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Abstract

In this paper, we investigate the growth of solutions of the linear differ-
ential equation

f (k) +
(

Ak−1(z)e
Pk−1(z) + Bk−1 (z)

)

f (k−1) + · · ·+
(

A1(z)e
P1(z) + B1 (z)

)

f ′ +
(

A0(z)e
P0(z) + B0 (z)

)

f = 0,

where k ≥ 2 is an integer, Pj(z) (j = 0, 1, · · · , k − 1) are nonconstant poly-
nomials and Aj(z) ( 6≡ 0) , Bj (z) ( 6≡ 0) (j = 0, 1, · · · , k − 1) are meromorphic
functions. Under some conditions, we determine the hyper-order of these
solutions.

1 Introduction and statement of the result

Throughout this paper, we use the fundamental results and the standard nota-
tions of the Nevanlinna value distribution theory of meromorphic functions (see
[7]). Let σ( f ) denote the order of growth of a meromorphic function f (z) and
σ2( f ) the hyper-order of f (z) which is defined by (see [8] , [10])

σ2( f ) = lim sup
r→+∞

log log T(r, f )

log r
,
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where T(r, f ) is the characteristic function of Nevanlinna. We define the loga-

rithmic measure of a set E ⊂ [1,+∞) by lm(E) =
∫ +∞

1
χE(t)

t dt, where χE is the
characteristic function of E.

The main purpose of this paper is to study the growth of solutions of the
linear differential equations of the form

f (k) +
(

Ak−1(z)e
Pk−1(z) + Bk−1 (z)

)

f (k−1) + · · ·+
(

A1(z)e
P1(z) + B1 (z)

)

f ′

+
(

A0(z)e
P0(z) + B0 (z)

)

f = 0, (1.1)

where k ≥ 2 is an integer, Pj(z) (j = 0, 1, · · · , k − 1) are nonconstant polynomials
and Aj(z) ( 6≡ 0) , Bj (z) ( 6≡ 0) (j = 0, 1, · · · , k − 1) are meromorphic functions.

Many authors have also considered the higher order linear differential equa-
tions with entire coefficients. In [1] , Belaı̈di and Abbas have proved the following
result:

Theorem A ([1]) Let k ≥ 2 be an integer and Pj(z) =
n

∑
i=0

ai,jz
i (j = 0, 1, · · · , k − 1) be

nonconstant polynomials, where a0,j, · · · , an,j (j = 0, · · · , k − 1) are complex numbers
such that an,jan,s 6= 0 (j 6= s). Let Aj(z) ( 6≡ 0) (j = 0, 1, · · · , k − 1) be entire func-
tions with σ(Aj) < n (j = 0, 1, · · · , k − 1). Suppose that arg an,j 6= arg an,s (j 6= s)
or an,j = cjan,s (0 < cj < 1) (j 6= s). Then every transcendental solution f of the
differential equation

f (k) + Ak−1(z)e
Pk−1(z) f (k−1) + · · ·+ As(z)e

Ps(z) f (s) + · · ·+ A0(z)e
P0(z) f = 0 (1.2)

is of infinite order and satisfies σ2( f ) = n.
Furthermore, if max {c1, · · · , cs−1} < c0, then every solution f 6≡ 0 of equation

(1.2) is of infinite order and satisfies σ2( f ) = n.

Recently, Tu and Yi have obtained the following result for equations of the
form (1.2):

Theorem B ([9]) Let Aj(z) (j = 0, 1, · · · , k − 1) (k ≥ 2) be entire functions with

σ(Aj) < n (n ≥ 1), and let Pj(z) =
n

∑
i=0

ai,jz
i (j = 0, 1, · · · , k − 1) be polynomials

with degree n, where an,j (j = 0, 1, · · · , k − 1) are complex numbers such that an,0 =

|an,0| eiθ0 , an,s = |an,s| eiθs , an,0an,s 6= 0 (1 ≤ s ≤ k − 1), θ0, θs ∈ [0, 2π), θ0 6= θs,
A0As 6≡ 0; for j 6= 0, s, an,j satisfies either an,j = cjan,0

(

cj < 1
)

or arg an,j = θs. Then
every solution f 6≡ 0 of equation (1.2) is of infinite order and satisfies σ2( f ) = n.

In [4] and [8] , earlier results can be found on related topics dealing with sec-
ond order equations, whereas here we deal with k−th order equations. In this
paper, we extend and improve Theorems A-B from entire solutions to meromor-
phic solutions by proving the following result:
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Theorem 1.1 Let k ≥ 2 be an integer and Pj(z) =
n

∑
i=0

ai,jz
i (j = 0, 1, · · · , k − 1)

be nonconstant polynomials, where a0,j, a1,j, · · · , an,j (j = 0, 1, · · · , k − 1) are complex
numbers such that an,j 6= 0 (j = 0, 1, · · · , k − 1). Let Aj(z) ( 6≡ 0), Bj(z) ( 6≡ 0)
(j = 0, 1, · · · , k − 1) be meromorphic functions with σ(Aj) < n and σ(Bj) < n.
Suppose that one of the following statements holds:
(i) there exists d ∈ {1, · · · , k − 1} such that arg an,j 6= arg an,d (j 6= d);
(ii) there exists d ∈ {1, · · · , k − 1} such that an,j = cjan,d (0 < cj < 1) (j 6= d);

(iii) there exist d, s ∈ {1, · · · , k − 1} such that an,d = |an,d| eiθd , an,s = |an,s| eiθs ,
θd, θs ∈ [0, 2π), θd 6= θs and for j ∈ {0, · · · , k − 1}� {d, s} , an,j satisfies either

an,j = djan,d

(

dj < 1
)

or arg an,j = θs.
Then every transcendental meromorphic solution f whose poles are of uniformly

bounded multiplicity of equation (1.1) is of infinite order and satisfies σ2( f ) = n.
Furthermore, if max {c1, · · · , cd−1} < c0 in case (ii) , then every meromorphic

solution f 6≡ 0 whose poles are of uniformly bounded multiplicity of equation (1.1) is of
infinite order and satisfies σ2( f ) = n.

Remark 1.1 Clearly, the method used in linear differential equations with entire
coefficients can not deal with the case of meromorphic coefficients. In addition,
the proofs of the results in [1] rely heavily on the idea of Lemma 2.3, Lemma
2.4 and Lemma 2.9 in [1]. However, it seems too complicated to deal with our
cases. The methods in the proof of Theorem 1.1 are mainly the estimate for the
logarithmic derivative of a transcendental meromorphic function of finite order
due to Gundersen [6], Lemma 2.2 [2] due to Cao and Yi and Lemma 2.5 [5] due to
Chen and Xu.

Remark 1.2 Recently, Chen and Xu [5] have investigated the growth of solutions
of differential equations of the above type with meromorphic coefficients. So, it is
also interesting to consider the growth and oscillation of meromorphic solutions
of non-homogeneous linear differential equations with meromorphic coefficients.

2 Preliminary lemmas

Lemma 2.1 ([6]) Let f (z) be a transcendental meromorphic function and let α > 1 and
ε > 0 be given constants. Then there exist a set E1 ⊂ (1,+∞) having finite logarithmic
measure and a constant B > 0 that depends only on α and (i, j) (i, j positive integers with
i > j) such that for all z satisfying |z| = r /∈ [0, 1]∪ E1, we have

∣

∣

∣

∣

∣

f (i)(z)

f (j)(z)

∣

∣

∣

∣

∣

≤ B

[

T(αr, f )

r
(logα r) log T(αr, f )

]i−j

.

Remark 2.1 In [2], Cao and Yi have obtained the following lemma but with no
mention of the existence of finite logarithmic set. Here we give the full lemma.

Lemma 2.2 ([2]) Let f (z) = g (z) /b (z) be a meromorphic function with σ ( f ) = σ ≤
+∞, where g (z) and b (z) are entire functions satisfying one of the following conditions:
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(i) g being transcendental and b being polynomial,
(ii) g, b all being transcendental and λ (b) = σ (b) < σ (g) = σ.
Then there exist a sequence {rm}m∈N

, rm → +∞ and a set E2 of finite logarithmic
measure such that the estimation

∣

∣

∣

∣

f (z)

f (d)(z)

∣

∣

∣

∣

≤ r2d
m (d ∈ N)

holds for all z satisfying |z| = rm /∈ E2, rm → +∞ and |g (z)| = M (rm, g) .

Lemma 2.3 ([3]) Let g (z) be a transcendental meromorphic function of order σ (g) =
σ < +∞. Then for any given ε > 0, there exists a set E3 ⊂ (1,+∞) that has finite
logarithmic measure, such that

|g (z)| ≤ exp
{

rσ+ε
}

holds for |z| = r /∈ [0, 1]∪ E3, r → +∞.

Remark 2.2 Combining Lemma 2.3 and applying it to 1
g(z)

, it is clear that for any

given ε > 0, there exists a set E4 ⊂ (1,+∞) that has finite logarithmic measure,
such that

exp
{

−rσ+ε
}

≤ |g (z)| ≤ exp
{

rσ+ε
}

holds for |z| = r /∈ [0, 1] ∪ E4, r → +∞.

Lemma 2.4 Let P (z) = (α + iβ) zn + · · · (α, β are real numbers, |α|+ |β| 6= 0) be a
polynomial with degree n ≥ 1 and A (z) be a meromorphic function with σ (A) < n.

Set f (z) = A (z) eP(z), z = reiθ , δ (P, θ) = α cos nθ − β sin nθ. Then for any given
ε > 0, there exists a set E5 ⊂ (1,+∞) having finite logarithmic measure such that for
any θ ∈ [0, 2π) \ H (H = {θ ∈ [0, 2π) : δ (P, θ) = 0}) and for |z| = r /∈ [0, 1] ∪ E5,
r → +∞, we have
(i) if δ (P, θ) > 0, then

exp {(1 − ε) δ (P, θ) rn} ≤
∣

∣

∣
f
(

reiθ
)
∣

∣

∣
≤ exp {(1 + ε) δ (P, θ) rn} , (2.1)

(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤
∣

∣

∣
f
(

reiθ
)
∣

∣

∣
≤ exp {(1 − ε) δ (P, θ) rn} . (2.2)

Proof. Set f (z) = h (z) e(α+iβ)zn
, where h (z) = A (z) ePn−1(z), Pn−1 (z) = P (z) −

(α + iβ) zn. Then ρ (h) = λ < n. By Remark 2.2, for any given ε (0 < ε < n − λ) ,
there exists a set E5 ⊂ (1,+∞) that has finite logarithmic measure, such that for
|z| = r /∈ [0, 1] ∪ E5, r → +∞

exp
{

−rλ+ε
}

≤ |h (z)| ≤ exp
{

rλ+ε
}

. (2.3)

By
∣

∣

∣
e(α+iβ)(reiθ)

n∣
∣

∣
= eδ(P,θ)rn

and (2.3) , we have

exp
{

δ (P, θ) rn − rλ+ε
}

≤ | f (z)| ≤ exp
{

δ (P, θ) rn + rλ+ε
}

. (2.4)
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By θ /∈ H, where H = {θ ∈ [0, 2π) : δ (P, θ) = 0} , we see that:

(i) if δ (P, θ) > 0, then by 0 < λ + ε < n and (2.4) , we know that (2.1) holds for
r /∈ [0, 1] ∪ E5, r → +∞;

(ii) if δ (P, θ) < 0, then by 0 < λ + ε < n and (2.4) , we know that (2.2) holds for
r /∈ [0, 1] ∪ E5, r → +∞.

Lemma 2.5 ([5]) Let k ≥ 2 be an integer and let Aj(z) (j = 0, 1, · · · , k − 1) be mero-
morphic functions of finite order. If f is a transcendental meromorphic solution whose
poles are of uniformly bounded multiplicity of the equation

f (k) + Ak−1 (z) f (k−1) + · · ·+ A1 (z) f ′ + A0 (z) f = 0,

then σ2( f ) ≤ max{σ(Aj) : j = 0, 1, · · · , k − 1}.

3 Proof of Theorem 1.1

First of all we prove that equation (1.1) cannot have a transcendental mero-
morphic solution f with order σ ( f ) < n. Assume f is a transcendental mero-

morphic solution of equation (1.1) with σ ( f ) = σ < n. Then σ
(

f (j)
)

= σ < n

(j = 1, · · · , k). Set α = max
{

σ, σ
(

Bj

)

(j = 0, · · · , k − 1)
}

< n.

Suppose that (i) holds. Since arg an,j 6= arg an,d (j 6= d), there is a ray arg z =
θ ∈ [0, 2π) \ H, where H ={θ ∈ [0, 2π) : δ (P0, θ) = 0 or...or δ (Pk−1, θ) = 0} such
that δ (Pd, θ) > 0, δ

(

Pj, θ
)

< 0 (j 6= d) . By Lemma 2.3, for any given ε (0 < 2ε <

min {1, n − α}), there exists a set E3 ⊂ (1,+∞) having finite logarithmic measure
such that for all z with |z| = r /∈ [0, 1] ∪ E3, r → +∞, we have

∣

∣

∣
f (k) (z)

∣

∣

∣
≤ exp

{

rα+ε
}

, (3.1)

∣

∣

∣
Bd (z) f (d) (z)

∣

∣

∣
≤ exp

{

rα+ε
}

(3.2)

and
∣

∣

∣
Bj (z) f (j) (z)

∣

∣

∣
≤ exp

{

rσ(Bj f (j))+ ε
2

}

(j 6= d) . (3.3)

By Lemma 2.4 and σ
(

Aj f (j)
)

< n (j = 0, 1, · · · , k − 1) , for the above ε, there

exists a set E5 ⊂ (1,+∞) having finite logarithmic measure such that for all z
with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E5, r → +∞, we have

∣

∣

∣
Ad(z)e

Pd(z) f (d) (z)
∣

∣

∣
≥ exp {(1 − ε) δ (Pd, θ) rn} (3.4)

and
∣

∣

∣
Aj(z)e

Pj(z) f (j) (z)
∣

∣

∣
≤ exp

{

(1 − ε) δ
(

Pj, θ
)

rn
}

< 1 (j 6= d) . (3.5)

From (3.3) and (3.5), for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E3 ∪
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E5, r → +∞, we have
∣

∣

∣

(

Aj(z)e
Pj(z) + Bj (z)

)

f (j) (z)
∣

∣

∣
=
∣

∣

∣
Aj(z)e

Pj(z) f (j) (z) + Bj (z) f (j) (z)
∣

∣

∣

≤ exp
{

(1 − ε) δ
(

Pj, θ
)

rn
}

+ exp
{

rσ(Bj f (j))+ ε
2

}

≤ exp
{

rσ(Bj f (j))+ε
}

≤ exp
{

rα+ε
}

(j 6= d) . (3.6)

By (1.1), we have
∣

∣

∣
Ad(z)e

Pd(z) f (d) (z)
∣

∣

∣
≤
∣

∣

∣
Bd (z) f (d) (z)

∣

∣

∣
+
∣

∣

∣
f (k) (z)

∣

∣

∣

+
k−1

∑
j=0
j 6=d

∣

∣

∣

(

Aj(z)e
Pj(z) + Bj (z)

)

f (j) (z)
∣

∣

∣
. (3.7)

By (3.1) , (3.2) , (3.4) , (3.6) and (3.7) , for all z with arg z = θ ∈ [0, 2π) \ H,
|z| = r /∈ [0, 1] ∪ E3 ∪ E5, r → +∞, we have

exp {(1 − ε) δ (Pd, θ) rn} ≤ (k + 1) exp
{

rα+ε
}

. (3.8)

This is absurd. Hence σ ( f ) ≥ n.
Suppose that (ii) holds. Since an,j = cjan,d (0 < cj < 1) (j 6= d), it follows

that δ
(

Pj, θ
)

= cjδ (Pd, θ) (j 6= d). Put c = max
{

cj (j 6= d)
}

. Then 0 < c < 1. We
take a ray arg z = θ ∈ [0, 2π) \ H, where H = {θ ∈ [0, 2π) : δ (Pd, θ) = 0} , such

that δ (Pd, θ) > 0. By Lemma 2.3, for any given ε (0 < 2ε < min
{

1−c
1+c , n − α

}

),

there exists a set E3 ⊂ (1,+∞) having finite logarithmic measure such that for all
z with |z| = r /∈ [0, 1] ∪ E3, r → +∞, we have (3.1) and

∣

∣

∣
Bj (z) f (j) (z)

∣

∣

∣
≤ exp

{

rα+ε
}

(j = 0, · · · , k − 1) . (3.9)

By Lemma 2.4 and σ
(

Aj f (j)
)

< n (j = 0, 1, · · · , k − 1) , for the above ε, there

exists a set E5 ⊂ (1,+∞) having finite logarithmic measure such that for all z
with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1]∪ E5, r → +∞, we have (3.4) and

∣

∣

∣
Aj(z)e

Pj(z) f (j) (z)
∣

∣

∣
≤ exp {(1 + ε) cδ (Pd, θ) rn} (j 6= d) . (3.10)

From (1.1), we have
∣

∣

∣
Ad(z)e

Pd(z) f (d) (z)
∣

∣

∣
≤
∣

∣

∣
f (k) (z)

∣

∣

∣

+
k−1

∑
j=0

∣

∣

∣
Bj(z) f ( j) (z)

∣

∣

∣
+

k−1

∑
j=0
j 6=d

∣

∣

∣
Aj(z)e

Pj(z) f (j) (z)
∣

∣

∣
. (3.11)

By (3.1) , (3.4) , (3.9) − (3.11) and 0 < 2ε < n − α, for all z with arg z = θ ∈
[0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E3 ∪ E5, r → +∞, we have

exp {(1 − ε) δ (Pd, θ) rn} ≤ (k + 1) exp
{

rα+ε
}

+ (k − 1) exp {(1 + ε) cδ (Pd, θ) rn}

= (k − 1) (1 + o (1)) exp {(1 + ε) cδ (Pd, θ) rn} . (3.12)
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By 0 < 2ε < 1−c
1+c and (3.12), we have

exp

{

(1 − c)

2
δ (Pd, θ) rn

}

≤ M1, (3.13)

where M1 (> 0) is some constant. This is a contradiction. Hence σ ( f ) ≥ n.
Suppose that (iii) holds. Suppose that an,j1 , · · · , an,jm satisfy an,jγ = djγan,d,

jγ ∈ {0, · · · , k − 1} \ {d, s} , γ ∈ {1, · · · , m}, 1 ≤ m ≤ k − 2 and arg an,j = θs for
j ∈ {0, · · · , k − 1} \ {d, s, j1, · · · , jm} . Choose a constant ρ satisfying max{dj1 , · · · ,
djm} < ρ < 1. We divide the proof into two cases:
(a) ρ ≤ 0;
(b) 0 < ρ < 1.

Case (a). ρ ≤ 0. Since θd 6= θs, there is a ray arg z = θ ∈ [0, 2π) \ H, where H =
{θ ∈ [0, 2π) : δ (Pd, θ) = 0 or δ (Ps, θ) = 0} such that δ (Pd, θ) > 0 and δ (Ps, θ) <

0. Hence
δ
(

Pjγ , θ
)

= djγδ (Pd, θ) < 0 (γ = 1, · · · , m) , (3.14)

δ
(

Pj, θ
)

=
∣

∣an,j

∣

∣ cos (θs + nθ) < 0, j ∈ {0, · · · , k − 1} \ {d, s, j1, · · · , jm} . (3.15)

By Lemma 2.3, for any given ε (0 < 2ε < min {1, n − α}) there exists a set
E3 ⊂ (1,+∞) having finite logarithmic measure such that for all z with |z| =
r /∈ [0, 1] ∪ E3, r → +∞, we have (3.1) , (3.2) and (3.3) . By Lemma 2.4 and

σ
(

Aj f (j)
)

< n (j = 0, 1, · · · , k − 1) , for the above ε, there exists a set

E5 ⊂ (1,+∞) having finite logarithmic measure such that for all z with arg z =
θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E5, r → +∞, we have (3.4) and from (3.14) and
(3.15), we obtain (3.5) . By (3.3) and (3.5) , for all z with arg z = θ ∈ [0, 2π) \ H,
|z| = r /∈ [0, 1] ∪ E3 ∪ E5, r → +∞, we have (3.6) . By (3.1), (3.2), (3.4), (3.6) and
(3.7) , for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1]∪ E3 ∪ E5, r → +∞, we
have (3.8) . This is absurd. Hence σ ( f ) ≥ n.

Case (b). 0 < ρ < 1. Using the same reasoning as above, there exists a ray
arg z = θ ∈ [0, 2π) \ H, where H is defined as above, such that δ (Pd, θ) > 0 and
δ (Ps, θ) < 0. Hence

δ (−ρPd, θ) = −ρδ (Pd, θ) < 0, δ ((1 − ρ) Pd, θ) = (1 − ρ) δ (Pd, θ) > 0, (3.16)

δ
(

Pj, θ
)

=
∣

∣an,j

∣

∣ cos (θs + nθ) < 0, j ∈ {0, · · · , k − 1} \ {d, s, j1, · · · , jm} , (3.17)

δ
(

Pj − ρPd, θ
)

< 0, j ∈ {0, · · · , k − 1} \ {d, j1, · · · , jm} (3.18)

and
δ
(

Pjγ − ρPd, θ
)

=
(

djγ − ρ
)

δ (Pd, θ) < 0 (γ = 1, · · · , m) . (3.19)

By Lemma 2.4 and max{σ
(

f (k)
)

, σ
(

Aj f (j)
)

, σ
(

Bj f (j)
)

(j = 0, 1, · · · , k − 1)} <

n, for any given ε (0 < 2ε < 1), there exists a set E5 ⊂ (1,+∞) having finite log-
arithmic measure such that for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈
[0, 1] ∪ E5, r → +∞, we have

∣

∣

∣
Ad(z)e

(1−ρ)Pd(z) f (d) (z)
∣

∣

∣
≥ exp {(1 − ε) (1 − ρ) δ (Pd, θ) rn} , (3.20)
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∣

∣

∣
e−ρPd(z) f (k) (z)

∣

∣

∣
≤ exp {− (1 − ε) ρδ (Pd, θ) rn} ≤ 1, (3.21)

∣

∣

∣
Bj (z) e−ρPd(z) f (j) (z)

∣

∣

∣
≤ exp {− (1 − ε) ρδ (Pd, θ) rn} ≤ 1 (j = 0, · · · , k − 1)

(3.22)
and from (3.18) and (3.19) we obtain
∣

∣

∣
Aj(z)e

Pj(z)−ρPd(z) f (j) (z)
∣

∣

∣
≤ exp

{

(1 − ε) δ
(

Pj − ρPd, θ
)

rn
}

≤ 1 (j 6= d) . (3.23)

By (1.1), we have

∣

∣

∣
Ad(z)e

(1−ρ)Pd(z) f (d) (z)
∣

∣

∣
≤
∣

∣

∣
e−ρPd(z) f (k) (z)

∣

∣

∣
+

k−1

∑
j=0
j 6=d

∣

∣

∣
Aj(z)e

Pj(z)−ρPd(z) f (j) (z)
∣

∣

∣

+
k−1

∑
j=0

∣

∣

∣
Bj(z)e

−ρPd(z) f (j) (z)
∣

∣

∣
. (3.24)

By (3.20) − (3.24) , for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E5,
r → +∞, we have

exp {(1 − ε) (1 − ρ) δ (Pd, θ) rn} ≤ 2k. (3.25)

This is absurd. Hence σ ( f ) ≥ n.
Assume f is a transcendental meromorphic solution whose poles are of uni-

formly bounded multiplicity of equation (1.1). By Lemma 2.1, there exist a con-
stant B > 0 and a set E1 ⊂ (1,+∞) having finite logarithmic measure such that
for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have

∣

∣

∣

∣

∣

f (j)(z)

f (d)(z)

∣

∣

∣

∣

∣

≤ Br [T(2r, f )] j−d+1 (j = d + 1, · · · , k) (3.26)

and
∣

∣

∣

∣

∣

f (j)(z)

f (z)

∣

∣

∣

∣

∣

≤ Br [T(2r, f )] j+1 (j = 1, 2, · · · , d − 1). (3.27)

By (1.1) , it follows that the poles of f can only occur at the poles of Aj and Bj

(j = 0, · · · , k − 1). Note that the poles of f are of uniformly bounded multiplicity.
Hence λ (1/ f ) ≤ max

{

σ
(

Aj

)

, σ
(

Bj

)

(j = 0, · · · , k − 1)
}

< n. By Hadamard

factorization theorem, we know that f can be written as f (z) =
g(z)
b(z)

, where g (z)

and b (z) are entire functions with λ (b) = σ (b) = λ (1/ f ) < n ≤ σ ( f ) = σ (g) .
By Lemma 2.2, there exist a sequence {rm}m∈N

, rm → +∞ and a set E2 of finite
logarithmic measure such that the estimation

∣

∣

∣

∣

f (z)

f (d)(z)

∣

∣

∣

∣

≤ r2d
m (3.28)

holds for all z satisfying |z| = rm /∈ E2, rm → +∞ and |g (z)| = M (rm, g) . Set
β = max

{

σ
(

Bj

)

(j = 0, · · · , k − 1)
}

.
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Suppose that (i) holds. Using the same reasoning as above, there is a ray
arg z = θ ∈ [0, 2π) \ H, where H is defined above such that δ (Pd, θ) > 0,
δ
(

Pj, θ
)

< 0 (j 6= d). By Lemma 2.3, for any given ε (0 < 2ε < min{1, n − β}),
there exists a set E3 ⊂ (1,+∞) having finite logarithmic measure such that for all
z with |z| = r /∈ [0, 1] ∪ E3, r → +∞, we have

|Bd (z)| ≤ exp
{

rβ+ε
}

(3.29)

and
∣

∣Bj (z)
∣

∣ ≤ exp
{

rσ(Bj)+ ε
2

}

(j 6= d) . (3.30)

By Lemma 2.4, for any given ε (0 < 2ε < min {1, n − β}), there exists a set E5 ⊂
(1,+∞) having finite logarithmic measure such that for all z with arg z = θ ∈
[0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E5, r → +∞, we have

∣

∣

∣
Ad(z)e

Pd(z)
∣

∣

∣
≥ exp {(1 − ε) δ (Pd, θ) rn} (3.31)

and
∣

∣

∣
Aj(z)e

Pj(z)
∣

∣

∣
≤ exp

{

(1 − ε) δ
(

Pj, θ
)

rn
}

< 1 (j 6= d) . (3.32)

By (3.29) and (3.31) , for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E3 ∪
E5, r → +∞, we have

∣

∣

∣
Ad(z)e

Pd(z) + Bd (z)
∣

∣

∣
≥ (1 − o (1)) exp {(1 − ε) δ (Pd, θ) rn} . (3.33)

By (3.30) and (3.32) , for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E3 ∪
E5, r → +∞, we have

∣

∣

∣
Aj(z)e

Pj(z) + Bj (z)
∣

∣

∣
≤ exp

{

(1 − ε) δ
(

Pj, θ
)

rn
}

+ exp
{

rσ(Bj)+ ε
2

}

≤ exp
{

rσ(Bj)+ε
}

≤ exp
{

rβ+ε
}

(j 6= d) . (3.34)

We can rewrite (1.1) as

Ad(z)e
Pd(z) + Bd (z) =

f (k)

f (d)
+

k−1

∑
j=d+1

(

Aj(z)e
Pj(z) + Bj (z)

) f (j)

f (d)

+
d−1

∑
j=0

(

Aj(z)e
Pj(z) + Bj (z)

) f (j)

f

f

f (d)
. (3.35)

Hence from (3.26)− (3.28) and (3.33)− (3.35) , for all z with arg z = θ ∈ [0, 2π) \
H, |z| = rm /∈ [0, 1] ∪ E1 ∪ E2 ∪ E3 ∪ E5, rm → +∞ and |g (z)| = M (rm, g), we
obtain

(1 − o (1)) exp {(1 − ε) δ (Pd, θ) rn
m} ≤ M2r2d+1

m exp
{

r
β+ε
m

}

[T(2rm, f )]k , (3.36)

where M2 (> 0) is some constant. Thus 0 < 2ε < min {1, n − β} implies σ ( f ) =
+∞ and σ2 ( f ) ≥ n. By Lemma 2.5, we have σ2 ( f ) = n.
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Suppose that (ii) holds. Using the same reasoning as above, we take a ray
arg z = θ ∈ [0, 2π) \ H, where H = {θ ∈ [0, 2π) : δ (Pd, θ) = 0} , such that

δ (Pd, θ) > 0. By Lemma 2.3, for any given ε (0 < 2ε < min
{

1−c
1+c , n − β

}

), there

exists a set E3 ⊂ (1,+∞) having finite logarithmic measure such that for all z
with |z| = r /∈ [0, 1] ∪ E3, r → +∞, we have

∣

∣Bj (z)
∣

∣ ≤ exp
{

rβ+ε
}

(j = 0, · · · , k − 1) . (3.37)

By Lemma 2.4, for any given ε (0 < 2ε < min
{

1−c
1+c , n − β

}

), there exists a set

E5 ⊂ (1,+∞) having finite logarithmic measure such that for all z with arg z =
θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1]∪ E5, r → +∞, we have (3.31) and

∣

∣

∣
Aj(z)e

Pj(z)
∣

∣

∣
≤ exp {(1 + ε) cδ (Pd, θ) rn} (j 6= d). (3.38)

By (3.31) and (3.37) , for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E3 ∪
E5, r → +∞, we have (3.33) . By (3.37) and (3.38) , for all z with arg z = θ ∈
[0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E3 ∪ E5, r → +∞, we have

∣

∣

∣
Aj(z)e

Pj(z) + Bj (z)
∣

∣

∣
≤ (1 + o (1)) exp {(1 + ε) cδ (Pd, θ) rn} (j 6= d). (3.39)

Hence from (3.26)− (3.28) and (3.33) , (3.35) and (3.39), for all z with arg z = θ ∈
[0, 2π) \ H, |z| = rm /∈ [0, 1]∪ E1 ∪ E2 ∪ E3 ∪ E5, rm → +∞ and |g (z)| = M (rm, g),
we obtain

(1 − o (1)) exp {(1 − ε) δ (Pd, θ) rn
m}

≤ M3r2d+1
m (1 + o (1)) exp {(1 + ε) cδ (Pd, θ) rn

m} [T(2rm, f )]k , (3.40)

where M3 (> 0) is a constant. By 0 < 2ε < 1−c
1+c and (3.40), we have

exp

{

(1 − c)

2
δ (Pd, θ) rn

m

}

≤ M4r2d+1
m [T(2rm, f )]k , (3.41)

where M4 (> 0) is a constant. Hence (3.41) implies σ ( f ) = +∞ and σ2 ( f ) ≥ n.
By Lemma 2.5, we have σ2 ( f ) = n.

Suppose that (iii) holds.
Case (a). ρ ≤ 0. Using the same reasoning as above, there exists a ray arg z = θ ∈
[0, 2π) \ H, where H is defined as above, such that δ (Pd, θ) > 0 and δ (Ps, θ) <

0. Hence (3.14) and (3.15) hold. By Lemma 2.3, for any given ε (0 < 2ε <

min {1, n − β}) there exists a set E3 ⊂ (1,+∞) having finite logarithmic mea-
sure such that for all z with |z| = r /∈ [0, 1] ∪ E3, r → +∞, we have (3.29) and
(3.30) . By Lemma 2.4, for the above ε, there exists a set E5 ⊂ (1,+∞) having fi-
nite logarithmic measure such that for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈
[0, 1]∪ E5, r → +∞, we have (3.31) and (3.32) . By (3.29) and (3.31) , for all z with
arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E3 ∪ E5, r → +∞, we have (3.33) . By
(3.30) and (3.32) , for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E3 ∪ E5,
r → +∞, we have (3.34). Hence from (3.26)− (3.28) and (3.33)− (3.35), for all
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z with arg z = θ ∈ [0, 2π) \ H, |z| = rm /∈ [0, 1] ∪ E1 ∪ E2 ∪ E3 ∪ E5, rm → +∞

and |g (z)| = M (rm, g), we obtain (3.36) . Thus 0 < 2ε < min {1, n − β} implies
σ ( f ) = +∞ and σ2 ( f ) ≥ n. By Lemma 2.5, we have σ2 ( f ) = n.

Case (b). 0 < ρ < 1. Using the same reasoning as above, there exists a ray
arg z = θ ∈ [0, 2π) \ H, where H is defined as above, such that δ (Pd, θ) > 0
and δ (Ps, θ) < 0. Hence (3.16) − (3.19) hold. By Lemma 2.4, for any given ε
(0 < 2ε < 1), there exists a set E5 ⊂ (1,+∞) having finite logarithmic measure
such that for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E5, r → +∞, we
have

∣

∣

∣
Ad(z)e

(1−ρ)Pd(z)
∣

∣

∣
≥ exp {(1 − ε) (1 − ρ) δ (Pd, θ) rn} , (3.42)

∣

∣

∣
e−ρPd(z)

∣

∣

∣
≤ exp {− (1 − ε) ρδ (Pd, θ) rn} ≤ 1, (3.43)

∣

∣

∣
Bj (z) e−ρPd(z)

∣

∣

∣
≤ exp {− (1 − ε) ρδ (Pd, θ) rn} ≤ 1 (j = 0, · · · , k − 1) , (3.44)

∣

∣

∣
Aj(z)e

Pj(z)−ρPd(z)
∣

∣

∣
≤ exp

{

(1 − ε) δ
(

Pj − ρPd, θ
)

rn
}

≤ 1 (j 6= d) . (3.45)

We can rewrite (1.1) as

Ad(z)e
(1−ρ)Pd(z) = −Bd (z) e−ρPd(z) + e−ρPd(z)

f (k)

f (d)

+
k−1

∑
j=d+1

(

Aj(z)e
Pj(z)−ρPd(z) + Bj (z) e−ρPd(z)

) f (j)

f (d)

+
d−1

∑
j=0

(

Aj(z)e
Pj(z)−ρPd(z) + Bj (z) e−ρPd(z)

) f (j)

f

f

f (d)
. (3.46)

By (3.26) − (3.28) and (3.42) − (3.46), for all z with arg z = θ ∈ [0, 2π) \ H,
|z| = rm /∈ [0, 1] ∪ E1 ∪ E2 ∪ E5, rm → +∞ and |g (z)| = M (rm, g), we obtain

exp {(1 − ε) (1 − ρ) δ (Pd, θ) rn
m} ≤ M5r2d+1

m [T(2rm, f )]k , (3.47)

where M5 (> 0) is some constant. Thus 0 < 2ε < 1 implies σ ( f ) = +∞ and
σ2 ( f ) ≥ n. By Lemma 2.5, we have σ2 ( f ) = n.

If arg an,j = θs (j 6= d, s), then arg an,j 6= arg an,d (j 6= d) and by case (i), it
follows that every transcendental solution f of equation (1.1) is of infinite order
and satisfies σ2( f ) = n.

Suppose now that max {c1, · · · , cd−1} < c0 in case (ii) . If f is a rational solu-
tion of (1.1) , then by max {c1, · · · , cd−1} < c0, the hypotheses of case (ii) and

f = −

(

1

A0(z)eP0(z) + B0 (z)
f (k) +

Ak−1(z)e
Pk−1(z) + Bk−1 (z)

A0(z)eP0(z) + B0 (z)
f (k−1)

+ · · ·+
A1(z)e

P1(z) + B1 (z)

A0(z)eP0(z) + B0 (z)
f ′

)

, (3.48)
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we obtain a contradiction since the left side of equation (3.48) is a rational func-
tion but the right side is a transcendental meromorphic function.

Now we prove that equation (1.1) cannot have a nonzero polynomial solu-
tion. Suppose that c′ = max {c1, · · · , cd−1} < c0 and let f (z) be a nonzero poly-
nomial solution of equation (1.1) with deg f (z) = q. We take a ray arg z = θ ∈
[0, 2π) \ H, where H is defined as above, such that δ (Pd, θ) > 0. By Lemma 2.3,

for any given ε
(

0 < 2ε < min
{

1−c
1+c , c0−c′

c0+c′ , n − β
})

, there exists a set

E3 ⊂ (1,+∞) having finite logarithmic measure such that for all z with |z| =
r /∈ [0, 1] ∪ E3, r → +∞, we have (3.37). By Lemma 2.4, for the above ε ,
there exists a set E5 ⊂ (1,+∞) having finite logarithmic measure such that for
all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1] ∪ E5, r → +∞, we have
(3.31) and (3.38) . By (3.31) and (3.37) , for all z with arg z = θ ∈ [0, 2π) \ H,
|z| = r /∈ [0, 1]∪ E3 ∪ E5, r → +∞, we have (3.33) and by (3.37) and (3.38) , for all
z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈ [0, 1]∪ E3 ∪ E5, r → +∞, we have (3.39) .
If q ≥ d, by (1.1), (3.33) and (3.39), we obtain for all z with arg z = θ ∈ [0, 2π) \ H,
|z| = r /∈ [0, 1] ∪ E3 ∪ E5, r → +∞

M6rq−d (1 − o (1)) exp {(1 − ε) δ (Pd, θ) rn} ≤
∣

∣

∣
Ad(z)e

Pd(z) + Bd (z)
∣

∣

∣

∣

∣

∣
f (d) (z)

∣

∣

∣

≤ ∑
j 6=d

∣

∣

∣
Aj(z)e

Pj(z) + Bj (z)
∣

∣

∣

∣

∣

∣
f (j) (z)

∣

∣

∣

≤ M7rq (1 + o (1)) exp {(1 + ε) cδ (Pd, θ) rn} , (3.49)

where M6 (> 0), M7 (> 0) are constants. By (3.49), we get

exp

{

(1 − c)

2
δ (Pd, θ) rn

}

≤ M8rd, (3.50)

where M8 (> 0) is some constant. Hence (3.50) is a contradiction. If q < d, by
(1.1), (3.33) and (3.39), we obtain for all z with arg z = θ ∈ [0, 2π) \ H, |z| = r /∈
[0, 1]∪ E3 ∪ E5, r → +∞

M9rd−1 (1 − o (1)) exp {(1 − ε) c0δ (Pd, θ) rn} ≤
∣

∣

∣
A0(z)e

P0(z) + B0 (z)
∣

∣

∣
| f (z)|

≤
d−1

∑
j=1

∣

∣

∣
Aj(z)e

Pj(z) + Bj (z)
∣

∣

∣

∣

∣

∣
f (j) (z)

∣

∣

∣

≤ M10rd−2 (1 + o (1)) exp {(1 + ε) c′δ (Pd, θ) rn} ,
(3.51)

where M9 (> 0), M10 (> 0) are constants. By (3.51), we get

exp

{

(c0 − c′)

2
δ (Pd, θ) rn

}

≤
M11

r
, (3.52)

where M11 (> 0) is some constant. This is a contradiction. Therefore, if
max{c1, · · · , cd−1}< c0, then every meromorphic solution of equation (1.1) is of
infinite order and satisfies σ2( f ) = n.
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