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Abstract

In this paper we prove an existence result for some class of variational
boundary value problems for quasilinear elliptic equations in the Musielak-
Orlicz spaces WmLϕ(Ω), under the assumption that the conjugate function of
ϕ satisfies the ∆2 condition. An imbedding theorem has also been provided
without assuming this condition.

1 Introduction

This paper is concerned with the existence of solutions for variational boundary
value problems for quasi-linear elliptic equations of the form

A(u) = f ,

where the operator A is in the form:

A(u) ≡ ∑
|α|≤m

(−1)|α|DαAα(x, u,∇u, ...,∇mu) (1)

on an open subset Ω of Rn. Existence theorems for problems of this type were first
obtained by Vis̆ik [23, 24] using compactness arguments and a priori estimates on
(m + 1)st derivatives. Since 1963, these problems have been extensively studied
by Browder and others in the context of the theory of mappings of monotone type
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from a reflexive Banach space to its dual and in the case where the coefficients
Aα have polynomial growth in u and its derivatives [2] , [3] , [20]. From 1970
these results have been extended by Donaldson [6], Gossez [15] , [16] and Gossez
and Mustonen in [17] to the case where the coefficients Aα do not necessarily
have polynomial growth in u and its derivatives. The Banach spaces in which
the problems are formulated (the Orlicz-Sobolev spaces) are not reflexive and
the corresponding mappings of monotone type are not bounded nor everywhere
defined and do not generally satisfy a global a priori bounded( and consequently
are not generally coercive).

In the last decade several works have been concerned to extend the classi-
cal polynomial growth to the non-standard growth case in the so-called variable
exponent Sobolev spaces ( see [14] and references within), and also [25] .

Recently Mihǎilescu and Rǎdulescu in [21] and Fan and Guan in [9], [10] have
obtained new results which improved the already known existence results for the
p(x)-Laplacian operator in the Musielak-Orlicz-Sobolev spaces W1Lϕ(Ω) under
some assumptions such as the condition ∆2 on ϕ and also the uniform convexity
of ϕ which assure that the space Lϕ(Ω) is reflexive.

Our purpose in this paper is to initiate a study of these problems in the gen-
eral case when the Musielak-Orlicz-Sobolev spaces WmLϕ(Ω) are not reflexive.
The study of the nonlinear partial differential equations in this type of spaces is
strongly motivated by numerous phenomena of physics, namely the problems re-
lated to non-Newtonian fluids of strongly inhomogeneous behavior with a high
ability of increasing their viscosity under a different stimulus, like the shear rate,
magnetic or electric field [18].

The main difficulty encountered is the construction of a suitable complemen-
tary system to formulate the problems. Our existence result is only obtained with
the condition that the conjugate function ψ of ϕ has the ∆2 property. It is a gener-
alization of the result in [6].

Note that the ∆2 condition on ψ in this paper is only used for building the suit-
able complementary system with non-attendance of the analogous of [15, Theo-
rem 1.3] in the context of Musielak-Orlicz-Sobolev spaces.

This result can for example be applied for finding a weak solution for the
ϕ-Laplacian equation

∆ϕu(= div(
a(x, |∇u|)

|∇u|
.∇u)) + f = 0

where a is the derivative of ϕ with respect to t.
One of the main results of this paper is to give some imbedding theorems in

WmLϕ(Ω) for a general Musielak-Orlicz function ϕ. These theorems, which are
very useful in the literature of the PDE and the Banach spaces, generalize the
imbedding results in [7], [1] and [15].

In the particular case when ϕ(x, t) = tp(x), our results give essential improve-
ments of some imbedding theorems that were already published e.g. [8], [11] and
[13]. They also improve the existence result for (1) in the statement of the vari-

able exponent Sobolev spaces Wm,p(x) by avoiding the condition of continuity or
log-Holder continuity of p(.) and also the condition that p+ = ess supx∈Ω p(x) is
finite, see Corollary 2 below.
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Section 2 contains some preliminaries. In Section 3 we introduce our main
results, the compact imbedding (subsection 3.1) and the existence results (sub-
section 3.2).

2 Preliminaries

In this section we list briefly some definitions and facts about Musielak-Orlicz-
Sobolev spaces. Standard reference is [22]. We also include the definition of com-
plementary system, an abstract result and some preliminaries Lemmas to be used
later.

2.1 Musielak-Orlicz-Sobolev spaces

Let Ω be an open subset of Rn and let ϕ be a real-valued function defined in
Ω × R+ and satisfying the following conditions :
a) ϕ(x, .) is an N-function i.e. convex, nondecreasing, continuous, ϕ(x, 0) = 0,
ϕ(x, t) > 0 for all t > 0, and

lim
t→0

sup
x∈Ω

ϕ(x, t)

t
= 0,

lim
t→∞

inf
x∈Ω

ϕ(x, t)

t
= ∞,

b) ϕ(., t) is a measurable function.
A function ϕ(x, t), which satisfies the conditions a) and b) is called a Musielak-
Orlicz function. For a Musielak-Orlicz function ϕ(x, t) we put ϕx(t) = ϕ(x, t)
and we associate its nonnegative reciprocal function with respect to t, ϕ−1

x i.e.

ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t

For any two Musielak-Orlicz functions ϕ and γ we introduce the following
ordering :
c) if there exists two positives constants c and T such that for almost everywhere
x ∈ Ω :

ϕ(x, t) ≤ γ(x, ct) for t ≥ T

we write ϕ ≺ γ and we say that γ dominate ϕ globally if T = 0 and near infinity
if T > 0.

d) if for every positive constant c and almost everywhere x ∈ Ω we have

lim
t→0

(sup
x∈Ω

ϕ(x, ct)

γ(x, t)
) = 0 or lim

t→∞
(sup

x∈Ω

ϕ(x, ct)

γ(x, t)
) = 0

we write ϕ ≺≺ γ at 0 or near ∞ respectively, and we say that ϕ increases essen-
tially more slowly than γ at 0 or near infinity respectively.

In the following the measurability of a function u : Ω 7→ R means the Lebesgue
measurability.
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We define the functional

̺ϕ,Ω(u) =
∫

Ω
ϕ(x, |u(x)|)dx

where u : Ω 7→ R is a measurable function.
The set

Kϕ(Ω) =
{

u : Ω → R mesurable /̺ϕ,Ω(u) < +∞
}

.

is called the Musielak-Orlicz class (the generalized Orlicz class).
The Musielak-Orlicz space (the generalized Orlicz spaces) Lϕ(Ω) is the vector

space generated by Kϕ(Ω), that is, Lϕ(Ω) is the smallest linear space containing
the set Kϕ(Ω).
Equivalently:

Lϕ(Ω) =

{

u : Ω → R mesurable /̺ϕ,Ω(
|u(x)|

λ
) < +∞, for some λ > 0

}

Let
ψ(x, s) = sup

t≥0

{st − ϕ(x, t)},

that is, ψ is the Musielak-Orlicz function complementary to (or conjugate of)
ϕ(x, t) in the sense of Young with respect to the variable s.

In the space Lϕ(Ω) we define the following two norms:

||u||ϕ,Ω = inf{λ > 0/
∫

Ω
ϕ(x,

|u(x)|

λ
)dx,≤ 1}.

which is called the Luxemburg norm and the so-called Orlicz norm by :

|||u|||ϕ,Ω = sup
||v||ψ≤1

∫

Ω
|u(x)v(x)|dx.

where ψ is the Musielak-Orlicz function complementary ( or conjugate) to ϕ.
These two norms are equivalent [22].

The closure in Lϕ(Ω) of the bounded measurable functions with compact sup-

port in Ω is denoted by Eϕ(Ω). It is a separable space and Eψ(Ω)∗ = Lϕ(Ω) [22].
We have Eϕ(Ω) = Kϕ(Ω) if and only if Kϕ(Ω) = Lϕ(Ω) if and only if ϕ has

the ∆2 property for large values of t, or for all values of t, according to whether
Ω has finite measure or not, i.e., there exists k > 0 independent of x ∈ Ω and a
nonnegative function h , integrable in Ω such that ϕ(x, 2t) ≤ kϕ(x, t) + h(x) for
large values of t, or for all values of t.

We say that a sequence of functions un ∈ Lϕ(Ω) is modular convergent to
u ∈ Lϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

̺ϕ,Ω(
un − u

k
) = 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω) : ∀|α| ≤ m Dαu ∈ Lϕ(Ω)}
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where α = (α1, α2, ..., αn) with nonnegative integers αi |α| = |α1|+ |α2|+ ...+ |αn|
and Dαu denote the distributional derivatives. The space WmLϕ(Ω) is called the
Musielak-Orlicz-Sobolev space.

Let

̺ϕ,Ω(u) = ∑
|α|≤m

̺ϕ,Ω(D
αu) and ||u||mϕ,Ω = inf{λ > 0 : ̺ϕ,Ω(

u

λ
) ≤ 1}

for u ∈ WmLϕ(Ω). These functionals are a convex modular and a norm on
WmLϕ(Ω), respectively, and the pair 〈WmLϕ(Ω), ||u||mϕ,Ω〉 is a Banach space if

ϕ satisfies the following condition [22]:

there exist a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c. (2)

The space WmLϕ(Ω) will always be identified to a subspace of the product

∏|α|≤m Lϕ(Ω) = ∏ Lϕ; this subspace is σ(ΠLϕ, ΠEψ) closed. Let Wm
0 Lϕ(Ω) be

the σ(ΠLϕ, ΠEψ) closure of D(Ω) in WmLϕ(Ω).
Let WmEϕ(Ω) be the space of functions u such that u and its distribution

derivatives up to order m lie in Eϕ(Ω), and Wm
0 Eϕ(Ω) is the (norm) closure of

D(Ω) in WmLϕ(Ω).
The following spaces of distributions will also be used:

W−mLψ(Ω) = { f ∈ D′(Ω); f = ∑
|α|≤m

(−1)|α|Dα fα with fα ∈ Lψ(Ω)}

W−mEψ(Ω) = { f ∈ D′(Ω); f = ∑
|α|≤m

(−1)|α|Dα fα with fα ∈ Eψ(Ω)}

We say that a sequence of functions un ∈ WmLϕ(Ω) is modular convergent to
u ∈ WmLϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

̺ϕ,Ω(
un − u

k
) = 0.

For two complementary Musielak-Orlicz functions ϕ and ψ the following in-
equality is called the young inequality [22]:

t.s ≤ ϕ(x, t) + ψ(x, s) for t, s ≥ 0, x ∈ Ω

This inequality implies that

|||u|||ϕ,Ω ≤ ̺ϕ,Ω(u) + 1.

We have also for two complementary Musielak-Orlicz functions ϕ and ψ if
u ∈ Lϕ(Ω) and v ∈ Lψ(Ω) the Hölder inequality [22]:

|
∫

Ω
u(x)v(x) dx| ≤ ||u||ϕ,Ω|||v|||ψ,Ω.
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In the particular case when ϕ(x, t) = tp(x) we use the notations Lp(x)(Ω) =

Lϕ(Ω), and Wm,p(x)(Ω) = WmLϕ(Ω). These spaces are called Variable exponent
Lebesgue and Sobolev spaces.

We recall that a family R of functions u(x) has equi-absolutely continuous
integrals if for arbitrary ε > 0 an h > 0 can be found such that for all functions in
the family R we have

∫

E
u(x)dx < ε

provided |E| < h. Where |E| is the measure of the set E.

2.2 Complementary system

Definition 1. Let Y and Z be two real Banach spaces in duality with respect to a con-
tinuous pairing <,> and let Y0 and Z0 be subspaces of Y and Z respectively. Then
(Y, Y0; Z, Z0) is called a complementary system if, by means of <,>, Y∗

0 can be identi-
fied (i.e.,is linearly homeomorphic) to Z and Z∗

0 to Y.

Let ϕ and ψ be two complementary Musielak-Orlicz functions then
(Lϕ(Ω), Eϕ(Ω); Lψ(Ω), Eψ(Ω)) is a complementary system. Other examples are
(X∗∗, X; X∗, X∗) and (X∗, X∗; X∗∗, X) where X is Banach space. Note that in a
complementary system, Y0 is σ(Y, Z) dense in Y. Note also that if cl Y0 [cl Z0]
denotes the (norm) closure of Y0 [Z0] in Y [Z], then (Y, clY0; Z, clZ0) is a comple-
mentary system.

The following lemma gives an important method by which from a comple-
mentary system (Y, Y0; Z, Z0) and a closed subspace E of Y, one can construct a
new complementary system (E, E0; F, F0). some restriction must be imposed on E.
Define E0 = E ∩Y0, F = Z/E⊥

0 and F0 = {z + E⊥
0 ; z ∈ Z0} ⊂ F, where ⊥ denotes

the orthogonal in the duality (Y, Z), i.e. E⊥
0 = {z ∈ Z;< y, z >= 0 for all y ∈ E0}.

Lemma 1. [15] The pairing <,> between Y and Z induces a pairing between E and F
if and only if E0 is σ(Y, Z) dense in E. In this case, (E, E0; F, F0) is a complementary
system if E is σ(Y, Z0) closed, and conversely, when Z0 is complete, E is σ(Y, Z0) closed
if (E, E0; F, F0) is a complementary system.

Corollary 1. Let ϕ and ψ be two complementary Musielak-Orlicz functions , we as-
sume that ψ has the ∆2 property. Then Wm

0 Lϕ(Ω) generates a complementary system in
(ΠLϕ(Ω), ΠEϕ(Ω); ΠLψ(Ω), ΠLψ(Ω))

Indeed, by definition D(Ω) is σ(ΠLϕ, ΠEψ) dense in Wm
0 Lϕ(Ω) and the fact

that ψ has the ∆2 property implies that σ(ΠLϕ, ΠEψ) ≡ σ(ΠLϕ, ΠLψ). Hence
D(Ω) is σ(ΠLϕ, ΠLψ) dense in Wm

0 Lϕ(Ω) and applying Lemma 1 we obtain that
(Wm

0 Lϕ(Ω), Wm
0 Eϕ(Ω), W−mLψ(Ω), W−mEψ(Ω)) is a complementary system.



An existence result for nonlinear elliptic equations 63

2.3 An Abstract Results

Let (Y, Y0; Z, Z0) be a complementary system and T be a mappings from the do-
main D(T) in Y to Z which satisfy the following conditions, with respect to some
element ȳ ∈ Y0 and f ∈ Z0 :

(i) (finite continuity) D(T) ⊃ Y0 and T is continuous from each finite dimen-
sional subspaces of Y0 to the σ(Z, Y0) topology of Z,

(ii) (sequential pseudo-monotonicity) for any sequence {yi} with yi → y ∈ Y
for σ(Y, Z0), T(yi) → z ∈ Z for σ(Z, Y0) and lim sup < T(yi), yi > ≤ < z, y >, it
follows that T(y) = z and < T(yi), yi >→< z, y >,

(iii) T(y) remains bounded in Z whenever y ∈ D(T) remains bounded in Y
and < y − ȳ, Tu > remains bounded from above,

(iv) < y− ȳ, t(y)− f > is > 0 when y ∈ D(T) has sufficiently large norm in Y.

It is of importance to note that the condition (iii) is weaker than the condition
that T transforms each bounded set of Y into a bounded set of Z, and also that
the condition (iv) is weaker than the assumption of coercivity, because in our
applications, the mapping T will generally not transform a bounded set into a
bounded set nor be coercive.

Theorem 1. [17] Let (Y, Y0; Z, Z0) be a complementary system and let T : D(T) ⊂
Y →→ Z satisfy (i)...(iv). Then Z0 is contained in the range of T.

2.4 Preliminary lemmas

Lemma 2. if a sequence gn ∈ Lϕ(Ω) converges in measure to a measurable function g
and if gn remains bounded in Lϕ(Ω), then g ∈ Lϕ(Ω) and gn → g for σ(Lϕ(Ω), Eψ(Ω)).

Proof. In virtue of the fact that every sequence of functions in Lϕ(Ω) which
are bounded in norm contains an σ(Lϕ(Ω), Eψ(Ω)) convergent subsequence. It
is therefore sufficient in our case to show that for any subsequence gnk

(x) which
converges in σ(Lϕ(Ω), Eψ(Ω)) to g0(x) , we have g0(x) = g(x).

We denote by Km(x) the characteristic function of some fixed set of points on
which |g(x)− g0(x)| ≤ m, and the function sgn [g(x)− g0(x)] by f0(x).

Suppose ε > 0 is prescribed. Since the functions g0(x), gnk
(x) have equi-

absolutely continuous integrals [22], a δ > 0 can be found such that

∫

D
|g0(x)|dx <

ε

5
,

∫

D
|gnk

(x)|dx <
ε

5

provided |D| < δ(D ⊂ Ω). We shall assume that δ <
ε

5m . It follows from the
convergence in measure of the subsequence gnk

(x) to the function g(x) and the
convergence of this sequence to the function g0(x) in σ(Lϕ(Ω), Eψ(Ω)) that there
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exists a k0 such that , fork > k0,

∫

Ω
[gnk

(x)− g0(x)] f0(x)Km(x)dx <
ε

5

and |Ωk| < δ, where

Ωk = {|gnk
(x)− g(x)| ≥

ε

5|Ω|
}.

Then, for k > k0, we have that

∫

Ω
|g(x)− g0(x)|Km(x)dx ≤|

∫

Ω
[gnk

(x)− g0(x)] f0(x)Km(x)dx |

+
∫

Ω\Ωk

|g(x)− gnk
(x)|dx +

∫

Ωk

|gnk
(x)|dx

+
∫

Ωk

|g0(x)|dx +
∫

Ωk

|g(x)− g0(x)|Km(x)dx

<
ε

5
+

ε

5|Ω|
|Ω\Ωk|+

ε

5
+

ε

5
+ m |Ωk| < ε

Since ε is arbitrary, we have that

∫

Ω
|g(x)− g0(x)|Km(x)dx = 0,

i.e.g0(x) = g(x) almost everywhere.

Lemma 3. [17] Let the functions Aα satisfy the conditions (A1) and (A3) below. if for
the sequences ηk ⊂ Rn1 , ζk ⊂ Rn2 , and ξk ⊂ Rn2 we have ηk → η, ζk → ζ, and

Σ|α|=m(Aα(x, ηk, ζk)− Aα(x, ηk, ξk))(ζαk − ξαk) → 0

as k → ∞, then ξk is bounded in Rn2 and ξk → ζ as k → ∞.

Lemma 4. [1] Let u ∈ W1,1
loc (Ω) and let f satisfy a Lipschitz condition in R. If g(x) =

f (|u(x)|), then g ∈ W1,1
loc (Ω) and

Dαg(x) = f ′(|u(x)|) sgn u(x).Dαu(x).

3 Main results

3.1 Some imbedding results

Theorem 2. Let Ω have finite measure and let ϕ and φ two Msuielak-Orlicz functions
such that φ(., t) is integrable on Ω and increasing essentially more slowly than ϕ near
infinity. If the sequence {uj} is bounded in Lϕ(Ω) and convergent in measure on Ω,
then it is convergent in norm in Lφ(Ω).
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Proof. Fix ε and let vj,k =
uj(x)−uk(x)

ε . Clearly {vj,k} is bounded in Lϕ(Ω); say
||vj,k||ϕ,Ω < K. Now there exists a positive number t0 such that if t > t0, then

φ(x, t) ≤
1

4
ϕ(x,

t

K
).

Let δ > 0 such that
∫

D
φ(x, t0)dx ≤

1

4

provided |D| < δ.
Set

Ωj,k = {x ∈ Ω : |vj,k(x)| ≥ φ−1
x (

1

2|Ω|
)}.

Since {uj} converges in measure, there exists an integer N such that if j, k > N,
then |Ωj,k| ≤ δ. Set

Ω′
j,k = {x ∈ Ωj,k : |vj,k(x)| ≥ t0}, Ω′′

j,k = Ωj,k \ Ω′
j,k

For j, k ≥ N we have

∫

Ω
φ(x, |vj,k(x)|)dx =

∫

Ω\Ωj,k

φ(x, |vj,k(x)|)dx +
∫

Ω′
j,k

φ(x, |vj,k(x)|)dx +

∫

Ω′′
j,k

φ(x, |vj,k(x)|)dx

≤
|Ω|

2|Ω|
+

1

4

∫

Ω′
j,k

ϕ(x,
|vj,k(x)|

K
)dx +

∫

Ωj,k

φ(x, t0)dx ≤ 1.

Hence ||uj − uk||φ,Ω ≤ ε and so {uj} converges in Lφ(Ω).

Theorem 3. Let Ω have finite measure and let ϕ and φ as in the Theorem 2. Then any
bounded subset S of Lϕ(Ω) which is precompact in L1(Ω) is also precompact in Lφ(Ω).

Proof. Evidently Lϕ(Ω) →֒ L1(Ω) since Ω has finite volume. If {u∗
j } is a

sequence in S , then it has a subsequence {uj} that converges in L1(Ω); say uj → u

in L1(Ω). Thus {uj} converges to u in measure on Ω and hence by Theorem 2. it
converges also in Lφ(Ω).

Theorem 4. Let Ω be an open subset of Rn. If an Musielak-Orlicz function ϕ satisfy the
following conditions

∫ ∞

1

ϕ−1
x (t)

t
n+1

n

dt = ∞,
∫ 1

0

ϕ−1
x (t)

t
n+1

n

dt < ∞. (3)

Let f (x, t) =
∫ t

0
ϕ−1

x (τ)

τ
n+1

n
dτ, t ≥ 0. The Sobolev conjugate ϕ∗ of ϕ is the reciprocal func-

tion of f with respect to t
Then W1

0 Lϕ(Ω) →֒ Lϕ∗(Ω). Moreover, if D is bounded subdomain of Ω, then the

following imbeddings W1
0 Lϕ(Ω) →֒ Lφ(D) exist and are compact for any Msuielak-

Orlicz function φ increasing essentially more slowly than ϕ∗ near infinity such that
φ(., t) is integrable on Ω.
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Proof. Evidently the function s = ϕ∗(x, t) as defined above is an Msuielak-
Orlicz function and satisfies the differential equation

ϕ−1
x (s)

ds

dt
= s

n+1
n , (4)

and hence, since s < ϕ−1
x (s)ψ−1

x (s),

ds

dt
≤ s

1
n ψ−1

x (s).

Therefore ν(t) = [ϕ∗(x, t)]
n−1

n satisfies the differential inequality

dν

dt
≤

n − 1

n
ψ−1

x ((ν(t))
n−1

n ). (5)

Let u ∈ W1
0 Lϕ(Ω) and suppose, for the moment, that u is bounded on Ω and

is not zero in Lϕ(Ω). Then
∫

Ω
ϕ∗(x,

|u(x)|
λ )dx decreases continuously from infinity

to zero as λ increases from zero to infinity, and accordingly assumes the value
unity for some positive value of λ. Thus

∫

Ω
ϕ∗(x,

|u(x)|

K
)dx = 1, K = ||u||ϕ∗ . (6)

Let f (x) = ν( |u(x)|K ). Evidently u ∈ W1,1
0 (Ω) and ν is Lipschitz on the range of

|u(x)|
K so that, by Lemma 4, f ∈ W1,1

0 (Ω). by Sobolev inequality we have

|| f ||0, n
n−1

≤ K1

n

∑
1

||D j f ||0,1 = K1

n

∑
1

1

K

∫

Ω
ν′(

|u(x)|

K
)|D ju(x)|dx. (7)

By (6) and Hölder’s inequality, we obtain

1 = {
∫

Ω
ϕ∗(x,

|u(x)|

K
)dx}

n−1
n = || f ||0, n

n−1
≤

cK1

K

n

∑
1

||ν′(
|u|

K
)||ψ||D

ju||ϕ. (8)

Making use of (5), we have

||ν′(
|u|

K
)||ψ ≤

n − 1

n
||ψ−1

x ((ν(
|u|

K
))

n−1
n )||ψ

=
n − 1

n
inf{λ > 0 :

∫

Ω
ψ(x,

ψ−1
x (ϕ∗(x, |u(x)|K ))

λ
)dx ≤ 1}.

Suppose λ > 1. then

∫

Ω
ψ(x,

ψ−1
x (ϕ∗(x,

|u(x)|
K ))

λ
)dx ≤

1

λ

∫

Ω
ϕ∗(x,

|u(x)|

K
)dx =

1

λ
< 1.

Thus

||ν′(
|u|

K
)||ψ ≤

n − 1

n
. (9)
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Hence,

1 ≤
K3

K
||u||1ϕ

so that

||u||ϕ∗ = K ≤ K3||u||
1
ϕ (10)

To extend (10) to arbitrary u ∈ W1Lϕ(Ω) let

uk(x) =

{

|u(x)| if |u(x)| ≤ k
k sgn u(x) if |u(x)| > k

Clearly uk is bounded and it belongs to W1
0 Lϕ(Ω) by Lemma 5. Moreover,

||uk||ϕ∗ increases with k but is bounded by K4||u||ϕ. Therefore, limk→∞ ||uk||ϕ∗ =

K exists and K ≤ K4||u||
1
ϕ. By Fatou’s Lemma

∫

Ω
ϕ∗(x,

|u(x)|

K
)dx ≤ lim

k→∞

∫

Ω
ϕ∗(x,

|uk(x)|

K
)dx ≤ 1

whence u ∈ Lϕ∗(Ω) and (10) holds.
If D is a bounded subdomain of Ω, we have

W1
0 Lϕ(Ω) →֒ W1,1

0 (Ω) →֒ L1(Ω),

the latter imbedding being compact a bounded subset of W1
0 Lϕ(D) is bounded in

Lϕ∗(D) and precompact in L1(D), and hence precompact in Lφ(D) by Theorem 3.
whenever φ increases essentially more slowly than ϕ∗ near infinity.

3.2 Existence Results

Let ϕ and ψ be two complementary Musielak-Orlicz functions. We assume that
ϕ(.; t) is locally integrable and that ψ satisfies the ∆2 condition.

We are interested here in the Dirichlet problem for the operator

A(u) ≡ ∑
|α|≤m

(−1)|α|DαAα(x, u,∇u, ...,∇mu) (11)

on Ω.
The following notations will be used. If ξ = {ξα; |α| ≤ m} ∈ Rn is an m-jet,

with α = (α1, ..., αn) a multi-index of integers and |α| = αl + ... + αn, then ζ =
{ξα; |α| = m} ∈ Rn2 denotes its top order part and η = {ξα; |α| < m} ∈ Rn1 its
lower order part. For u a derivable function, ξ(u) denotes {Dαu; |α| ≤ m} ∈ Rn.

The basic conditions imposed on the coefficients Aα of (11) are the followings:

(A1) Each Aα(x, ξ) is a real valued function defined on Ω × Rn0 is measurable
in x for fixed ξ and continuous in ξ for fixed x.
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(A2) There exist a Musielak-Orlicz function γ with γ ≺≺ ϕ, functions aα in
Eψ(Ω), constants c1 and c2 such that for all x in Ω and ξ in Rn0 ,if

|α| = m : |Aα(x, ξ)| ≤ aα(x) + c1 ∑
|β|=m

ψ−1
x (ϕ(x, c2ξβ)) + c1 ∑

|β|<m

ψ−1
x (γ(x, c2ξβ)),

if

|α| < m : |Aα(x, ξ)| ≤ aα(x) + c1 ∑
|β|=m

ψ−1
x (γ(x, c2ξβ)) + c1 ∑

|β|<m

ψ−1
x (ϕ(x, c2ξβ)).

(A3) For each x ∈ Ω, η ∈ Rn1 , ξ, and ξ′ in Rn2 with ξ 6= ξ′,

∑
|α|=m

(Aα(x, ξ, η)− Aα(x, ξ′ , η))(ξα − ξ′α) > 0.

(A4) There exist functions bα(x) in Eψ(Ω), b(x) in L1(Ω), positive constants
d1 and d2 such that, for some fixed element v in Wm

0 Eϕ(Ω),

∑
|α|≤m

Aα(x, ξ)(ξα − v) ≥ d1 ∑
|α|≤m

ϕ(x, d2ξα)− ∑
|α|≤m

bα(x)ξα − b(x)

for all x in Ω and ξ in Rn0 .
Associated to the differential operator (11) we define a mapping T from

D(T) = {u ∈ Wm
0 Lϕ(Ω); Aα(ξ(u)) ∈ Lψ(Ω) for all |α| ≤ m} ⊂ Wm

0 Lϕ(Ω)

into W−mLψ(Ω) by the formula

< v, Tu >=
∫

Ω
∑

|α|≤m

Aα(ξ(u))D
α vdx

for v ∈ Wm
0 Lϕ(Ω).

Now we are ready to present our main existence result.

Theorem 5. Let Ω be an open subset of Rn. Assume that the coefficients of (11) satisfy
(A1), ..., (A4). Then for any f ∈ W−mEψ(Ω), the Dirichlet problem for A(u) = f has
at least one solution.

Proof. we consider the complementary system (Wm
0 Lϕ(Ω), Wm

0 Eϕ(Ω),
W−mLψ(Ω), W−mEψ(Ω)) and for simplicity we use the notation (Y, Y0, Z, Z0).
We should show that the mapping T satisfies the condition (i),...,(iv) of Theorem
1.

To show that (i) holds we introduce the following lemma. It is a generalization
of lemma 4.3 of [15].

Lemma 5. Suppose that A1 and A2 hold (with a(x) ∈ Lψ(Ω)). Then the mapping ω =
(ωβ)|β|≤m 7→ (Aα(ω))|α|≤m sends ΠEϕ(Ω) into ΠLψ(Ω) and is finitely continuous

from ΠEϕ(Ω) to the σ(ΠLψ(Ω), ΠEϕ(Ω)) topology of ΠLψ(Ω).
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Proof. By (A2) we can conclude immediately that for all |α| ≤ m, Aα(ω) ∈
Lψ(Ω) if ω ∈ ΠEϕ(Ω). We will show that the mapping is continuous from each
simplex in ΠEϕ(Ω) to the σ(ΠLψ(Ω), ΠEϕ(Ω)) topology of ΠLψ(Ω). Let S =

conv{ω1, ..., ωr} be a simplex in ΠEϕ(Ω) and write ω = Σr
i=1λiω

i ∈ S with λi ≥ 0
and Σr

i=1λi = 1. We have for some c3 > 0,

ψ−1
x (ϕ(x, c3ωβ)) = ψ−1

x (ϕ(x,
r

∑
i=1

λic3ωi
β)) ≤ ψ−1

x (
r

∑
i=1

λi ϕ(x, c3ωi
β)),

which implies that each Aα(ω) remains bounded il Lψ(Ω) when ω runs over S.
It is then easy to complete the proof by the lemma 2.

In order to verify the condition (ii) we let yi be a sequence in Y with the prop-
erties yi → y ∈ Y for σ(Y, Z0) , T(yi) → z ∈ Z for σ(Z, Y0) and lim sup <

T(yi), yi > ≤ < z, y >. We must show that y ∈ D(T), T(y) = z and <

T(yi), yi >→< z, y >. Obviously it is sufficient to prove the last convergence
for an infinite subsequence. The proof will be done by the following steps.

1. The functions Aα(, ξ(yi)) remains bounded in Lψ(Ω) for all |α| ≤ m.
Indeed, for |α| < m we use the fact that γ ≺≺ ϕ, which implies that for any ε > 0
there exists a constant K(ε) such that γ(x, t) ≤ k(ε)ϕ(x, εt) for all t > 0. Therefore

|Aα(x, ξ(yi))| ≤ aα(x) + c1 ∑
|β|=m

ψ−1
x (k(ε)ϕ(x, εc2 Dβ(yi)))+

c1 ∑
|β|<m

ψ−1
x (x, ϕ(x, c2Dβ(yi))).

When ε is sufficiently small, ||εc2Dβ(yi)||ϕ ≤ 1 uniformly for all |β| ≤ m.

||ψ−1
x (k(ε)ϕ(x, εc2 Dβ(yi)))||ψ ≤ 1 + k(ε)

∫

Ω
ϕ(x, εc2Dβ(yi))

and

||ψ−1
x (ϕ(x, c2Dβ(yi)))||ψ ≤ 1 +

∫

Ω
ϕ(x, c2Dβ(yi))

we can conclude

||Aα(x, ξ(yi))||ψ ≤ ||aα||ψ + c1 ∑
|β|=m

(1 + k(ε)||εc2 Dβ(yi)||ϕ)+

c1 ∑
|β|<m

(1 +
∫

Ω
ϕ(x, c2Dβ(yi))) ≤ const.

To show the same property for |α| = m let ω = (ωα) ∈ Π|α|=mEϕ(Ω). By A3 we
have

∑
|α|=m

(Aα(x, ξ(yi))− Aα(x, η(yi), ζ(yi)))(D
α(yi)− ωα) ≥ 0.

for all x ∈ Ω and hence
∫

Ω
∑

|α|=m

Aα(x, ξ(yi))ωα ≤
∫

Ω
∑

|α|≤m

Aα(x, ξ(yi))D
α(yi)−

∫

Ω
∑

|α|<m

Aα(x, ξ(yi))D
α(yi)

−
∫

Ω
∑

|α|≤m

Aα(x, η(yi), ζ(yi))(D
α(yi)− ωα)
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the first integral in the right hand side is ≤ cst by assumption and the second
one remains bounded by the previous discussion. The third integral remains
bounded by Hölder’s inequality provided ||Aα(., η(yi), ζ(yi))||ψ is bounded. To
show this we use A2 to get

||Aα(., η(yi), ζ(yi))||ψ ≤ ||aα||ψ + c1 ∑
|β|=m

||ψ−1
x (ϕ(x, c2ωβ))||ψ

+ c1 ∑
|β|<m

||ψ−1
x (k(ε)ϕ(x, εc2 Dβ(yi)))||ψ ,

where

||ψ−1
x (ϕ(x, c2ωβ))||ψ ≤ 1 +

∫

Ω
ϕ(x, c2ωβ) ≤ const

for all |β| = m, since ωβ ∈ Eϕ(Ω). moreover,

||ψ−1
x (k(ε)ϕ(x, εc2 Dβ(yi)))||ψ ≤ 1 + k(ε)

∫

Ω
ϕ(x, εc2Dβ(yi)) ≤ const,

when ε is made sufficiently small. Thus we have shown that Aα(, ξ(yi)) remains
bounded in Lψ(Ω) for all |α| = m for σ(Lψ(Ω), Eϕ(Ω)), which implies the bound-
edness in norm.

2.We may assume, by passing to a subsequence if necessary, that Aα(, ξ(yi)) →
hα for σ(Lψ(Ω), Eϕ(Ω)) with some hα ∈ Lψ(Ω) for each |α| ≤ m. Hence the linear
form z ∈ Z = Y∗

0 can be identified to (hα) ∈ ΠLψ(Ω), i.e.,

(z, v) =
∫

Ω
∑

|α|≤m

hαDαvdx (12)

holds for all v in Y.
3. We are aiming to show that Dαyi(x) → Dαy a.e. in Ω for all |α| ≤ m. By

Theorem 4. the imbedding of Wm
0 Lϕ(Ω) to Wm−1

0 Lφ(K) is compact for any sub-
domain K with compact closure in Ω and any Musielak-Orlicz function φ which
is integrable on Ω with respect to x and increases essentially more slowly than
ϕ∗ near infinity, hence we may assume that Dαyi(x) → Dαy a.e. in Ω for all
|α| ≤ m − 1. in order to get the a.e. convergence also for |α| = m we invoke the
Lemma 3. with the specialization ηk = η(yi), ξk = ξ(yi) and ζk = ζ(y) for each
x ∈ Ω. In view of Lemma 3 it suffice to show that qi(x) → 0 a.e. in Ω with

qi(x) = Σ|α|=m(Aα(x, η(yi), ξ(yi))− Aα(x, η(yi), ζ(y)))(Dα(yi)− Dα(y)).

In fact, as qi(x) ≥ 0 for all x ∈ Ω, it will be enough to show that

lim sup
i

∫

Ωk

qi(x)dx ≤ εk, (13)

where εk → 0 as k → ∞ and Ωk = {x ∈ Ω; |x| < k, |Dαy(x)| ≤ k for all |α| ≤ m}
for any k ∈ N. Obviously Ωk ⊂ Ωk+1 and mes (Ω \ ∪∞

k=1Ωk) = 0. We denote
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further

pi(x) = ∑
|α|≤m

Aα(x, η(yi), ξ(yi))(D
α(yi)− Dα(y)),

ri(x) = ∑
|α|=m

Aα(x, η(yi), ζ(y))(Dα(y)− Dα(yi)),

si(x) = ∑
|α|≤m−1

Aα(x, η(yi), ξ(yi))(D
α(y)− Dα(yi)).

then qi(x) = pi(x) + ri(x) + si(x) and the assertion (13) will be shown when we
prove that

lim sup
i

∫

Ωk

pi(x)dx ≤ εk, (14)

lim
i→∞

∫

Ωk

ri(x)dx = 0, (15)

lim
i→∞

∫

Ωk

si(x)dx = 0 (16)

for any k ∈ N and εk → 0 as k → ∞.
4. We show the assertion (14). To this end we write

∫

Ωk

pi(x)dx =
∫

Ω
∑

|α|≤m

Aα(x, ζ(yi))D
α(yi)dx −

∫

Ω\Ωk

∑
|α|≤m

Aα(x, ζ(yi))D
α(yi)dx

−
∫

Ωk

∑
|α|≤m

Aα(x, ζ(yi))D
α(y) := H1(i) + H2(i, k) + H3(i, k)

by assumption and (12),

lim sup
i

H1(i) ≤ (z, y) =
∫

Ω
∑

|α|≤m

hαDαydx.

By (A4) we have further

H2(i, k) ≤
∫

Ω\Ωk

∑
|α|≤m

bαDα(yi) +
∫

Ω\Ωk

b,

where b ∈ L1(Ω) and bα ∈ Eψ(Ω) for all |α| ≤ m. By Hölder’s inequality
∫

Ω\Ωk

∑
|α|≤m

bαDα(yi) ≤ 2 ∑
|α|≤m

||Dα(yi)||ϕ||(1 − χk)bα||ψ ≤ c ∑
|α|≤m

||(1 − χk)bα||ψ,

with c some positive constant and χk the characteristic function of the set Ωk.
By the dominate convergence theorem we conclude that ||(1 − χk)bα||ψ → 0 as
k → ∞.
Finally, as χkDαy ∈ Eϕ(Ω), we have

lim
n→∞

H3(i, k) =
∫

Ωk

∑
|α|≤m

hαDα(y).
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Consequently we obtain

lim sup
i

∫

Ωk

pi(x)dx ≤
∫

Ω\Ωk

∑
|α|≤m

hαDαydx

+ c ∑
|α|≤m

||(1 − χk)bα||ψ +
∫

Ω\Ωk

bdx := εk,

where εk → ∞ as k → ∞.
5. We show that (15) hold for any fixed k. As Dα(yi) → Dαy for σ(Lϕ(Ω),

Eψ(Ω)), it suffices to prove that χk Aα(x, η(yi), ζ(y)) → χk Aα(x, η(y), ζ(y)) in
norm in Eψ(Ω) for all |α| = m. From (A1) and (A2) it follows that
χk Aα(x, η(yi), ζ(y)) ∈ Eψ(Ω) and that the a.e. convergence holds. So the norm
convergence follows by Vitali’s Theorem using the dominated convergence theo-
rem in the right hand side of (A2).

6.We prove (16) for any fixed k. For all |α| ≤ m − 1 we may assume by the
previous argument that χkDα(yi) → χkDα(y) in norm in Lϕ(Ω) and hence (16) is
obtained immediately by Hölder’s inequality.

7. We have shown that (13) holds implying that Dα(yi)(x) → Dα(y)(x) a.e.
in Ω for all |α| ≤ m, at least for a subsequence. By (A1) we can conclude that
Aα(x, ζ(yi)) → Aα(x, ζ(y)) a.e. in Ω for all |α| ≤ m. On the other hand,
Aα(x, ζ(yi)) → hα for σ(Lψ(Ω), Eϕ(Ω)), so that By Lemma 2. Aα(x, ζ(y)) = hα

for each |α| ≤ m. Hence y ∈ D(T) and T(y) = z.
8. to complete the proof of (ii) it remains to show that (T(yi), yi) → (z, y) =

(T(y), y). Bearing in mind the assumption that lim sup < T(yi), yi > ≤ < z, y >

it will be sufficient to prove that

lim inf
∫

Ω
∑

|α|≤m

Aα(x, ζ(yi))D
α(yi) ≥

∫

Ω
∑

|α|≤m

Aα(x, ζ(y))Dα(y). (17)

By (A3) we have, for all x ∈ Ω,

∑
|α|=m

Aα(x, ζ(yi))D
α(yi) ≥ ∑

|α|=m

Aα(x, η(yi), ξ(y))(Dα(yi)− Dαy)

+ ∑
|α|=m

Aα(x, ζ(yi))D
α(y).

As a consequence we obtain, by (A4),
∫

Ω
∑

|α|≤m

Aα(x, ζ(yi))D
α(yi)

=
∫

Ωk

∑
|α|=m

Aα(x, ζ(yi))D
α(yi)

+
∫

Ωk

∑
|α|≤m−1

Aα(x, ζ(yi))D
α(yi) +

∫

Ω\Ωk

∑
|α|≤m

Aα(x, ζ(yi))D
α(yi)

≥
∫

Ωk

∑
|α|=m

Aα(x, η(yi), ξ(y))(Dα(yi)− Dα(y)) +
∫

Ωk

∑
|α|=m

Aα(x, ζ(yi))D
α(y)

+
∫

Ωk

∑
|α|≤m−1

Aα(x, ζ(yi))D
α(yi)−

∫

Ω\Ωk

∑
|α|≤m

bαDα(yi)−
∫

Ω\Ωk

b.
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Using the same argument as above, we get

lim inf
i

∫

Ω
∑

|α|≤m

Aα(x, ζ(yi))D
α(yi) ≥

∫

Ω
∑

|α|≤m

Aα(x, ζ(y))Dα(y)−
∫

Ω\Ωk

∑
|α|≤m

Aα(x, ζ(y))Dα(y)

− c ∑
|α|≤m

||(1 − χk)bα||ψ −
∫

Ω\Ωk

b =
∫

Ω
∑

|α|≤m

Aα(x, ζ(y))Dα(y)− εk

with εk → 0 as k → ∞ and we obtain (17).
To prove that (iii) holds, we let y varies in D(T) with ||y||mϕ ≤ cst and <

y − ȳ, T(y) > ≤ cst with respect to ȳ = v. By a method similar to the first step of
proof of (ii) we can conclude that Aα(x, ξ(y)) remains bounded in Lψ(Ω) for all
|α| ≤ m, which clearly implies that T(y) remains bounded in W−mLψ(Ω).

Let us finally show that the condition (iv) holds with respect to ȳ = v and any

f in W−mEψ(Ω). Let f = ∑|α|≤m(−1)|α|Dα fα ∈ W−mEψ(Ω), we claim that

{y ∈ D(T);< y − v, T(y)− f >≤ 0} (18)

is bounded in Wm
0 Lϕ(Ω), which clearly yields the conclusion. If u belongs to (18),

then
∫

Ω
∑

|α|≤m

(Aα(x, ξ(y)) − fα)(D
αy − Dαv)dx ≤ 0

and consequently, by (A4) and young’s inequality,

d1

∫

Ω
∑

|α|≤m

ϕ(x, d2Dα(y))dx

≤
∫

Ω
∑

|α|≤m

(bα + fα)D
α(y)dx +

∫

Ω
b(x)dx −

∫

Ω
∑

|α|≤m

fαDα(v)dx

≤
∫

Ω
∑

|α|≤m

ψ(x, r(bα + fα))dx +
∫

Ω
∑

|α|≤m

ϕ(x,
Dα(y)

r
)dx + cst

where r > 0 can be taken as large as needed.
for r ≥ 1

d2
, we have

d1

∫

Ω
∑

|α|≤m

ϕ(x, d2Dα(y))dx ≤
1

rd2

∫

Ω
∑

|α|≤m

ϕ(x, d2Dα(y))dx + cst

this inequality, for r > 1
d1d2

, provides a bound on each integral
∫

Ω
ϕ(x, d2Dα(y))dx.

It then follows that each Dα(y) remains bounded in Lϕ(Ω).

Remark 1. By [17, Proposition 1], same arguments as above give an existence result for
the inequality associate to the above Dirichlet problem.
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The following Corollary improves the known existence results for the Dirich-
let problem in the variable exponent Sobolev spaces :

Corollary 2. Let Ω be an open subset of Rn. Let p : Ω →]1,+∞] be a locally in-
tegrable function such that 1 < p− = infx∈Ω p(x) and p+ = supx∈Ω p(x) ≤ ∞.

Let f ∈ W−m,p′(x)(Ω) where p′ is such that 1
p(x)

+ 1
p′(x)

= 1. Then there exists at least

one weak solution u ∈ W
m,p(x)
0 (Ω) for the Dirichlet problem of the form:

A(u) = f

where A is defined by (11) and the Musielak-Orlicz function ϕ is replaced by tp(x).
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