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Abstract

Let η be a Real bundle, in the sense of Atiyah, over a space X. This is a
complex vector bundle together with an involution which is compatible with
complex conjugation. We use the fact that BU has a canonical structure of a
conjugation space, as defined by Hausmann, Holm, and Puppe, to construct
equivariant Chern classes in certain equivariant cohomology groups of X
with twisted integer coefficients. We show that these classes determine the
(non-equivariant) Chern classes of η, forgetting the involution on X, and the
Stiefel-Whitney classes of the real bundle of fixed points.

Introduction

Let X be a topological space and η a complex bundle over X. A Real structure
on η, in the sense of Atiyah [1], is given by a couple of compatible involutions
on X and on the total space of η such that the latter is complex anti-linear. The
machinery of K-theory applies to these bundles and yields KR(X), called Real
K-theory. It comes equipped with two natural transformations: the forgetful map
KR(X) → KU(X) and the “fixed points map” KR(X) → KO(Xτ), where Xτ de-
notes the subspace of fixed points. Since its introduction by Atiyah, Real K-theory
has proved to be a useful tool that interpolates between complex K-theory and
ordinary real K-theory. For instance it allows one to prove in a unified way both
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Bott periodicity phenomena. It is therefore natural to search for a theory of char-
acteristic classes for Real bundles, called equivariant Chern classes for reasons
that will be clear from their construction, and, ideally, these should interpolate
between ordinary Chern classes and Stiefel-Whitney classes.

Kahn provided such a construction in [12]. The equivariant Chern classes
c̃n(η) live in the equivariant cohomology H2n

C2
(X; Z(n)) with twisted integral co-

efficients, where the action of the cyclic group of order 2 on Z(n) is by multipli-
cation by (−1)n. When the involution on X is trivial, he shows that the mod 2
reduction of the equivariant Chern classes are the Stiefel-Whitney classes of η.
His ideas have found applications in algebro-geometric contexts, such as the
work of dos Santos and Lima-Filho, [7].

In this article we adopt a slightly different point of view. We take advantage
of the existence of universal Real bundles, namely the canonical bundles over
BU(n) with involution induced by complex conjugation, to carry out our con-
struction. The key ingredient which makes the analysis of the situation quite
elementary is that BU(n) is a so-called spherical conjugation space, a notion intro-
duced by Hausmann, Holm, and Puppe in [10]. It turns out that the conjugation
structure, which lives at the level of mod 2 cohomology, upgrades to the level
of the (correct choice of) twisted integral coefficients. The bundle of fixed points
in the universal Real bundle is the universal bundle for real K-theory with base
space BO(n), and this explains the relationship between our new characteristic
classes and the Stiefel-Whitney classes.

Proposition 5.2. Let η be a Real bundle over X and ητ the associated real bundle of fixed

points. Then the image of c̃n(η) in H∗(Xτ ; F2)[u] is
n

∑
i=0

Sqi(wn(η
τ))un−i.

As a particular case, we get back Kahn’s main result in [12] about Real bun-
dles over spaces with trivial involution. Notwithstanding Kahn’s construction,
we believe that the introduction of the “conjugation space” structure sheds some
more light on the properties of the equivariant Chern classes and in particular on
the conceptual reasons of the appearance of the twisting of the coefficients.

Acknowledgements. We would like to thank Jean-Claude Hausmann for intro-
ducing us to the beautiful theory of conjugation spaces.

1 Notation and basic facts about conjugation spaces

The cyclic group of order two is C2 and F2 is the field of 2 elements. The graded
ring H∗(BC2; Z) is isomorphic to the ring Z[a]/(2a) where a has degree 2 and
the mod 2 cohomology H∗(BC2; F2) is isomorphic to F2[u] a polynomial algebra
on a generator u of degree 1. If X is a topological space equipped with a (left)
C2-action (often denoted by τ), the Borel construction, or the homotopy orbits,
XhC2

is the space EC2 ×C2
X. The equivariant cohomology functor is defined on

C2-spaces as the integral cohomology of the Borel construction (and likewise with
mod 2 coefficients): H∗

C2
(X; Z) ∼= H∗(XhC2

; Z). The inclusion of the fixed points

Xτ = XC2 in X induces a restriction homomorphism r : H∗
C2
(X; F2) → H∗

C2
(Xτ ; F2).



Conjugation spaces and equivariant Chern classes 79

The latter is isomorphic to H∗(X; F2)⊗ F2[u] since the action of C2 is trivial on the
fixed points.

Let us give now the basic facts about conjugation spaces which we will need
to construct equivariant Chern classes. A conjugation space is a C2-space together
with an H∗-frame (κ, σ), i.e.

a) an additive isomorphism κ : H2∗(X; F2) → H∗(Xτ ; F2) dividing degrees
by 2,

b) an additive section σ : H2∗(X; F2) → H2∗(XhC2
; F2) of the restriction map

ρ : H2∗(XhC2
; F2) → H2∗(X; F2),

which satisfy the conjugation equation:

r ◦ σ(x) = κ(x)um + ltm

for all x ∈ H2m(X; F2) and all m ∈ N, where ltm is a polynomial in the variable u
of degree less than m.

A conjugation cell is a C2-space which is equivariantly homeomorphic to the
unit disk in Cn equipped with complex conjugation. A spherical conjugation com-
plex is a CW-complex X constructed from conjugation cells with equivariant at-
taching maps. Hausmann, Holm, and Puppe prove in their foundational article
[10] that any spherical conjugation complex is a conjugation space. In fact, the
original motivating examples of conjugation spaces are the complex Grassmani-
ans Grn,k(C), which are spherical. In particular the spaces BU(n), for any n ≥ 1,
and BU are spherical conjugation spaces. The main property of an H∗-frame that
we will keep using in this article is the following.

Theorem 1.1 (Hausmann, Holm, Puppe [10]). The morphisms κ and σ in an
H∗-frame are ring homomorphisms.

2 Why one has to twist the coefficients

We wish to construct equivariant Chern classes for Real bundles in equivariant
cohomology groups with integral coefficients and our main requirement is that
one recovers the classical Chern classes by forgetting the C2-action. Thus, a first
naı̈ve, but natural, place to look for such classes is in the integral equivariant co-
homology H∗

C2
(X; Z) with trivial coefficients. We will illustrate in a fundamental

example why this does not work. It will show us at the same time how to calibrate
the correct answer.

Example 2.1. Consider the sphere S2 equipped with the reflection through the
equatorial circle. This is a spherical conjugation space obtained by identifying the
boundary of a conjugation disc to a point. The Hopf bundle over S2 is naturally
a Real bundle, so its first equivariant Chern class should correspond to a copy of
the integers in H2

C2
(S2; Z) = H2

(
(S2)hC2

; Z
)
.

But in this case it is easy to identify the Borel construction, since S2 consists
of an equatorial copy of S1 with trivial action and two discs, the hemispheres,



80 W. Pitsch – J. Scherer

transposed by τ. As a consequence S2
hC2

is equivalent to the half-smash S1
⋉RP∞,

hence H2
C2
(S2; Z) ∼= Z/2. As there is no non-trivial homomorphism from Z/2 to

H2(S2; Z) ∼= Z, there is no way to recover c2(η) from any class in H2
C2
(S2; Z).

However, the Hopf bundle over S4 can also be seen as a Real bundle over
the conjugation sphere of dimension 4 and one computes here that H4

C2
(S4; Z) ∼=

Z ⊕ Z/2. There is room here for an equivariant Chern class!

A closer inspection of the examples shows that the difference can be stated as
follows: on cells of dimension 2 mod 4 the conjugation reverses the orientation
and on cells of dimension 0 mod 4 it preserves the orientation1. This leads us
to look for even degree Chern classes in the ordinary equivariant cohomology
group H∗

C2
(X; Z) and for odd degree Chern classes in the equivariant cohomology

H∗
C2
(X; Z(1)) with twisted coefficients Z(1), the C2-module Z endowed with the

change of sign action.
Let us denote by Z(n) the C2-module Z where the action is given by multi-

plication by (−1)n. It is straightforward to see that HomZ(Z(i), Z(j)) ∼= Z(i + j)
and Z(i) ⊗Z Z(j) ∼= Z(i + j). Because the module structure depends only on the
parity of n, we only keep the modules Z(0) and Z(1) and notice the following.

Remark 2.2. Let X be a spherical conjugation complex. The cup product turns
the direct sum H∗

C2
(X; Z(0)) ⊕ H∗

C2
(X; Z(1)) into a commutative algebra, which

is natural in X with respect to equivariant maps. We observe that the submodule

H∗
C2
(X; tZ) =

⊕

n≥0

H4n
C2
(X; Z(0)) ⊕

⊕

n≥0

H4n+2
C2

(X; Z(1))

is a subalgebra.

We turn now to a more detailed analysis of the algebra H∗
C2
(X, tZ) for a spheri-

cal conjugation complex. For this we compute the Leray-Serre spectral sequences
with twisted coefficients Z(0) and Z(1) associated to the canonical fibration

X
�

�

// XhC2
// // BC2 .

We have to compute first the cohomology H∗(X, Z(n)) as C2-modules, [6, Sec-
tion VII.7], where the action of C2 is the diagonal one, induced by the action on
Ccell
∗ (X) and Z(n). We write Hn(X; Z) for the non-equivariant cohomology of X

with trivial action. A spherical conjugation complex has only even dimensional
cells by construction so that one finds:

Hn(X; Z(0)) =





Z(0) if n = 0,
0 if n is odd,

Hn(X; Z) ⊗ Z(0) if n = 0 mod 4,
Hn(X; Z) ⊗ Z(1) if n = 2 mod 4.

Hn(X; Z(1)) =





Z(1) if n = 0,
0 if n is odd,

Hn(X; Z) ⊗ Z(1) if n = 0 mod 4,
Hn(X; Z) ⊗ Z(0) if n = 2 mod 4.

1A conjugation cell of dimension 2n can be viewed as an open unit disk in Cn with a C2-action
induced by complex conjugation, in particular it has a canonical orientation.
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As for the cohomology of BC2 one has H∗(BC2; Z(0)) ∼= Z[a]/(2a) where a has
degree 2, and H∗(BC2; Z(1)) ∼= ⊕i≥0Z/2〈e2i+1〉 where e2i+1 has degree 2i + 1.
Both spectral sequences have a vertical periodicity pattern of order 4 starting from
the first line on.

q
0 mod 4 ⊕Z 0 ⊕Z/2 0 ⊕Z/2 H4(X; Z) ⊗ Hp(BC2; Z)

odd 0 0 0 0 0
2 mod 4 0 ⊕Z/2 0 ⊕Z/2 0

odd 0 0 0 0 0

0 Z 0 Z/2 0 Z/2 H0(X; Z) ⊗ Hp(BC2; Z)
0 1 2 3 4 p

Table 1: Spectral sequence for coefficients Z(0)

q
0 mod 4 0 ⊕Z/2 0 ⊕Z/2 0

odd 0 0 0 0 0
2 mod 4 ⊕Z 0 ⊕Z/2 0 ⊕Z/2 H2(X; Z) ⊗ Hp(BC2; Z)

odd 0 0 0 0 0

0 0 Z/2 0 Z/2 0
0 1 2 3 4

Table 2: Spectral sequence for coefficients Z(1)

Lemma 2.3. The two spectral sequences Hp(BC2; Hq(X; Z(1))) ⇒ H
p+q
C2

(X; Z(1))

and Hp(BC2; Hq(X; Z(0))) ⇒ H
p+q
C2

(X; Z(0)) degenerate at the page E2. Moreover,

H2n
C2
(X; Z(n)) ∼= H2n(X; Z) ⊕

⊕

p<n

H2p(X; Z)⊗ Z/2.

Proof. Reducing the coefficients modulo 2 gives a natural transformation of spec-
tral sequences from either of the spectral sequences to the spectral sequence with
trivial coefficients F2, converging to H∗(XhC2

; F2). As X is a conjugation space we
know that the latter degenerates at the page E2.

A direct computation, using the description of H∗(X; Z(n)), shows that on
non-zero elements, mod 2 reduction induces an isomorphism for any p > 1:

Hp(BC2; Hq(X; Z(n)))
∼=
→ Hp(BC2; Hq(X; F2)).

Since on the right hand side we have permanent cycles the left hand side has to
be made of permanent cycles too. In particular all differentials originated in the
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vertical axis, p = 0, must be trivial, so that H0(BC2; Hq(X; Z(n))) is also made of
permanent cycles.

The comparison with the mod 2 reduction also allows us to compute the mod-
ule structure of H2n

C2
(X, Z(n)). The surjection of the associated graded modules

H2n(X; Z)⊕
⊕

p<n

H2p(X; Z) ⊗ Z/2 ։ H2n(X; F2)⊕
⊕

p<n

H2p(X; F2)

is an isomorphism except on the first factor. The latter graded module is isomor-
phic to H2n

C2
(X; F2) as there are no non-trivial extensions of F2-vector spaces, and

thus there can be no non-trivial extensions in the former (a copy of Z/2k for some
k > 1 would imply the presence of Z/2k−1 in the kernel of the mod 2 reduction
map, which is impossible).

Combining the edge homomorphisms of both spectral sequences we get a re-
striction homomorphism to ordinary cohomology.

Lemma 2.4. The restriction map ρ̃ : H∗
C2
(X, tZ) → H∗(X; Z) is surjective and a ring

homomorphism.

For a spherical conjugation complex there is a canonical integral lift for the
cohomological section encompassed in the H∗-frame.

Theorem 2.5. Let X be a spherical conjugation complex with H∗-frame (σ, κ). Then
there is a unique section σ̃ to the restriction map ρ̃ : H∗

C2
(X, tZ) → H∗(X; Z) such that

the mod 2 reduction of the section is σ. Moreover the section σ̃ is a ring homomorphism
which is natural with respect to equivariant maps between spherical complexes.

Proof. As X has only cells in even dimension, H∗(X; Z) is free in each degree. We
have an isomorphism of modules by Lemma 2.3

H∗
C2
(X, tZ) ∼= H∗(BC2; Z)⊗ H∗(X; Z) ∼= Z[a]/(2a) ⊗ H∗(X; Z) .

We also know that H∗
C2
(X; F2) ∼= H∗(BC2; F2) ⊗ H∗(X; F2) ∼= F2[u] ⊗ H∗(X; F2)

since X is a conjugation space.
Let K∗ be the kernel of the (surjective) map H∗(X; Z) → H∗(X; F2). Since the

mod 2 reduction induces isomorphisms H∗(BC2; Z) → F2[u] in any positive even
degree, we have a commutative diagram of groups:

0 // K∗ // H2∗
C2
(X, tZ) red

//

ρ̃
��
��

H2∗
C2
(X; F2) //

ρ
��
��

0

0 // K∗ // H∗(X; Z) // H∗(X; F2) // 0,

which implies that the right-hand square is a pull-back square. The section σ
splitting the restriction ρ determines hence a unique section σ̃ : H∗(X; Z) →
H∗

C2
(X, tZ). It is a ring homomorphism because both σ and the mod 2 reduc-

tion are so. Finally, naturality follows from that of the section σ in an H∗-frame
and the fact that the pullback diagram is natural in X.
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A little more can be extracted from the proof: the collapse of the two spectral
sequences allows one to prove a version of the classical Leray-Hirsch theorem for
the algebra H∗

C2
(X, tZ). The fibration XhC2

→ BC2 splits since the fixed point set
Xτ is not empty. As it is in fact connected, any two sections are homotopic, which
determines a canonical copy of H∗(BC2; Z) in H∗

C2
(X, tZ).

Corollary 2.6 (Leray-Hirsh for the equivariant cohomology). Let X be a spherical
conjugation space, then the canonical map

Z[a]/(2a) ⊗ H∗(X; Z) −→ H∗
C2
(X, tZ)

r ⊗ x 7−→ r ∪ σ̃(x)

is a Z[a]/(2a)-algebra isomorphism, natural in X.

3 Equivariant cohomology computations for BU

A Real bundle (in the sense of Atiyah) [1] over a space X equipped with an invo-
lution τ, is a complex bundle η over X together with an involution on the total
space, compatible with τ and which is anti-linear on the fibers. The tautological
bundle over BU(n) is the universal Real bundle of rank n, and the tautological
bundle over BU is a universal stable bundle, where the conjugation on the base
space is induced by complex conjugation on the coefficients of complex matrices
(see for instance [14] for an explicit proof of this fact). Our definition of equiv-
ariant Chern classes will rest on the definition of the universal equivariant Chern
classes as elements in H∗

C2
(BU, tZ). We will thus need a good understanding

of how this algebra behaves with respect to the Whitney sum and restriction to
fixed points. Theorem 2.5 applies in particular to the spherical conjugation com-
plex BU, equipped with the C2-action coming from complex conjugation. Recall
that the ordinary cohomology H∗(BU; Z) is a polynomial algebra in the ordinary
universal Chern classes cn.

Definition 3.1. The classes c̃n = σ̃(cn) ∈ H2n
C2
(BU; Z(n)) are the universal equivari-

ant Chern classes.

From Corollary 2.6 we get the expected structure for the equivariant cohomol-
ogy algebra H∗

C2
(BU, tZ): it is isomorphic to a polynomial algebra over Z[a]/(2a)

on the equivariant Chern classes c̃n for n ≥ 1. This result is the analogue of
Kahn’s [12, Théorème 3].

Proposition 3.2. The equivariant cohomology algebra H∗
C2
(BU, tZ) is isomorphic to

Z[a, c̃1, c̃2, . . . ]/(2a).

The following result concerns the relationship between the equivariant
Chern classes living in the equivariant cohomology of BU and the Stiefel-Whitney
classes in the mod 2 cohomology of BO. The subspace of fixed points in BU under
complex conjugation is BUτ = BO. Reducing the coefficients in the last cohomo-
logy algebra modulo 2 yields a map of equivariant homology groups
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H∗
C2
(BU, tZ) → H∗

C2
(BU; F2), and restricting then to the fixed points we get a

homomorphism:
r̄ : H∗

C2
(BU, tZ) → H∗(BO; F2)[u].

The conjugation equation allows us to compute the image of the equivariant
Chern classes.

Proposition 3.3. The image of c̃n in H∗(BO; F2)[u] is
n

∑
i=0

Sqi(wn)u
n−i.

Proof. Let us write c̄i for the mod 2 reduction of the universal Chern classes.
By definition of σ̃ we have:

r̄(c̃n) = r̄(σ̃(cn)) = r(σ(c̄n))

Franz and Puppe, [8, Theorem 1.1], computed for us the effect of the restriction
to the fixed points on the image of the section σ. Here

r(σ(c̄n)) = ∑ Sqi(κ(c̄n)u
n−i) = ∑ Sqi(wn)u

n−i

since, via the “halving isomorphism” κ, the mod 2 Chern classes correspond to
the Stiefel-Whitney classes of the fixed point bundle, κ(c̄n) = wn, [10, Proposi-
tion 6.8].

The last result we will need is the behavior of the universal equivariant Chern
classes under Whitney sum. Let µ : BU × BU → BU be the H-structure map
which induces the Whitney sum on complex bundles. The space BU × BU, under
the diagonal action, is also a spherical conjugation space, [10, Proposition 4.5],
and µ is an equivariant map. The cross product is a morphism

× : H2n
C2
(BU; Z(n)) ⊗ H2m

C2
(BU; Z(m)) → H

2(n+m)
C2×C2

(BU × BU; Z(n) ⊗ Z(m))

and the diagonal inclusion C2 → C2 × C2 induces a map:

δ : (BU × BU)hC2
−→ (BU × BU)h(C2×C2) ≃ BUhC2

× BUhC2
.

Lemma 3.4. The map induced by the multiplication µ : BU × BU → BU sends the
universal equivariant Chern class c̃n to the cross product δ∗(∑n

i=0 c̃i × c̃n−i).

Proof. We have a pull-back square of Z[a]/(2a)-modules, as in the proof of Theo-
rem 2.5:

H∗
C2
(BU × BU; tZ) red

//

ρ̃
��

H2∗
C2
(BU × BU; F2)

ρ

��

H∗(BU × BU; Z) // H∗(BU × BU; F2).

To prove the lemma it remains to show that both ρ̃ and the mod 2 reduction send
µ(c̃n) and δ∗(∑n

i=0 c̃i × c̃n−i) to the same element. Let us first compute the image
under ρ̃:

(ρ̃ ◦ µ)(c̃n) = (µ ◦ ρ̃)(c̃n) = µ (ρ̃(σ̃(cn))) = µ(cn)
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The non-equivariant computation of µ(cn), [2, Theorem 1.4], identifies this with
the cross product ∑

n
i=0 ci × cn−i. Therefore, the naturality of the cross-product

implies that

ρ̃(µ(c̃n)) =
n

∑
i=0

ci × cn−i =
n

∑
i=0

ρ̃(c̃i)× ρ̃(c̃n−i) = ρ̃

(
δ∗(

n

∑
i=0

c̃i × c̃n−i)

)
.

To compare next the images under mod 2 reduction, we denote by c̄i the reduction
of the Chern class ci. Then, by naturality of the section σ in an H∗-frame, we
compute

δ∗(
n

∑
i=0

c̃i × c̃n−i)mod 2 = δ∗(
n

∑
i=0

σ(c̄i)× σ(c̄n−i)) = σ(
n

∑
i=0

c̄i × c̄n−i).

We have seen above that µ(cn) coincides with the cross product ∑ ci × cn−i, and
hence so does µ(c̄n) with ∑ c̄i × c̄n−i. Therefore the mod 2 reduction of the cross
product equals to

σ(µ(c̄n)) = µ(σ(c̄n)) = µ(σ̃(cn)mod 2) = µ(c̃n)mod 2.

4 Classical and equivariant Chern classes

We are now ready to introduce equivariant Chern classes for Real bundles. Recall
the axiomatic definition of Chern classes, as stated by Hirzebruch in [11, Chap. 1,
p. 66].

I (Existence) For every complex bundle η over a finite dimensional paracom-
pact space B and every integer i ≥ 0 there exists a Chern class ci(η) in
H2i(B; Z). The class c0(η) = 1 is the unit element.

II (Naturality) If f : B1 → B2 is a map of spaces and ξ is a complex bundle
over B2, then f ∗(ci(ξ)) = ci( f ∗(ξ)) for all i ≥ 0 .

III (Whitney sum) If η = η1 ⊞ η2 then c(η) = c(η1)c(η2), where c(−) is the total
Chern class ∑

∞
i=0 ci(−).

IV (Normalization) If η denotes the canonical bundle over CP1 then c(η) =
1 + h where h ∈ H2(CP1; Z) ∼= Z is the natural generator.

We want our equivariant Chern classes to live in the equivariant cohomology
H∗

C2
(−; tZ) and this forces us to change Axiom IV. Let us go back to the conju-

gation sphere S2 examined in Example 2.1. The equivariant Leray-Hirsh Theo-
rem, Corollary 2.6, asserts that H∗

C2
(S2; tZ) is isomorphic as a Z[a]/(2a)-module

to Z[a]/(2a) ⊕ Z[a]/(2a)〈h̃〉, where h̃ is of degree 2 and restricts to a generator h
of H2(S2; Z). The new form of Axiom IV is:

IV’ If η denotes the canonical bundle over CP1 = S2, with the canonical Real

structure, then c(η) = 1+ h̃, where 1 and h̃ are generators of degree 0 and 2
of the Z[a]/(2a)-module H∗

C2
(S2; tZ).



86 W. Pitsch – J. Scherer

Axioms I, II, III and IV’ determine uniquely such equivariant Chern classes.
The proof is analogous to that for classical Chern classes, [11, p. 58] and is left to
the interested reader. Notice that this requires the use of the splitting principle,
which follows from [1, Theorem 2.1]. We thus proceed with the construction of
these classes and show they satisfy all four axioms.

Definition 4.1. Let η be a Real bundle over the space X with (equivariant) clas-
sifying map f : X → BU. Consider the classes c̃n = σ̃(cn) ∈ H∗

C2
(BU; tZ) and

pull them back along f ∗. The equivariant cohomology classes c̃n(η) = f ∗(c̃n) ∈
H∗

C2
(X; tZ) are called the equivariant Chern classes of η.

The following result is our version of Kahn’s [12, Théorème 2].

Theorem 4.2. The equivariant Chern classes satisfy Axioms I, II, III, and IV’.

Proof. All axioms, except Axiom III, are merely routine. Axiom I follows from
the fact that σ̃ is a ring homomorphism. In particular the total equivariant Chern
class of the trivial bundle is 1. Naturality (Axiom II) is a direct consequence of
the existence of a universal bundle, and the proof of Axiom IV’ is essentially
contained in the observation that lead us to modify Axiom IV. We are thus left
with Axiom III about the total equivariant Chern class of a Whitney sum. As
this class is defined by applying the section σ̃ to the usual Chern class, we have
basically to check that the construction of the Whitney sum behaves well with
respect to the H∗-frame of a conjugation space.

Let ξ and η be two Real bundles over a compact space X with classifying
maps f and g respectively. Then, a classifying map for the Whitney sum ξ ⊞ η is
the composite µ ◦ ( f × g) ◦ ∆, where µ denotes as above the H-structure map on
BU that gives rise to the Whitney sum, and ∆ is the diagonal map for the space X.
We have thus to compute the image of c̃n through

H2n
C2
(BU; Z(n))

µ
−→ H2n

C2
(BU × BU; Z(n))

( f×g)∗
−−−−→ H2n

C2
(X × X; Z(n))

∆∗

−→ H2n
C2
(X; Z(n)).

From Lemma 3.4 we understand the first morphism on c̃n: It is the cross product
δ∗(∑ c̃i × c̃n−i). We are thus lead to compute ( f × g)∗(c̃i × c̃n−i) = c̃i(ξ)× c̃n−i(η)
to which we must apply the composite

H2i
C2
(X; Z(i)) ⊗ H

2(n−i)
C2

(X; Z(n − i))
×
−→ H2n

C2×C2
(X × X; Z(i) ⊗ Z(n − i))

δ∗
−→ H2n

C2
(X × X; Z(n))

∆∗

−→ H2n
C2
(X; Z(n)).

But this is the product in the cohomology of XhC2
with twisted coefficients. Hence

c̃(ξ ⊞ η) = c̃(ξ)c̃(η).
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5 Real bundles, complex bundles, and real bundles

In this short section we make the relation between equivariant Chern classes,
classical Chern classes, and Stiefel-Whitney classes explicit. A Real bundle can
always be considered as a complex bundle by forgetting the involution and the
universal equivariant Chern classes have been constructed by applying a section
to the universal Chern classes. The following proposition is thus obvious and
recorded for completeness.

Proposition 5.1. Let η be a Real bundle over X. Then the image of c̃n(η) via
H2n

C2
(X; tZ) → H2n(X; Z) is cn(η).

We analyze now the relation between the equivariant Chern classes of a Real
bundle over X and the Stiefel-Whitney classes of the associated real bundle over
the fixed points Xτ . The following proposition generalizes [12, Theorem 4], which
deals with spaces with trivial involution, as well as [10, Proposition 6.8] which
treats the case of bundles over spherical conjugation spaces. It gives a description
of the images of the equivariant Chern classes through the homomorphism

r̄ : H∗
C2
(X; tZ)

r
−→ H∗

C2
(Xτ ; tZ) → H∗

C2
(Xτ ; F2) ∼= H∗(Xτ ; F2)[u].

Proposition 5.2. Let η be a Real bundle over X and ητ the associated real bundle of fixed

points. Then the image of c̃n(η) in H∗(Xτ ; F2)[u] is
n

∑
i=0

Sqi(wn(η
τ))un−i.

Proof. This follows at once from the analogous computation we have done for
BU in Proposition 3.3. If f : X → BU is an equivariant map classifying the
Real bundle η, the equivariant Chern classes are obtained by pulling-back the
universal ones through f and the Stiefel-Whitney classes of ητ are obtained by
pulling-back the universal ones through f τ : Xτ → BO.

We recover, in our context, Kahn’s main result result [12, Théorème 4] for Real
bundles over spaces with trivial involution.

Corollary 5.3. Let η be a Real bundle over a space X with trivial involution and ητ the
associated real bundle of fixed points. Then the mod 2 reduction of c̃n(η) in H∗(X; F2) is
wn(η).

Remark 5.4. We have seen that the equivariant Chern classes of a Real bundle
determine the classical Chern classes by forgetting the C2-action and the Stiefel-
Whitney classes of the fixed point bundle by reducing mod 2. In fact, the pull-
back diagram we have used in the proof of Theorem 2.5 shows that these two sets
of classes determine the equivariant Chern classes, as long as one works with a
Real bundle over a conjugation space. In particular, the equivariant Chern classes
of a Real bundle over a point are all zero.
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A Stiefel-Whitney classes and Thom spaces

A particular case where all the above applies is that of a conjugation manifold,
for then the tangent bundle is a Real bundle. For this case our results show a nice
interplay between the equivariant Chern classes of the conjugation manifolds,
its classical Chern classes, as well as the the Stiefel-Whitney classes of the fixed
submanifold (i.e. the tangent bundle on the fixed manifold). There is one set of
classes missing from this picture, it is the Stiefel-Whitney classes of the conjuga-
tion manifold itself! We thus end this paper with some remarks about them. Let
M be a conjugation manifold of dimension 2n, and N = Mτ denotes the sub-
manifold of fixed points. The isomorphism κ in the H∗-frame relates the mod 2
cohomology of M in even degrees with that of N. Recall that the Wu classes are
defined as the unique classes vk ∈ Hk(M; F2) such that for all x ∈ H2n−k(M; F2),
vk ∪ x = Sqk(x). We show that κ behaves well with respect to both Wu and
Stiefel-Whitney classes, a result which has been proved as well by Hambleton
and Hausmann in [9, Proposition 2.9].

Theorem A.1. Let M be a conjugation manifold of dimension 2n. Let vM
∗ and wM

∗ (resp.
vN
∗ and wN

∗ ) denote the Wu and Stiefel-Whitney class of M (resp. of N) . Then, for any
k ≥ 1,

κ(vM
2k ) = vN

k and κ(wM
2k) = wN

k .

Proof. The isomorphism κ preserves cup products and Steenrod squares so that:

κ(vM
2k ) ∪ x = κ(vM

2k ∪ κ−1(x))
= κ(Sq2k(κ−1(x)))
= Sqk(x)

for all x ∈ Hn−k(N; F2). The uniqueness of the Wu classes implies that κ(vM
2k) =

vN
k for all k ∈ N. If v denotes the total Wu class, w the total Stiefel-Whitney class

of the tangent bundle, and Sq the total Steenrod square, then it is known that
Sq(v) = w. Again, as κ commutes with Steenrod squares, we see that

wN = Sq(vN) = Sq(κ(vM)) = κ(Sq(vM)) = κ(wM).

Another way to relate the Stiefel-Whitney classes of M with those of N would
be to analyze their construction via Thom spaces. We will not go through all
the details, but indicate why both the tangent bundle and the Thom space of a
conjugation manifold is still equipped with a conjugation structure. Of course
the tangent bundle of M is not anymore a closed space, but as it is homotopy
equivalent to M, one can check directly that the cohomological conditions are
trivially satisfied as they match those satisfied by M.

Theorem A.2. Let M be a conjugation manifold and N the fixed submanifold, then
TN = TMτ.

Proof. First choose a C2-invariant Riemann metric on M. A fixed element in TM
is necessarily an element of TM|N = TN ⊕ νN, where νN denotes the normal
bundle of N, and the direct sum is orthogonal and compatible with the action
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of C2. We know from the equivariant tubular neighborhood theorem that there
exists a neighborhood of the zero section of νN, say VN such that the exponential
map

exp : VN → M

is injective, and maps onto an open tubular neighborhood of N in M. Moreover,
as the underlying metric is invariant, this map is equivariant with respect to the
natural actions on VN and M. In particular, if there exists a vector in TM|N not in
TN that is fixed, then, from the above orthogonal decomposition we get a non-
zero vector in νN that is fixed, and therefore, via the exponential map, a fixed
point outside N, a contradiction.

It follows that the natural compactification of TM, namely the Thom space
Th(M) is a conjugation space (not a conjugation manifold). The next result is an
extension to the tangent bundle of M of a previous result of Hausmann, Holm,
and Puppe concerning Real bundles over conjugation spaces (see [10, p. 946]).

Corollary A.3. Let M be a conjugation manifold and N the fixed submanifold, then the
Thom space Th(M) is a conjugation space with fixed subspace Th(N).

Proof. The proof is exactly the same as [10, Proposition 6.4].

For a manifold with involution, the Stiefel-Whitney numbers of the manifold
are determined by the Stiefel-Whitney numbers of the fixed point submanifolds
and of their normal bundles (see for instance [13]). In view of the above result for
conjugation manifolds we have a slightly stronger result, compare also with [9,
Corollary 2.14].

Corollary A.4. Let M1 and M2 be conjugation manifolds with fixed submanifolds N1

and N2 respectively. Then M1 and M2 are (non-equivariantly) cobordant if and only if
N1 and N2 are cobordant.

Remark A.5. Brown and Peterson determined in [3] (see also the more complete
versions [4] and [5]) all relations between Stiefel-Whitney classes which hold in
a given degree for any n-dimensional manifold. In our search for obstructions to
realizability of conjugation manifolds with a given fixed point submanifold, see
also [15], we noticed that there are no obstructions to be found in terms of such
relations. More precisely, if R is a relation involving only even degree Stiefel-
Whitney classes of 2n-dimensional manifolds, then the corresponding relation r
obtained by halfing all degrees will also be true for any n-dimensional manifold.
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toriel réel. Comm. Algebra, 15(4):695–711, 1987.

[13] C. Kosniowski and R. E. Stong. Involutions and characteristic numbers.
Topology, 17(4):309–330, 1978.

[14] M. Nagata, G. Nishida, and H. Toda. Segal-Becker theorem for KR-theory. J.
Math. Soc. Japan, 34(1):15–33, 1982.

[15] W. Pitsch and J. Scherer. Realization of conjugation spaces, in preparation.
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