, d are nonnegative numbers and 1/p + 1/q = 1, p > 1, it follows
from (2.3) that

〈I ′(uk)− I ′(u0), uk − u0〉

= ∑
n∈Z

|∆uk(n − 1)|p−2(∆uk(n − 1), ∆uk(n − 1)− ∆u0(n − 1))

+ ∑
n∈Z

a(n)|uk(n)|
p−2(uk(n), uk(n)− u0(n))

− ∑
n∈Z

|∆u0(n − 1)|p−2(∆u0(n − 1), ∆uk(n − 1)− ∆u0(n − 1))

− ∑
n∈Z

a(n)|u0(n)|
p−2(u0(n), uk(n)− u0(n))

− ∑
n∈Z

(∇W(n, uk(n)) −∇W(n, u0(n)), uk(n)− u0(n))

= ‖uk‖
p + ‖u0‖

p − ∑
n∈Z

|∆uk(n − 1)|p−2(∆uk(n − 1), ∆u0(n − 1))

− ∑
n∈Z

a(n)|uk(n)|
p−2(uk(n), u0(n))

− ∑
n∈Z

|∆u0(n − 1)|p−2(∆u0(n − 1), ∆uk(n − 1))

− ∑
n∈Z

a(n)|u0(n)|
p−2(u0(n), uk(n))

− ∑
n∈Z

(∇W(n, uk(n)) −∇W(n, u0(n)), uk(n)− u0(n))

≥ ‖un‖
p + ‖u0‖

p −

(

∑
n∈Z

|∆u0(n − 1)|p
)1/p(

∑
n∈Z

|∆uk(n − 1)|p
)1/q

−

(

∑
n∈Z

a(n)|u0(n)|
p

)1/p(

∑
n∈Z

a(n)|uk(n)|
p

)1/q

−

(

∑
n∈Z

|∆uk(n − 1)|p
)1/p(

∑
n∈Z

|∆u0(n − 1)|p
)1/q

−

(

∑
n∈Z

a(n)|uk(n)|
p

)1/p(

∑
n∈Z

a(n)|u0(n)|
p

)1/q

− ∑
n∈Z

(∇W(n, uk(n)) −∇W(n, u0(n)), uk(n)− u0(n))

≥ ‖uk‖
p + ‖u0‖

p

−

(

∑
n∈Z

[|∆u0(n − 1)|p + a(n)|u0(n)|
p ]

)1/p

(

∑
n∈Z

[|∆uk(n − 1)|p + a(n)|uk(n)|
p ]

)1/q
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−

(

∑
n∈Z

[|∆uk(n − 1)|p + a(n)|uk(n)|
p ]

)1/p

(

∑
n∈Z

[|∆u0(n − 1)|p + a(n)|u0(n)|
p ]

)1/q

− ∑
n∈Z

(∇W(n, uk(n))−∇W(n, u0(n)), uk(n)− u0(n))

= ‖uk‖
p + ‖u0‖

p − ‖u0‖‖uk‖
p−1 − ‖uk‖‖u0‖

p−1

− ∑
n∈Z

(∇W(n, uk(n))−∇W(n, u0(n)), uk(n)− u0(n))

=
(

‖uk‖
p−1 − ‖u0‖

p−1
)

(‖uk‖ − ‖u0‖)

− ∑
n∈Z

(∇W(n, uk(n))−∇W(n, u0(n)), uk(n)− u0(n)). (3.16)

Since I ′(uk) → 0 as k → +∞ and uk ⇀ u0 in E, it follows from (3.16) that

〈I ′(uk)− I ′(u0), uk − u0〉 → 0 as k → ∞,

which, together with (3.15) and (3.16), yields that ‖uk‖ → ‖u‖ as k → +∞. By
the uniform convexity of E and the fact that uk ⇀ u0 in E, it follows from the
Kadec-Klee property that uk → u0 in E. Hence, I satisfies (C)-condition.

We now show that there exist constants ρ, α > 0 such that I satisfies assump-

tion (ii) of Lemma 2.1 with these constants. Let δ ≤ η, if ‖u‖ = δ
λ := ρ, then by

(2.4), |u(n)| ≤ δ ≤ η < 1 for n ∈ Z.
Set

α =
δp

2pλp .

Hence, from (2.2) and (3.3), we have

I(u) =
1

p
‖u‖p − ∑

n∈Z

W(n, u(n))

≥
1

p
‖u‖p −

1

2p ∑
n∈Z

a(n)|u(n)|p

≥
1

2p
‖u‖p

= α. (3.17)

(3.17) shows that ‖u‖ = ρ implies that I(u) ≥ α, i.e., I satisfies assumption (ii) of
Lemma 2.1.

Finally, it remains to show that I satisfies assumption (iii) of Lemma 2.1. Let E′

be a finite dimensional subspace of E. Since all the norms of a finite dimensional
normed space are equivalent, so there exists a constant d > 0 such that

‖u‖ ≤ d‖u‖∞ for u ∈ E′. (3.18)
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Assume that dim E′ = m and u1, u2, . . . , um is a base of E′ such that

‖ui‖ = d, i = 1, 2, . . . , m. (3.19)

For any u ∈ E′, there exist λi ∈ R, i = 1, 2, . . . , m such that

u(n) =
m

∑
i=1

λiui(n) for n ∈ Z. (3.20)

Let

‖u‖∗ =
m

∑
i=1

|λi|‖ui‖. (3.21)

It is easy to verify that ‖ · ‖∗ defined by (3.21) is a norm of E′. By a similar way in
(3.18), we have that there exists d′ > 0 such that

d′‖u‖∗ ≤ ‖u‖. (3.22)

Since ui ∈ E, we can choose Π1 > Π such that

|ui(n)| <
d′η

1 + d′
, |n| > Π1, i = 1, 2, . . . , m, (3.23)

where η is given in (3.3). Set

Θ =

{

m

∑
i=1

λiui(n) : λi ∈ Z, i = 1, 2, . . . , m;
m

∑
i=1

|λi| = 1

}

=
{

u ∈ E′ : ‖u‖∗ = d
}

.

(3.24)
Hence, for u ∈ Θ, let n0 = n0(u) ∈ Z such that

|u(n0)| = ‖u‖∞. (3.25)

Then by (3.19), (3.20), (3.21), (3.23), (3.24) and (3.25), we have

d′d = d′d
m

∑
i=1

|λi| = d′
m

∑
i=1

|λi|‖ui‖ = d′‖u‖∗

≤ ‖u‖ ≤ d‖u‖∞ = d|u(n0)|

≤ d
m

∑
i=1

|λi||ui(n0)|, u ∈ Θ. (3.26)

This shows that

|u(n0)| ≥ d′ (3.27)

and there exists i0 ∈ {1, 2, . . . , m} such that |ui0(n0)| ≥ d′. By (W3), there exists
σ0 = σ0(d, Π1) > 1 such that

s−p min
|x|=1

W(n, sx) ≥

(

2d

d′

)p

for s ≥
d′σ0

2
, n ∈ Z(−Π1, Π1). (3.28)
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It follows from (W2), (W3), (2.1) and (3.28) that

I(σu) =
σp

p
‖u‖p − ∑

n∈Z

W(n, σu(n))

≤
σp

p
‖u‖p − W(n0, σu(n0))

≤
σp

p
‖u‖p − min

|x|=1
W(n0, σ|u(n0)|x)

≤
(dσ)p

p
− (dσ)p |u(n0)|

p

≤
(dσ)p

p
− (dσ)p

= −
(dσ)p

q
, u ∈ Θ, σ ≥ σ0. (3.29)

We deduce that there is σ0 = σ0(d, Π1) = σ0(E
′) > 1 such that

I(σu) < 0 for u ∈ Θ and σ ≥ σ0.

That is
I(u) < 0 for u ∈ E′ and ‖u‖ ≥ dσ0.

This shows that condition (iii) of Lemma 2.1 holds. By Lemma 2.1, I possesses an
unbounded sequence {dk}k∈N of critical values with dk = I(uk), where uk is such
that I ′(uk) = 0 for k = 1, 2, . . .. If {‖uk‖} is bounded, then there exists B > 0 such
that

‖uk‖ ≤ B for k ∈ N. (3.30)

By a similar fashion for the proof of (3.3), for the given η in (3.3), there exists
Π′

1 > 0 such that
|uk(n)| ≤ η for |n| ≥ Π′

1, k ∈ N. (3.31)

Thus, from (2.1), (2.4) and (3.3), we have

1

p
‖uk‖

p = dk + ∑
n∈Z

W(n, uk(n))

= dk + ∑
|n|>Π′

1

W(n, uk(n)) + ∑
|n|≤Π′

1

W(n, uk(n))

≥ dk −
1

2p ∑
|n|>Π′

1

a(n)|uk(n)|
p − ∑

|n|≤Π′
1

|W(n, uk(n))|

≥ dk −
1

2p
‖uk‖

p − ∑
|n|≤Π′

1

max
|x|≤λB

|W(n, x)|. (3.32)

It follows that

dk ≤
3

2p
‖uk‖

p + ∑
|n|≤Π′

1

max
|x|≤λB

|W(n, x)| < +∞.
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This contradicts to the fact that {dk}
∞
k=1 is unbounded, and so {‖uk‖} is un-

bounded. The proof is complete.

Proof of Theorem 1.2. It is clear that I(0) = 0. We first show that I satisfies the
(PS)-condition. Assume that {uk}k∈N ⊂ E is a sequence such that {I(uk)}k∈N is
bounded and I ′(uk) → 0 as k → +∞. Then there exists a constant M > 0 such
that

|I(uk)| ≤ M, ‖I ′(uk)‖E∗ ≤ µM for k ∈ N. (3.33)

From (2.1), (2.2), (3.1), (W5) and (W6), we obtain

pc + pc‖uk‖

≥ pI(uk)−
p

µ
〈I ′(uk), uk〉

=
µ − p

µ
‖uk‖

p + p ∑
n∈Z

[

W2(n, uk(n))−
1

µ
(∇W2(n, uk(n)), uk(n))

]

−p ∑
n∈Z

[

W1(n, uk(n)) −
1

µ
(∇W1(n, uk(n)), uk(n))

]

≥
µ − p

µ
‖uk‖

p, k ∈ N.

It follows that there exists a constant A > 0 such that

‖uk‖ ≤ A for k ∈ N. (3.34)

Similar to the proof of Theorem 1.1, we can prove that {uk} has a convergent
subsequence in E. Hence, I satisfies condition (PS)-condition.

Finally, it remains to show that I satisfies assumption (iii) of Lemma 2.1. Let
E′ be a finite dimensional subspace of E. Since all norms of a finite dimensional
normed space are equivalent, so there is a constant d′ > 0 such that (3.22) holds.
Let η, Π1 and Θ be the same as in the proof of Theorem 1.1, then (3.27) holds.

Set

τ = min{W1(n, x) : |n| ≤ Π1, |x| ≤ d′}, (3.35)

where d′ is given in (3.22).

Since W1(n, x) > 0 for all n ∈ Z and x ∈ R
N \ {0}, and W1(n, x) is continuous

in x, so τ > 0. It follows from (3.27), (3.35) and Lemma 2.3 (i) that

Π1

∑
n=−Π1

W1(n, u(n)) ≥ W1(n0, u(n0))

≥ W1

(

n0,
u(n0)d

′

|u(n0)|

)(

|u(n0)|

d′

)µ

≥

[

min
|x|≤d′

W1(n0, x)

] (

|u(n0)|

d′

)µ

≥ τ for u ∈ Θ. (3.36)
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For any u ∈ E, it follows from (2.4) and Lemma 2.3 (ii) that

Π1

∑
n=−Π1

W2(n, u(n))

= ∑
n∈Z(−Π1,Π1), |u(n)|>1

W2(n, u(n)) + ∑
n∈Z(−Π1,Π1), |u(n)|≤1

W2(n, u(n))

≤ ∑
n∈Z(−Π1,Π1), |u(n)|>1

W2

(

n,
u(n)

|u(n)|

)

|u(n)|̺

+
Π1

∑
n=−Π1

max
|x|≤1

|W2(n, x)|

≤ ‖u‖
̺
∞

Π1

∑
n=−Π1

max
|x|=1

|W2(n, x)| +
Π1

∑
n=−Π1

max
|x|≤1

|W2(n, x)|

≤ λ̺‖u‖̺
Π1

∑
n=−Π1

max
|x|=1

|W2(n, x)| +
Π1

∑
n=−Π1

max
|x|≤1

|W2(n, x)|

= M1‖u‖̺ + M2, (3.37)

where

M1 = λ̺
Π1

∑
n=−Π1

max
|x|=1

|W2(n, x)|, M2 =
Π1

∑
n=−Π1

max
|x|≤1

|W2(n, x)|.

From (3.3), (3.24), (3.36), (3.37) and Lemma 2.3, we have for u ∈ Θ and σ > 1

I(σu) =
σp

p
‖u‖p − ∑

n∈Z

W(n, σu(n))

=
σp

p
‖u‖p + ∑

n∈Z

W2(n, σu(n)) − ∑
n∈Z

W1(n, σu(n))

≤
σp

p
‖u‖p + σ̺ ∑

n∈Z

W2(n, u(n)) − σµ ∑
n∈Z

W1(n, u(n))

=
σp

p
‖u‖p + σ̺ ∑

|n|>Π1

W2(n, u(n)) − σµ ∑
|n|>Π1

W1(n, u(n))

+σ̺
Π1

∑
n=−Π1

W2(n, u(n)) − σµ
Π1

∑
n=−Π1

W1(n, u(n))

≤
σp

p
‖u‖p − σ̺ ∑

|n|>Π1

W(n, u(n))

+σ̺
Π1

∑
n=−Π1

W2(n, u(n)) − σµ
Π1

∑
n=−Π1

W1(n, u(n))
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≤
σp

p
‖u‖p +

σ̺

2p ∑
|n|>Π1

a(n)|u(n)|p + σ̺(M1‖u‖̺ + M2)− τσµ

≤
σp

p
‖u‖p +

σ̺

2p
‖u‖p + σ̺(M1‖u‖̺ + M2)− τσµ

=
(dσ)p

p
+

dpσ̺

2p
+ M1(dσ)̺ + M2σ̺ − τσµ. (3.38)

Since µ > ̺ > p, we deduce that there is σ0 = σ0(d, M1, M2, τ) = σ0(E
′) > 1 such

that

I(σu) < 0 for u ∈ Θ and σ ≥ σ0.

That is

I(u) < 0 for u ∈ E′ and ‖u‖ ≥ dσ0.

This shows that (iii) of Lemma 2.1 holds. By Lemma 2.1, I possesses an un-
bounded sequence {dk}k∈N of critical values with dk = I(uk), where uk is such
that I ′(uk) = 0 for k = 1, 2, . . .. If {‖uk‖}k∈N is bounded, then there exists B > 0
such that

‖uk‖ ≤ B for k ∈ N. (3.39)

By a similar fashion for the proof of (3.5) and (3.7), for the given η in (3.13), there
exists Π′′

1 > 0 such that

|uk(n)| ≤ η for |n| ≥ Π′′
1 , k ∈ N. (3.40)

Thus, from (W1’), (W5), (W6), (2.1), (2.4), (3.3), (3.39) and (3.40), we have

1

p
‖uk‖

p = dk + ∑
n∈Z

W(n, uk(n))

= dk + ∑
|n|>Π′′

1

W(n, uk(n)) +
Π′′

1

∑
n=−Π′′

1

W(n, uk(n))

≥ dk −
1

2p ∑
|n|>Π′′

1

a(n)|uk(n)|
p −

Π′′
1

∑
n=−Π′′

1

W2(n, uk(n))

≥ dk −
1

2p
‖uk‖

p −
Π′′

1

∑
n=−Π′′

1

max
|x|≤λB

|W2(n, x)|. (3.41)

It follows that

dk ≤
3

2p
‖uk‖

p +
Π′′

1

∑
n=−Π′′

1

max
|x|≤λB

|W2(n, x)| < +∞.

This contradicts to the fact that {dk}k∈N is unbounded, and so {‖uk‖}k∈N is un-
bounded.
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Proof of Theorem 1.3. In the proof of Theorem 1.2, the condition that W2(n, x) ≥
0 for (n, x) ∈ Z × R

N, |x| ≤ 1 in (W1’) is only used in the the proofs of assump-
tion (ii) of Lemma 2.1. Therefore, we only prove assumption (ii) of Lemma 2.1
still hold use (W1”) instead of (W1’). By (W1”), there exists η ∈ (0, 1) such that

|∇W(n, x)| ≤
1

2
a(n)|x|p−1 for n ∈ Z \ J, |x| ≤ η. (3.42)

Since W(n, 0) = 0, it follows that

|W(n, x)| ≤
1

2p
a(n)|x|p for n ∈ Z \ J, |x| ≤ η. (3.43)

Set

M = sup

{

W1(n, x)

a(n)

∣

∣

∣

∣

n ∈ J, x ∈ R
N, |x| = 1

}

. (3.44)

Set δ = min{1/(2pM + 1)1/(µ−p), η}. if ‖u‖ = δ/λ := ρ, then by (2.4), |u(n)|
≤ δ ≤ η < 1 for n ∈ Z. By (3.44) and Lemma 2.4 (i), we have

∑
n∈J

W1(n, u(n)) ≤ ∑
{n∈J, u(n) 6=0}

W1

(

n,
u(n)

|u(n)|

)

|u(n)|µ

≤ M ∑
n∈J

a(n)|u(n)|µ

≤ Mδµ−p ∑
n∈J

a(n)|u(n)|p

≤
1

2p ∑
n∈J

a(n)|u(n)|p . (3.45)

Set

α =
aδp

2p
.

Hence, from (2.1), (3.43), (3.45) and (W1”), we have

I(u) =
1

p
‖u‖p − ∑

n∈Z

W(n, u(n))

=
1

p
‖u‖p − ∑

n∈Z\J

W(n, u(n)) − ∑
n∈J

W(n, u(n))

≥
1

p
‖u‖p −

1

2p ∑
n∈Z\J

a(n)|u(n)|p − ∑
n∈J

W1(n, u(n))

≥
1

p
‖u‖p −

1

2p ∑
n∈Z\J

a(n)|u(n)|p −
1

2p ∑
n∈J

a(n)|u(n)|p

=
1

p ∑
n∈Z

|∆u(n − 1)|p +
1

2p ∑
n∈Z

a(n)|u(n)|p

≥
1

2p ∑
n∈Z

[|∆u(n − 1)|p + a(n)|u(n)|p ]

=
1

2p
‖u‖p

= α. (3.46)
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(3.46) shows that ‖u‖ = ρ implies that I(u) ≥ α, i.e., I satisfies assumption (ii)
of Lemma 2.1. It is obvious that I is even and I(0) = 0 and so assumption (ii) of
Lemma 2.1 holds. The proof of assumption (iii) of Lemma 2.1 is the same as in
the proof of Theorem 1.2, we omit its details.

4. Examples

In this section, we give some examples to illustrate our results.

Example 4.1. Consider the second-order discrete p-Laplacian system

∆(|∆u(n − 1)|−
2
3 ∆u(n − 1))− a(n)|u(n)|u(n) +∇W(n, u(n)) = 0, (4.1)

where p = 4
3 , a : Z → (0, ∞) such that a(n) → +∞ as |n| → +∞, and

W(n, x) = a(n)(2 − cos n)|x|
4
3 ln(1 + |x|).

Since

(∇W(n, x), x) = a(n)(2 − cos n)

[

4

3
|x|

4
3 ln(1 + |x|) +

|x|
7
3

1 + |x|

]

≥

(

4

3
+

1

1 + |x|

)

W(n, x) ≥ 0, ∀ (n, x) ∈ Z × R
N.

This shows that (W3) holds with b = c = ν = 1. In addition, for any n ∈ Z

s−
4
3 min
|x|=1

W(n, sx) = s−
4
3 min
|x|=1

[

a(n)(2 − cos n)|sx|
4
3 ln(1 + |sx|)

]

= a(n)(2 − cos n) ln(1 + s)

→ +∞, s → +∞.

This shows that (W3) also holds. It is easy to verify that assumptions (A) and
(W1) of Theorem 1.1 are satisfied. By Theorem 1.1, system (1.1) has an unbounded
sequence of homoclinic solutions.

Example 4.2. Consider the second-order discrete p-Laplacian system

∆(|∆u(n − 1)|∆u(n − 1))− a(n)|u(n)|u(n) +∇W(n, u(n)) = 0, (4.2)

where p = 3, n ∈ Z, u ∈ R
N, a ∈ C(Z, (0, ∞)) such that a(n) → +∞ as |n| → ∞.

Let

W(n, x) = a(n)

(

m

∑
i=1

ai|x|
µi −

n

∑
j=1

bj|x|
̺j

)

,

where µ1 > µ2 > · · · > µm > ̺1 > ̺2 > · · · > ̺n > 3, ai, bj > 0,
i = 1, 2, . . . , m; j = 1, 2, . . . , n. Let µ = µm, ̺ = ̺1, and

W1(n, x) = a(n)
m

∑
i=1

ai|x|
µi , W2(n, x) = a(n)

n

∑
j=1

bj|x|
̺j .
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Then it is easy to verify that all conditions of Theorem 1.2 are satisfied. By Theo-
rem 1.2, system (1.1) has an unbounded sequence of homoclinic solutions..

Example 4.3. Consider the second-order discrete p-Laplacian system

∆(|∆u(n − 1)|2∆u(n − 1))− a(n)|u(n)|2u(n) +∇W(n, u(n)) = 0, (4.3)

where p = 4, n ∈ Z, u ∈ R
N, a ∈ C(Z, (0, ∞)) such that a(n) → +∞ as |n| → ∞.

Let

W(n, x) = a(n) [a1|x|
µ1 + a2|x|

µ2 − (2 − |n|)|x|̺1 − (2 − |n|)|x|̺2 ] ,

where µ1 > µ2 > ̺1 > ̺2 > 4, a1, a2 > 0. Let µ = µ2, ̺ = ̺1, J = {−2,−1, 0, 1, 2}
and

W1(n, x) = a(n) (a1|x|
µ1 + a2|x|

µ2) ,

W2(n, x) = a(n) [(2 − |n|)|x|̺1 + (2 − |n|)|x|̺2 ] .

Then it is easy to verify that all conditions of Theorem 1.3 are satisfied. By Theo-
rem 1.3, system (1.1) has an unbounded sequence of homoclinic solutions.
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[29] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc,
Roy. Soc. Edinburgh Sect. A 114 (1-2) (1990) 33-38.

[30] P. H. Rabinowitz, K. Tanaka, Some results on connecting orbits for a class of
Hamiltonian systems, Math. Z. 206 (3) (1991) 473-499.

[31] P. H. Rabinowitz, Minimax methods in critical point theory with applica-
tions to differential equations, in: CBMS Reg. Conf. Ser. in Math., vol. 65, Amer.
Math. Soc., Providence, RI, 1986.

[32] A. Salvatore, Homoclinic orbits for a special class of nonautonomous Hamil-
tonian systems, in:Proceedings of the Second World Congress of Nonlinear
Analysis, Part 8 (Athens, 1996), Nonlinear Anal. 30 (8) (1997) 4849-4857.

[33] X. H. Tang, X. Y. Lin, Homoclinic solutions for a class of second-order Hamil-
tonian systems, J. Math. Anal. Appl., 354(2)(2009), 539-549.

[34] X. H. Tang, L. Xiao, Homoclinic solutions for a class of second-order Hamil-
tonian systems, Nonlinear Anal. TMA, 71 (3-4) (2009) 1140-1152.

[35] X. H. Tang, L. Xiao, Homoclinic solutions for ordinary p-Laplacian systems
with a coercive potential, Nonlinear Anal. 71 (3-4) (2009) 1124-1132.

[36] X. H. Tang, L. Xiao, Homoclinic solutions for nonautonomous second-order
Hamiltonian systems with a coercive potential, J. Math. Anal. Appl. 351 (2009)
586-594.

[37] Y. Tian, Wei-gao Ge, Periodic solutions of nonautonomous second order sys-
tems with p-Laplacian, Nonlinear Anal. TMA, 66 (1) (2007) 192-203.

College of Science, China Three Gorges University
Yichang, Hubei 443002, P.R.China
email :pengchen729@sina.com

School of Mathematical Sciences and Computing Technology,
Central South University,
Changsha, Hunan 410083, P.R.China
email :tangxhcsu@yahoo.com.cn


