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Abstract

We prove some infinitesimal analogs of classical results of Menger, Schoen-
berg and Blumenthal giving the existence conditions for isometric embed-
dings of metric spaces in the finite-dimensional Euclidean spaces.

1 Introduction

The definition of pretangent and tangent metric spaces to an arbitrary metric
space was introduced in [11] (see also [12]) for studies of generalized differentia-
tion on metric spaces. The development of this theory requires the understanding
of interrelations between the infinitesimal properties of initial metric space and
geometry of pretangent spaces to this initial.

The necessary and sufficient conditions under which a pretangent space to
metric space is unique and a series of interesting examples of metric spaces with
unique pretangent spaces were presented in [2]. Some conditions under which
pretangent spaces are compact and bounded were found in a recent paper [1].
Criteria of the ultrametricity of pretangent spaces were obtained in [10]. The
necessary and sufficient conditions under which subspaces X and Y of metric
space Z have the same pretangent spaces in a point of X ∩Y were obtained in [9].
A criterion of the finiteness of pretangent spaces was proved in [11].

Our main goal is to search the criteria of the isometric embeddability of pre-
tangent spaces in the real n−dimensional Euclidean space En. The second part

Received by the editors May 2011 - In revised form in April 2012.
Communicated by E. Colebunders.
2000 Mathematics Subject Classification : 54E35.
Key words and phrases : metric space, pretangent space, isometric embedding, infinitesimal

geometry of metric spaces, Cayley-Menger determinant.

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 91–110



92 V. Bilet – O. Dovgoshey

of our paper contains the general Transfer Principle, Theorem 2.7, providing, in
some cases, the ”automatic translation” of global properties of pretangent spaces
into the limits relations defined in the initial metric spaces. An immediate con-
sequence of the Transfer Principle is the Conservation Principle describing some
properties of metric spaces which are invariant under passage to the pretangent
spaces. In the third part of the paper we apply the Transfer Principle to the clas-
sical condition of isometric embeddability of metric spaces in En obtained by
K. Menger and I. Schoenberg. We reformulate their embedding theorems in a
suitable form, see Proposition 3.1 and Proposition 3.11 and transfer them to the
”infinitesimal” embeddings theorems 3.4 and 3.12. In the fourth part we obtain
Theorem 4.2 which gives the infinitesimal form of Blumenthal’s embedding theo-
rem. Note that in the last case the Transfer Principle do not seem to be applicable.

2 Pretangent spaces

For convenience we recall the terminology that will be necessary in future.
Let (X, d) be a metric space and let p be a point of X. Fix some sequence r̃

of positive real numbers rn tending to zero. In what follows r̃ will be called a
normalizing sequence. Let us denote by X̃ the set of all sequences of points from X.

Definition 2.1. Two sequences x̃ = {xn}n∈N and ỹ = {yn}n∈N, x̃, ỹ ∈ X̃ are mutually
stable with respect to r̃ = {rn}n∈N if there is a finite limit

lim
n→∞

d(xn, yn)

rn
:= d̃r̃(x̃, ỹ) = d̃(x̃, ỹ). (2.1)

We shall say that a family F̃ ⊆ X̃ is self-stable (w.r.t. r̃) if every two x̃, ỹ ∈ F̃ are
mutually stable. A family F̃ ⊆ X̃ is maximal self-stable if F̃ is self-stable and for an
arbitrary z̃ ∈ X̃ either z̃ ∈ F̃ or there is x̃ ∈ F̃ such that x̃ and z̃ are not mutually
stable.

The standard application of Zorn’s Lemma leads to the following

Proposition 2.2. Let (X, d) be a metric space and let p ∈ X. Then for every normalizing
sequence r̃ = {rn}n∈N there exists a maximal self-stable family X̃p = X̃p,r̃ such that

p̃ := {p, p, ...} ∈ X̃p.

Note that the condition p̃ ∈ X̃p implies the equality

lim
n→∞

d(xn, p) = 0 (2.2)

for every x̃ = {xn}n∈N ∈ X̃p.

Consider a function d̃ : X̃p × X̃p → R where d̃(x̃, ỹ) = d̃r̃(x̃, ỹ) is defined by

(2.1). Obviously, d̃ is symmetric and nonnegative. Moreover, the triangle inequal-
ity for d implies

d̃(x̃, ỹ) ≤ d̃(x̃, z̃) + d̃(z̃, ỹ)

for all x̃, ỹ, z̃ from X̃p. Hence (X̃p, d̃) is a pseudometric space.



Isometric embeddings of pretangent spaces in En 93

Definition 2.3. The pretangent space to the space X (at the point p w.r.t. r̃) is the metric
identification of the pseudometric space (X̃p,r̃, d̃).

Since the notion of pretangent space is important for the present paper, we
remind this metric identification construction.

Define the relation ∼ on X̃p by x̃ ∼ ỹ if and only if d̃(x̃, ỹ) = 0. Then ∼

is an equivalence relation. Let us denote by ΩX
p,r̃ the set of equivalence classes

in X̃p under the equivalence relation ∼ . It follows from general properties of

pseudometric spaces, see for example, [14], that if ρ is defined on ΩX
p,r̃ by

ρ(α, β) := d̃(x̃, ỹ) (2.3)

for x̃ ∈ α and ỹ ∈ β, then ρ is a well-defined metric on ΩX
p,r̃. By definition the

metric identification of (X̃p, d̃) is the metric space (ΩX
p,r̃, ρ).

Remark that ΩX
p,r̃ 6= ∅ because the constant sequence p̃ belongs to X̃p,r̃, see

Proposition 2.2.
Let {nk}k∈N be an infinite, strictly increasing sequence of natural numbers.

Let us denote by r̃′ the subsequence {rnk
}k∈N of the normalizing sequence r̃ =

{rn}n∈N and let x̃′ := {xnk
}k∈N for every x̃ = {xn}n∈N ∈ X̃. It is clear that if x̃

and ỹ are mutually stable w.r.t. r̃, then x̃′ and ỹ′ are mutually stable w.r.t. r̃′ and

d̃r̃(x̃, ỹ) = d̃r̃′(x̃
′, ỹ′).

If X̃p,r̃ is a maximal self-stable (w.r.t r̃) family, then, by Zorn’s Lemma, there exists

a maximal self-stable (w.r.t r̃′) family X̃p,r̃′ such that

{x̃′ : x̃ ∈ X̃p,r̃} ⊆ X̃p,r̃′ .

Denote by inr̃′ the map from X̃p,r̃ to X̃p,r̃′ with inr̃′(x̃) = x̃′ for all x̃ ∈ X̃p,r̃. It
follows from (2.3) that after metric identifications inr̃′ pass to an isometric em-
bedding em′ : ΩX

p,r̃ → ΩX
p,r̃′ under which the diagram

X̃p,r̃
inr̃′−−−→ X̃p,r̃′

π









y









y

π′

ΩX
p,r̃

em′

−−−−→ ΩX
p,r̃′

(2.4)

is commutative. Here π and π′ are the natural projections, π(x̃) := {ỹ ∈ X̃p,r̃ :

d̃r̃(x̃, ỹ) = 0} and π′(x̃) := {ỹ ∈ X̃p,r̃′ : d̃r̃′(x̃, ỹ) = 0}.
Let X and Y be two metric spaces. Recall that the map f : X → Y is called an

isometry if f is distance-preserving and onto.

Definition 2.4. A pretangent ΩX
p,r̃ is tangent if em′ : ΩX

p,r̃ → ΩX
p,r̃′ is an isometry for

every r̃′.
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Remark 2.5. Let X̃p,r̃ be a maximal self-stable family with corresponding pre-

tangent space ΩX
p,r̃. Then ΩX

p,r̃ is tangent if and only if for every subsequence

r̃′ = {rnk
}k∈N of the sequence r̃ the family X̃p,r̃′ := {x̃′ : x̃ ∈ X̃p,r̃} is maximal

self-stable w.r.t. r̃′.

For every natural k ≥ 1 write Xk+1 for the set of all k+ 1−tuples x = (x0, x1, ...,
xk) with terms xn ∈ X for n = 0, 1, ..., k.

Denote by Mn, n ∈ N, the topological space of all real, n × n−matrices t with
the topology of pointwise convergence. Let M be a class of nonvoid metric spaces
and let F be a family of continuous functions f : Mn → R, n = n( f ) which are
homogeneous of degree s0 = s0( f ) > 0, i.e.,

f (δt) = δs0( f (t)) (2.5)

for all δ ∈ [0, ∞) and all t ∈ Dom( f ). We shall say that M is determined by
F if the following two conditions are equivalent for every metric space (X, d) :
(X, d) ∈ M; the inequality f (m) ≥ 0 holds for each f ∈ F and all m ∈ Dom( f )
having the form

m = m(x1, x2, ..., xn) =











d(x1, x1) d(x1, x2) ... d(x1, xn)
d(x2, x1) d(x2, x2) ... d(x2, xn)

...
...

. . .
...

d(xn, x1) d(xn, x2) ... d(xn, xn)











,

(x1, x2, ..., xn) ∈ Xn. (2.6)

Remark 2.6. Equality (2.5) and the inequality s0( f ) > 0 imply that f (0) = 0
for every f ∈ F where 0 is the zero n × n−matrix belonging to Dom( f ). It is clear
that each matrix from (2.6) is equal to 0 for one-point metric spaces. Consequently
each one-point metric space belongs to every M determinated by some F.

For example, the class of all ultrametric spaces is determinated by the family
F with the unique element f : M3 → R,

f (t) = (t1,3 ∨ t3,2)− t1,2.

Indeed, if t has form (2.6), then the inequality f (t) ≥ 0 can be written as the
ultra-triangle inequality d(x1, x2) ≤ d(x1, x3) ∨ d(x3, x2).

Let (X, d) be a metric space with marked point p and let f ∈ F. We set

δ(x1, ..., xn) :=
n
∨

i=1
d(xi, p) (2.7)

for (x1, ..., xn) ∈ Xn and define the function f ∗ : Xn → R as

f ∗(x1, x2, ..., xn) :=

{

f
(

m(x1,x2,...,xn)
δ(x1,x2,...,xn)

)

if (x1, x2, ..., xn) 6= (p, p, ..., p)

0 if (x1, x2, ..., xn) = (p, p, ..., p).
(2.8)

Theorem 2.7. (Transfer Principle) Let (X, d) be a metric space with marked point p
and let M be a family of metric spaces determinated by a family F. The following two
statements are equivalent.



Isometric embeddings of pretangent spaces in En 95

(i) Each pretangent space ΩX
p,r̃ belongs to M.

(ii) The inequality

lim inf
x1,x2,...,xn→p

f ∗(x1, x2, ..., xn) ≥ 0 (2.9)

holds for each f : Mn → R belonging to F.

Proof. Suppose that (i) holds. Let us prove inequality (2.9) for each f ∈ F. Let
f : Mn → R belong to F and let x̃i = {xi,m}m∈N ∈ X̃, i = 1, 2, ..., n, be some
sequences such that

lim
m→∞

f ∗(x1,m, ..., xn,m) = lim inf
x1,...,xn→p

f ∗(x1, ..., xn) (2.10)

and

p = lim
m→∞

x1,m = lim
m→∞

x2,m = ... = lim
m→∞

xn,m. (2.11)

Limit relations (2.11) implies

lim
m→∞

δ(x1,m, ..., xn,m) = 0

where δ is defined by (2.7). If for all sufficiently large m we have δ(x1,m, ..., xn,m) =
0, then the limit in (2.10) vanishes, so that (2.9) holds. Consequently we may
suppose, going to a subsequence, that

δ(x1,m, ..., xn,m) > 0

for all m ∈ N. Define a normalizing sequence r̃ = {rm}m∈N as

rm := δ(x1,m, ..., xn,m), m ∈ N.

All elements of the matrix
m(x1,...,xn)
δ(x1,...,xn)

, see (2.6), are bounded because

0 ≤

n
∨

i,j=1
d(xi,m, xj,m)

rm
≤

2
n
∨

i=1
d(xi,m, p)

rm
= 2. (2.12)

Hence going to a subsequence once again we can assume that all x̃i, i = 1, ..., n,
and p̃ are pairwise mutually stable. The functions f ∈ F are continuous. Hence
using (2.8) we obtain

lim
m→∞

f ∗(x1,m, ..., xn,m) = f (t), (2.13)

where

t =











d̃(x̃1, x̃1) d̃(x̃1, x̃2) ... d̃(x̃1, x̃n)
d̃(x̃2, x̃1) d̃(x̃2, x̃2) ... d̃(x̃2, x̃n)

...
...

. . .
...

d̃(x̃n, x̃1) d̃(x̃n, x̃2) ... d̃(x̃n, x̃n)











.
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If X̃p,r̃ is a maximal self-stable family such that x̃i ∈ X̃p,r̃, i = 1, ..., n and ΩX
p,r̃ is

the metric identification of X̃p,r̃, then ΩX
p,r̃ ∈ M. Since the family M is determined

by F and

t =











ρ(α1, α1) ρ(α1, α2) ... ρ(α1, αn)
ρ(α2, α1) ρ(α2, α2) ... ρ(α2, αn)

...
...

. . .
...

ρ(αn, α1) ρ(αn, α2) ... ρ(αn, αn)











where αi = π(x̃i), see (2.4), we obtain the inequality

f (t) ≥ 0.

This inequality, (2.13) and (2.10) imply (2.9).
Assume now that (2.9) holds for all f ∈ F. We must prove that each ΩX

p,r̃

belongs to M. Let ΩX
p,r̃ be a pretangent space with corresponding maximal self-

stable family X̃p,r̃. The relation ΩX
p,r̃ ∈ M means that for every f : Mn → R the

inequality
f (m(α1, ..., αn)) ≥ 0 (2.14)

holds for all α1, ..., αn ∈ ΩX
p,r̃ where

m(α1, ..., αn) =











ρ(α1, α1) ρ(α1, α2) ... ρ(α1, αn)
ρ(α2, α1) ρ(α2, α2) ... ρ(α2, αn)

...
...

. . .
...

ρ(αn, α1) ρ(αn, α2) ... ρ(αn, αn)











.

Inequality (2.14) holds automatically if

n
∨

i,j=1
ρ(αi, αj) = 0,

see Remark 2.6. Hence we may suppose that

n
∨

i,j=1
ρ(αi, αj) > 0.

If α = π(p̃), then the last inequality implies

n
∨

i=1
ρ(α, αi) > 0. (2.15)

Let x̃i = {xi,m}m∈N, i = 1, ..., n be elements of X̃p,r̃ such that αi = π(x̃i). Using
inequality (2.15) we can write

ρ(αi, αj) = lim
m→∞

d(xi,m, xj,m)

rm
=

lim
m→∞

δ(x1,m, x2,m, ..., xn,m)

rm

d(xi,m, xj,m)

δ(x1,m, x2,m, ..., xn,m)

=
n
∨

i=1
ρ(α, αi) lim

m→∞

d(xi,m, xj,m)

δ(x1,m, x2,m, ..., xn,m)
(2.16)
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for i, j = 1, ..., n. From (2.5), (2.8) and (2.16) we obtain

f







m(α1, ..., αn)
n
∨

i=1
ρ(α, αi)






= lim

m→∞
f ∗(x1,m, x2,m, ..., xn,m),

f (m(α1, ..., αn)) =

(

n
∨

i=1
ρ(α, αi)

)s0

lim
m→∞

f ∗(x1,m, x2,m, ..., xn,m) (2.17)

where s0 > 0 is the degree of homogeneity of f. Since

lim
m→∞

f ∗(x1,m, x2,m, ..., xn,m) ≥ lim inf
x1,x2,...,xn→p

f ∗(x1, ..., xn) ≥ 0

and
(

n
∨

i=1
ρ(α, αi)

)s0

> 0,

equality (2.17) implies (2.14).

Let f : Mn → R be a continuous homogeneous function with the degree of
homogeneity s0 = s0( f ) > 0, let (X, d) be a metric space with a marked point p
and let f ∗ : Xn → R be the function given by (2.8). Define the family U of metric
space (X, d) by the rule

(X, d) ∈ U ⇔ f (m(x1, ..., xn)) = 0 (2.18)

where m(x1, ..., xn) is the matrix of form (2.6).

Corollary 2.8. Let (X, d) be a metric space with a marked point p. All pretangent spaces
ΩX

p,r̃ belong to U if and only if

lim
x1,...,xn→p

f ∗(x1, ..., xn) = 0. (2.19)

Proof. Let us consider the two-point set F = { f ,− f}. Note that (− f ) is also con-
tinuous homogeneous function of degree s0. The family U is determined by F be-
cause f (m(x1, ...xn)) = 0 if and only if f (m(x1, ...xn)) ≥ 0 and − f (m(x1, ...xn)) ≥
0. Hence, by Theorem 2.7, all pretangent spaces ΩX

p,r̃ belong to U if and only if

lim inf
x1,...,xn→p

f ∗(x1, ...xn) ≥ 0 and lim inf
x1,...,xn→p

(− f ∗(x1, ...xn)) ≥ 0. (2.20)

The last inequality is the equivalent of

lim sup
x1,...,xn→p

f ∗(x1, ...xn) ≤ 0.

This inequality and the first inequality in (2.20) give (2.19).

Remark 2.9. The proof of Theorem 2.7 is a generalization of the proof of Theo-
rem 3.1 from [5] which gives the necessary and sufficient conditions under which
all pretangent spaces ΩX

p,r̃ are ptolemaic. These conditions lead to a criterion of

isometric embeddability of pretangent spaces in E1.
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The following corollary is of interest in its own right.

Corollary 2.10. (Conservation Principle) Let M be a class of nonvoid metric spaces
determined by a family F. Then for every metric space X ∈ M all pretangent spaces ΩX

p,r̃

belong to M for each p ∈ X.

Remark 2.11. It is plain to prove that in the Transfer Principle instead of the func-
tion

δ(x1, ..., xn) =
n
∨

i=1
d(xi, p)

we can use an arbitrary function ε : Xn → [0, ∞) fulfilling the restrictions

ε(x1, ..., xn) = 0 ⇔ x1 = ... = xn = p

and
1

c
≤ lim inf

x1,...,xn→p

ε(x1, ..., xn)

δ(x1, ..., xn)
≤ lim sup

x1,...,xn→p

ε(x1, ..., xn)

δ(x1, ..., xn)
≤ c

with some constant c ∈ [1, ∞). Here we put

ε(p, ..., p)

δ(p, ..., p)
= 1.

For example we can take

ε(x1, ..., xn) =

(

n

∑
i=1

ds(p, xi)

) 1
s

with s > 0.

3 Infinitesimal versions of Menger’s and Schoenberg’s embed -

ding theorems

In this section we start with the reformulation of the Menger Embedding
Theorem in a suitable form for application of the Transfer Principle. Recall that
the Cayley-Menger determinant is the next determinant

Dk(x0, x1, ..., xk) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 ... 1
1 0 d2(x0, x1) ... d2(x0, xk)
1 d2(x1, x0) 0 ... d2(x1, xk)
...

...
...

. . .
...

1 d2(xk, x0) d2(xk, x1) ... 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where (x0, x1, ..., xk) ∈ Xk+1.

Proposition 3.1. Let n ∈ N. A metric space X is isometrically embeddable in En if and
only if

(−1)k+1Dk(x0, x1, ..., xk) ≥ 0 (3.1)
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for every (x0, x1, ..., xk) ∈ Xk+1 with k ≤ n and

Dk(x0, x1, ..., xk) = 0 (3.2)

for every (x0, x1, ..., xk) ∈ Xk+1 with k = n + 1 and k = n + 2.

To prove Proposition 3.1 we shall use some known results of K. Menger and
L. Blumenthal. Our first lemma is the simplest form of the Menger Embedding
Theorem.

Lemma 3.2. A metric space X is isometrically embeddable in En if and only if each set
A ⊆ X with cardA ≤ n + 3 is isometrically embeddable in En.

The clear proof of it can be found in [[6], p.95].
The following lemma is a corollary of Blumenthal’s solution of the problem

of isometric embedding of semimetric spaces in the Euclidean spaces, see [[6],
p.105].

Lemma 3.3. Let X be a finite metric space with cardX = n+ 1. Then X is isometrically
embeddable in En if and only if the Cayley-Menger determinant Dk(x0, x1, ..., xk) has the
sign of (−1)k+1 or vanishes for every (x0, x1, ..., xk) ∈ Xk+1, k = 1, 2, ..., n.

Proof of Proposition 3.1. Suppose that X is isometrically embeddable in En.
Let (x0, x1, ..., xk) ∈ Xk+1. If k ≤ n, then inequality (3.1) follows directly from
Lemma 3.3. Let k = n + 1 or k = n + 2. We can consider En as a subspace of the
Euclidean space Ek.

Let F be an isometric embedding of X in Ek.
Write x∗0 := F(x0), x∗1 := F(x1), ..., x∗k := F(xk) and denote by V(x∗0 , x∗1 , ..., x∗k)

the volume of the simplex with vertices x∗0 , x∗1 , ..., x∗k . This simplex lies in the sub-

space En of the space Ek. Thus, we have

V(x∗0 , x∗1 , ..., x∗k) = 0. (3.3)

Since

V2(x∗0 , x∗1 , ..., x∗k) =
(−1)k+1

2k(k!)2
Dk(x

∗
0 , x∗1 , ..., x∗k) =

(−1)k+1

2k(k!)2
Dk(x0, x1, ..., xk), (3.4)

see, for example, [[6], p.98], these equalities and (3.3) imply (3.2).
Conversely, suppose for every (x0, x1, ..., xk) ∈ Xk+1 we have (3.1) if k ≤ n or

(3.2) if k = n + 1, k = n + 2. We must show that X is isometrically embeddable in
En. By Lemma 3.2 it is sufficient to prove that every A ⊆ X with cardA ≤ n + 3
has this property. Note that it follows directly from Lemma 3.3 if cardA ≤ n + 1.

Let us consider the case where

A = {x0, x1, ..., xn, xn+1, xn+2}

(the case A = {x0, ..., xn, xn+1} is more simple and can be considered similarly).
By Lemma 3.3, there is an isometric embedding F : A → En+2, F(x0) = x∗0 , ...,
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F(xn+2) = x∗n+2. We may assume, without loss of generality, that x∗0 = 0. Denote

by L the linear subspace of En+2 generated by the vectors x∗1 , ..., x∗n, x∗n+1, x∗n+2. It
is clear that A is isometrically embeddable in En if dimL ≤ n. If the last inequality
does not hold, then the set {x∗1 , ..., x∗n, x∗n+1, x∗n+2} contains some linear indepen-
dent vectors x∗∗1 , ..., x∗∗n , x∗∗n+1.

Let x
′

1, ..., x
′

n, x
′

n+1 be elements of the set {x1, ..., xn, xn+1, xn+2} such that

x∗∗1 = F(x
′

1), x∗∗2 = F(x
′

2), ..., x∗∗n+1 = F(x
′

n+1).

Since x∗∗1 , x∗∗2 , ..., x∗∗n+1 are linear independent, we have

V(x∗0 , x∗∗1 , ..., x∗∗n+1) > 0.

Using the last inequality and (3.4) we obtain

Dk(x0, x
′

1, ..., x
′

n, x
′

n+1) 6= 0,

contrary to equality (3.2).

Let (X, d) be a metric space with a marked point p. Similarly (2.8) define the
functions Θk+1 : Xk+1 → R by the rule

Θk+1(x0, x1, ..., xk) :=














(−1)k+1Dk(x0, x1, ..., xk)

(
k
∨

n=0
d(xn, p))2k

, if (x0, x1, ..., xk) 6= (p, p, ..., p)

0, if (x0, x1, ..., xk) = (p, p, ..., p)

(3.5)

where
k
∨

n=0
d(xn, p) := max

0≤n≤k
d(xn, p).

The following theorem gives necessary and sufficient conditions under which
all pretangent spaces have isometric embeddings in En.

Theorem 3.4. Let (X, d) be a metric space with a marked point p and let n ∈ N. Every
ΩX

p,r̃ is isometrically embeddable in En if and only if inequality

lim inf
x0,x1,...,xk→p

Θk+1(x0, x1, ..., xk) ≥ 0 (3.6)

holds for all k ≤ n and the equality

lim
x0,x1,...,xk→p

Θk+1(x0, x1, ..., xk) = 0 (3.7)

holds for k = n + 1 and k = n + 2.

The theorem can be proved by application of Proposition 3.1, Theorem 2.7 and
Corollary 2.8 with M equals the class of all metric spaces which are embeddable
in En and

F = {D1, D2, ..., Dn} ∪ {Dn+1,−Dn+1, Dn+2,−Dn+2}.

Note only that all Cayley-Menger determinants D1, ..., Dn, Dn+1 and Dn+2 are
continuous functions on M2, ..., Mn+1, Mn+2 and Mn+3 and with degrees of ho-
mogeneity equal 2, ..., 2n, 2(n + 1), 2(n + 2) respectively.
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Remark 3.5. The main information about Cayley-Menger determinants can be
found in the books of M. Berger [3] and L. Blumenthal [6]. These determinants
play an important role in some questions of metric geometry. In 1928 Menger
used them to characterize the Euclidean spaces solely in metric terms. They also
participate in metric characterization of Riemann’s manifolds of the constant sec-
tional curvature, obtained by Berger [4]. In a recent paper [8], it was proved that
the Cayley-Menger determinant of an n−dimensional simplex is an absolutely ir-
reducible for n ≥ 3. The following results, indicated also in [8], are found in using
of these determinants: this is a proof of the bellows conjecture, which asserts that
all flexible polyhedra keep a constant volume in 3-dimensional Euclidean space
(see, [7], [17]); the study of the spatial form of the molecules in the stereochem-
istry [15].

The following is immediate from the Conservation Principle.

Corollary 3.6. If X is a subset of En and p ∈ X, then all pretangent spaces ΩX
p,r̃ are

isometrically embeddable in En.

Let X be a metric space with a marked point p. Define the second pretangent
space to X at the point p ∈ X as a pretangent space to a pretangent space ΩX

p,r̃.

More generally suppose we have constructed all n−th pretangent spaces to X at
p. We shall denote such spaces as Ωn = (Ωn, ρn) .

Definition 3.7. A metric space Y is an (n + 1)−th pretangent space to X at p if there
are an n−th pretangent space (Ωn, ρn) and a point pn ∈ Ωn and a normalizing sequence
r̃n and a maximal self-stable family Ω̃n

pn,r̃n
⊆ Ω̃n such that Y is the metric identification

of the pseudometric space
(

Ω̃n
pn ,r̃n

, ρ̃n

)

.

Corollary 3.8. Let X be a metric space with a marked point p and let k ∈ N. If each
(first) pretangent space to X at p is isometrically embeddable in Ek, then for every n ≥ 2
all n−th pretangent spaces to X at p are also isometrically embeddable in Ek.

Let ajk, 0 ≤ j, k ≤ n be real constants such that ajj = 0 and ajk = akj if k 6= j.
The following is Schoenberg’s embedding theorem from [18].

Theorem 3.9. A necessary and sufficient condition that ajk be the lengths of the edges of

an n−simplex lying in Em, but not in El with l < m is that the quadratic form

F(y1, y2, ..., yn) =
n

∑
j,k=1

(a2
0j + a2

0k − a2
jk)yjyk (3.8)

be positive semidefinite and of rank m.

For applications of this result to embeddings of pretangent spaces in Em we
introduce the determinant Sch(x0, x1, ..., xn). Let (X, d) be a metric space and let
(x0, x1, ..., xn) ∈ Xn+1. Write

Sch(x0, x1, ..., xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

τ11 τ12 ... τ1n

τ21 τ22 ... τ2n
...

...
...

...
τn1 τn2 ... τnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.9)
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where
τij = d2(x0, xi) + d2(x0, xj)− d2(xi, xj) (3.10)

for 1 ≤ i, j ≤ n.

Lemma 3.10. Let X be a finite metric space with cardX=n + 1, n ≥ 1. Then X is
isometrically embeddable in En if and only if the inequality

Sch(x0, x1, ..., xk) ≥ 0 (3.11)

holds for every (x0, x1, ..., xk) ∈ Xk+1, k = 1, 2, ..., n.

Proof. Suppose that X is isometrically embeddable in En. The determinant
Sch(x0, x1, ..., xk) vanishes if there is i0 ∈ [1, ..., k] with xi0 = x0 or there are
distinct i0, j0 ∈ [1, ..., k] such that xi0 = xj0 . Hence it is sufficient to show (3.11)
if all xi, i ∈ [0, ..., n] are pairwise distinct. Since X is isometrically embeddable
in En, Theorem 3.9 implies that quadratic form (3.8) is positive semidefinite. A
well-known criterion states that a quadratic form is positive semidefinite if and
only if all principal minors of the matrix of this form are nonnegative, see, for
example,[13, p. 272]. Hence (3.11) follows.

Conversely, suppose that inequality (3.11) holds for all (x0, x1, .., xk) ∈ Xk+1,
k = 1, ..., n. The criterion given above, implies that quadratic form (3.8) is positive
semidefinite. Let us denote by m the rank of this form. It is clear that m ≤ n.
Consequently there is an isometric embedding of X in Em and thus in En also.

The above lemma is closely related to the main result of [16]. The next propo-
sition is similar to Proposition 3.1.

Proposition 3.11. Let n ∈ N and let (X, d) be a nonvoid metric space. The metric space
(X, d) is isometrically embeddable in En if and only if the inequality

Sch(x0, x1, ..., xk) ≥ 0 (3.12)

holds for every (x0, x1, ..., xk) ∈ Xk+1 with k = 1, ..., n and the equality

Sch(x0, x1, ..., xk) = 0 (3.13)

holds for every (x0, x1, ..., xk) ∈ Xk+1 with k = n + 1, n + 2.

Proof. If (3.12) holds for all (x0, x1, ..., xk) ∈ Xk+1, k = 1, ..., n and (3.13) holds
for all (x0, x1, ..., xk) ∈ Xk+1, k = n + 1, n + 2, then quadratic form (3.8) is posi-
tive semidefinite and the rank of this form is at most n. (Recall that the rank of
quadratic form is the rank of matrix of this form.) Consequently if A is a subspace
of X and cardX ≤ n + 2 then, by Lemma 3.10, A is isometrically embeddable in
En. Now Lemma 3.2 implies that X is also isometrically embeddable in En.

It still remains to note that if X is isometrically embeddable in En, then (3.12)
and (3.13) follows directly from Theorem 3.9 and Lemma 3.10.

Let (X, d) be a metric space with marked point p. Define the function Sk+1 :
Xk+1 → R by analogy with the function Θk+1

Sk+1(x0, x1, ..., xk) :=











Sch(x0,x1,...,xk)

(
k
∨

n=0
d(xn ,p))2k

, if (x0, x1, ..., xk) 6= (p, p, ..., p)

0, if (x0, x1, ..., xk) = (p, p, ..., p).

(3.14)
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The next theorem is similar to Theorem 3.4 but it presents some other necessary
and sufficient conditions of isometric embeddability of all pretangent spaces to X
at the marked point p.

Applying the Transfer Principle and Corollary 2.8 to Proposition 3.11 we ob-
tain the following infinitesimal analog of Schoenberg’s Embedding Theorem.

Theorem 3.12. Let (X, d) be a metric space with a marked point p and let n ∈ N. Every
ΩX

p,r̃ is isometrically embeddable in En if and only if the inequality

lim inf
x0,x1,...,xk→p

Sk+1(x0, x1, ..., xk) ≥ 0 (3.15)

holds for all k ≤ n and the equality

lim inf
x0,x1,...,xk→p

Sk+1(x0, x1, ..., xk) = 0 (3.16)

holds for all k = n + 1 and k = n + 2.

4 Application of Blumenthal’s embedding theorem

Theorem 3.4 and Theorem 3.12 proved in the previous section describe some
necessary and sufficient conditions under which all pretangent spaces ΩX

p,r̃ are

isometrically embeddable in En with given n but it is possible that there exists
an isometric embedding of a fixed ΩX

p,r̃ in En even if these conditions do not oc-

cur. We study this situation in the present section. It turns out that a suitable
tool for these studies is an infinitesimal modification of Blumenthal’s embedding
theorem. We first reformulate this theorem in a appropriate form.

Theorem 4.1. A metric space (X, d) is isometrically embeddable in En, n ≥ 1, if and
only if there are some points a0, a1, ..., an ∈ X such that

(−1)k+1Dk(a0, a1, ..., ak) > 0 (4.1)

for each k = 1, 2, ..., n and the equalities

Dk+1(a0, a1, ..., an, y) = 0, Dk+2(a0, a1, ..., an, y, z) = 0 (4.2)

hold for all y, z ∈ X. Moreover if (4.1) holds for k = 1, 2, ..., n and (4.2) holds for all
y, z ∈ X, then there are no isometric embeddings of X in Em with m < n.

The proof of Theorem 4.1 is a straightforward application of theorems 41.1 and
42.1 and of Lemma 42.1 from [6] to the standard form of Blumenthal’s embedding
theorem, see Theorem 38.1 in [6], and we omit it here.

Theorem 4.2. Let (X, d) be a metric space with a marked point p. If there are a tangent
space ΩX

p,r̃ and a natural number n such that ΩX
p,r̃ is isometrically embeddable in En but

there are no isometric embeddings of this ΩX
p,r̃ in El with l < n, then there exist some

sequences

x̃i = {xi
m}m∈N ∈ X̃, i = 0, 1, ..., n,

having the following properties:
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(i) The limit relations

lim
m→∞

x0
m = lim

m→∞
x1

m = ... = lim
m→∞

xn
m = p (4.3)

and
n
∧

k=1
lim inf

m→∞
Θk+1(x

0
m, x1

m, ..., xk
m) > 0 (4.4)

hold;

(ii) The equalities

lim
m→∞

Θn+2(x
0
m, x1

m, ..., xn
m, ym) = 0 (4.5)

and
lim

m→∞
Θn+3(x

0
m, x1

m, ..., xn
m, ym, um) = 0 (4.6)

hold for ỹ = {ym}m∈N ∈ X̃, ũ = {um}m∈N ∈ X̃ if

lim
m→∞

um = lim
m→∞

ym = p. (4.7)

Conversely, suppose that there are x̃0, ..., x̃n ∈ X̃ having properties (i)-(ii), then there is a
pretangent space ΩX

p,r̃ which is isometrically embeddable in En but there are no isometric

embeddings of this ΩX
p,r̃ in El with l < n.

Recall that the functions Θk were defined by (3.5).

Lemma 4.3. Let (X, d) be a metric space with a marked point p, B a countable subfamily
of X̃, r̃ = {rn}n∈N a normalizing sequence and let X̃p,r̃ be a maximal self-stable family.
Suppose that the inequality

lim sup
n→∞

d(yn, p)

rn
< ∞ (4.8)

holds for every ỹ = {yn}n∈N ∈ B and that a pretangent space ΩX
p,r̃ = π(X̃p,r̃) is

separable and tangent.Then there is a strictly increasing, infinite sequence {nk}k∈N of
natural numbers such that for every ỹ = {yn}n∈N ∈ B there exists z̃ = {zn}n∈N ∈

X̃p,r̃ with z̃
′
= ỹ

′
, i.e., the equality

znk
= ynk

(4.9)

holds for all k ∈ N.

For the proof see Proposition 3 in [1].

Proof of Theorem 4.2. Suppose that there are a tangent space ΩX
p,r̃ and a natural n

such that ΩX
p,r̃ is isometrically embeddable in En but there are no isometric em-

beddings of ΩX
p,r̃ in El with l < m. By Theorem 4.1 the metric space ΩX

p,r̃ contains

some points β0, β1, .., βn such that

(−1)k+1Dk(β0, ..., βk) > 0 (4.10)

for k = 1, ..., n and

Dn+1(β0, β1, .., βn, γ) = Dn+2(β0, β1, .., βn, γ, v) = 0 (4.11)
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for all γ, v ∈ ΩX
p,r̃. Let X̃p,r̃ be a maximal self-stable family corresponding ΩX

p,r̃ and

let x̃i = {xi
m}m∈N, i = 0, .., n be elements of X̃p,r̃ such that π(x̃i) = βi, i = 0, ..., n,

where π is the natural projection. We claim that these x̃0, ..., x̃n have properties (i)
and (ii).

To prove it note firstly that (4.3) follows from (2.2). Moreover we have the
equality

lim
m→∞

1

rm

(

k
∨

i=0
d(xi

m, p)

)

=
k
∨

i=0
ρ(α, βi)

for k = 1, ..., n where α = π(p̃). This equality and (3.5) imply

n
∧

k=1
lim inf

m→∞
Θk+1(x

0
m, ..., xk

m) =

n
∧

k=1











1
(

k
∨

i=0
ρ(α, bi)

)2k
lim inf

m→∞

(−1)k+1Dk(x
0
m, ..., xk

m)

r2k
m











=
n
∧

k=1











1
(

k
∨

i=0
ρ(α, bi)

)2k
(−1)k+1Dk(β0, ..., βk)











. (4.12)

It should be pointed here that

k
∨

i=0
ρ(α, βi) > 0 (4.13)

for k = 1, .., n. Indeed in the opposite case we have α = β0 = β1 = ... = βk that
implies Dk(β0, β1, ..., βk) = 0 for k = 1, ..., n, contrary to (4.10). Now using (4.10),
(4.12) and (4.13) we obtain (4.4).

Let us prove property (ii). Let ỹ = {ym}m∈N ∈ X̃ be a sequence such that

lim
m→∞

ym = p

and let c be a limit point of the sequence {Θn+2(x
0
m, x1

m, ..., xn
m, ym)}m∈N, i.e.,

lim
k→∞

Θn+2(x
0
mk

, x1
mk

, ..., xn
mk

, ymk
) = c (4.14)

for some sequence {mk}k∈N. We must prove c = 0.
Inequalities (2.12) imply that the function Θn+2 is bounded from above and

from below. Consequently c is finite. For convenience we write x1,0
k = x0

mk
, ...,

x1,n
k = xn

mk
, y1

k = ymk
and r1

k = rmk
so that we have

lim
k→∞

Θn+2(x
1,0
k , x1,1

k , ..., x1,n
k , y1

k) = c. (4.15)

Note also that the space ΩX
p,r̃ is tangent by the condition of the theorem and sep-

arable as an isometrically embeddable in En space. Furthermore, according to
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Remark 2.5 the family X̃p,r̃′ = inr̃′(X̃p,r̃), see (2.4), is maximal self-stable w. r. t.

the normalizing sequence r̃′ = {rmk
}k∈N, so that we can use Lemma 4.3. If the

inequality

lim sup
k→∞

d(y1
k , p)

r1
k

< ∞ (4.16)

holds, then using this lemma with B consisting of the unique element {y1
k}k∈N

we can find {z1
k}k∈N ∈ X̃p,r̃′ and strictly increasing infinite sequence {kj}j∈N of

natural numbers such that
y1

kj
= z1

kj

for all j ∈ N. Using Remark 2.5 we see that there is z̃ = {zm}m∈N ∈ X̃p,r̃ such
that

zmk
= z1

k

for all k ∈ N. Write γ = π(z̃). Similarly (4.12) we have

c = lim
k→∞

Θn+2(x
1,0
k , x1,1

k , ..., x1,n
k , y1

k) = lim
j→∞

Θn+2(x
1,0
kj

, x1,1
kj

, ..., x1,n
kj

, z1
kj
)

= lim
m→∞

Θn+2(x
0
m, ..., xn

m, zm) =

1
((

n
∨

i=0
ρ(α, βi)

)

∨ (ρ(α, γ))

)2(n+1)
(−1)n+2Dn+1(β0, ..., βn, γ). (4.17)

It follows from (4.11) and (4.13) that

0 = signDn+1(β0, ..., βn, γ) = (−1)(n+2)sign c.

Thus c = 0 if (4.16) holds. Suppose contrary that

lim sup
k→∞

d(y1
k , p)

r1
k

= ∞.

Let ỹ1′ = {y1
kj
}k∈N be a subsequence of {y1

k}k∈N such that

lim
j→∞

d(y1
kj

, p)

r1
kj

= ∞. (4.18)

In this case we have
(

n
∨

i=0
d(x1,i

kj
, p)

)

∨
(

d(y1
kj

, p)
)

= d(y1
kj

, p) (4.19)

for all sufficiently large j. In addition, (4.18) and (4.19) imply the limit relations

lim
j→∞

d(x1,s
kj

, x1,t
kj
)

(

n
∨

i=0
d(x1,i

kj
, p)

)

∨
(

d(y1
kj

, p)
)

= 0, (4.20)
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lim
j→∞

d(x1,t
kj

, y1
kj
)

(

n
∨

i=0
d(x1,i

kj
, p)

)

∨
(

d(y1
kj

, p)
)

= 1 (4.21)

for all s, t ∈ {1, 2, ..., n}. Consequently we have

lim
j→∞

Θn+2(x
1,0
kj

, x1,1
kj

, ..., x1,n
kj

, y1
kj
) = (−1)n+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 ... 1 1
1 0 0 ... 0 1
1 0 0 ... 0 1
...

...
... ...

...
...

1 0 0 ... 0 1
1 1 1 ... 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.22)

The second row of this determinant coincides with the third one, thus the deter-
minant is zero. Hence in (4.14) we have c = 0.

Let us turn to equality (4.6). Consider, as in (4.15), two sequences ỹ = {ym}m∈N

and ũ = {um}m∈N such that

p = lim
m→∞

ym = lim
m→∞

um

and
lim
k→∞

Θn+3(x
1,0
k , x1,1

k , .., x1,n
k , y1

k , u1
k) = c (4.23)

where the constant c is an arbitrary limit number of the sequence

{Θn+3(x
0
m, x1

m, ..., xn
m, ym, um)}m∈N.

As in the proof of equality (4.5) we want to use Lemma 4.3 for the demonstration
of equality c = 0. In accordance with this lemma it is relevant to consider three
possible cases:

(i1) lim sup
k→∞

d(y1
k , p)

r1
k

< ∞ and lim sup
k→∞

d(u1
k , p)

r1
k

< ∞;

(i2) lim sup
k→∞

d(y1
k , p)

r1
k

< ∞ and lim sup
k→∞

d(u1
k , p)

r1
k

= ∞

or

lim sup
k→∞

d(y1
k , p)

r1
k

= ∞ and lim sup
k→∞

d(u1
k , p)

r1
k

< ∞;

(i3) lim sup
k→∞

d(y1
k , p)

r1
k

= ∞ and lim sup
k→∞

d(u1
k , p)

r1
k

= ∞.

Reasoning as in the proofs of (4.17) and (4.22) we can show that c = 0 if (i1) or (i2)
holds. Thus it is sufficient to consider only case (i3). Passing to the subsequence
we may suppose that

lim
j→∞

d(y1
kj

, p)

r1
kj

= lim
j→∞

d(u1
kj

, p)

r1
kj

= ∞. (4.24)
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Indeed, if there are no subsequences for which (4.24) holds, then we can reduce
the situation to cases (i1) or (i2) which were considered above. In addition to
(4.24) we may assume that there are k1, k2 ∈ (0, ∞) such that

lim
j→∞

d(y1
kj

, p)

d(u1
kj

, p)
= k1 (4.25)

and

lim
j→∞

d(y1
kj

, u1
kj
)

d(u1
kj

, p)
= k2 (4.26)

because if

lim
j→∞

d(y1
kj

, p)

d(u1
kj

, p)
= 0 or lim

j→∞

d(y1
kj

, p)

d(u1
kj

, p)
= ∞, (4.27)

then, similarly (4.22), we find

lim
k→∞

Θn+3(x
1,0
k , x1,1

k , ..., x1,n
k , y1

k , u1
k) = (−1)n+3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 ... 1 1
1 0 0 ... 0 1
1 0 0 ... 0 1
...

...
... ...

...
...

1 0 0 ... 0 1
1 1 1 ... 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

or, respectively,

lim
k→∞

Θn+3(x
1,0
k , x1,1

k , ..., x1,n
k , y1

k, u1
k) = (−1)n+3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 ... 1 1
1 0 0 ... 0 1
1 0 0 ... 0 1
...

...
... ...

...
...

1 1 1 ... 1 0
1 0 0 ... 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Limit relations (4.24), (4.25) and (4.26) imply that the quantity

(−1)n+3 lim
k→∞

Θn+3(x
1,0
k , x1,1

k , ..., x1,n
k , y1

k , u1
k)

equals the determinant of the matrix with the second and third rows of the form

(1, 0, 0, ..., 0, k1, 1) if k1 < 1 or (1, 0, 0, ..., 0, 1, k1) if k1 ≥ 1.

Consequently we have

lim
k→∞

Θn+3(x
1,0
k , x1,1

k , ..., x1,n
k , y1

k, u1
k) = c = 0

in all possible cases and (4.6) follows.
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Suppose now that there exist some sequences x̃i, i = 0, ..., n, with the proper-
ties (i) and (ii). Limit relations (4.3) imply that the quantities

rm :=
n
∨

i=0
d(xi

m, p)

become vanishingly small with m → ∞. Consequently we can consider r̃ =
{rm}m∈N as a normalizing sequence. As in the proof of the Theorem 3.4, go-
ing to subsequence we can assume all x̃i and p̃ to be mutually stable. Let X̃p,r̃ be

a maximal self-stable family such that x̃i ∈ X̃p,r̃ for i = 0, ..., n and let ΩX
p,r̃ be the

metric identification of X̃p,r̃. Write

α0 = π(x̃0), α1 = π(x̃1), ..., αn = π(x̃n)

where π is the natural projection of X̃p,r̃ on ΩX
p,r̃. Going to the limit under m → ∞

and using (4.4) we obtain

n
∧

k=1
lim inf

m→∞
Θk+1(x

0
m, x1

m, ..., xk
m) =

n
∧

k=1
(−1)k+1Dk(α0, α1, ..., αk) > 0. (4.28)

Similarly for all β, γ ∈ ΩX
p,r̃ property (ii) implies that

lim
m→∞

Θn+2(x
0
m, x1

m, ..., xn
m, ym) = lim

m→∞
Θn+3(x

0
m, x1

m, ..., xn
m, ym, um)

= (−1)n+2D(α0, α1, ..., αn, β) = (−1)n+3Dn+2(α0, α1, ..., αn, β, γ) = 0, (4.29)

where {ym}m∈N ∈ X̃p,r̃ and {um}m∈N ∈ X̃p,r̃ such that π({ym}m∈N) = β and

π({um}m∈N) = γ. Hence by Theorem 4.1 the pretangent space ΩX
p,r̃ has an iso-

metric embedding in En but there are no isometric embeddings of ΩX
p,r̃ in El with

l < n, as required.
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