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Abstract

In this paper, the complete spacelike submanifold with parallel normal-
ized mean curvature vector and constant normalized scalar curvature is dis-
cussed in (n+ p)-dimensional connected semi-Riemannian manifold S

n+p
q (1)

(1 ≤ q ≤ p) and a rigidity theorem is obtained.

1 Introduction

Let Lm
s be an m-dimensional connected semi-Riemannian manifold of index s

(s ≥ 0); this is called a semi-definite space of index s. In particular, L
n+p
q (c) is an

(n + p)-dimensional connected semi-Riemannian manifold of constant curvature
c, of index q(1 ≤ q ≤ p). It is called an indefinite space form of index q. according

to whether c > 0, c = 0 or c < 0, it is denoted by S
n+p
q (c), R

n+p
q (c) or H

n+p
q (c).

A submanifold immersed in L
n+p
q (c) is said to be spacelike if the induced metric

in M from that of the ambient space L
n+p
q (c) is positive definite. Spacelike sub-

manifolds usually appear in the study of question related to causality in general
relativity.
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More precisely, level sets of a function of global time are spacelike subman-
ifolds. Also, spacelike hypersurfaces with constant mean curvature are conve-
nient as initial hypersurfaces for the Cauchy problem in arbitrary space time and
for studying the propagation of gravitational radiation. Aiyama [1] had proved
that a compact spacelike submanifold with parallel mean curvature vector and

flat normal bundle in de Sitter space S
n+p
p (c) is totally umbilical. Alias et al. [2]

obtained also some rigidity results for spacelike submanifolds with parallel mean

curvature vector in pseudo-Riemannian space forms N
n+p+1
p (c). Cheng [3] gen-

eralized the results obtained in [4] to complete spacelike submanifolds in de Sitter

space S
n+p
p (c). Li [5] extended Montiel’s result in [6] for complete spacelike sub-

manifolds with parallel mean curvature vector with two topological ends. Liu
[7], characterized the complete spacelike submanifolds Mn, with parallel mean

curvature vector satisfying H2 = 4(n − 1)c/n2(c > 0) in de Sitter space S
n+p
p (c).

He shows that Mn is totally umbilical, or Mn is the hyperbolic cylinder in S
n+p
p (c)

or Mn has unbounded volume and positive Ricci curvature. Recently, in [8], Baek
et al., obtained an optimal estimate of the squared norm of the second funda-
mental form for complete spacelike hypersurfaces with constant mean curvature
in a locally symmetric Lorentz space satisfying some curvature conditions and
characterized the totally umbilical hypersurfaces. In particular, semi-Riemannian

space forms N
n+p
p (c) are examples of locally symmetric semi-Riemannian spaces.

In this paper we extend the last result to higher codimensional spacelike sub-
manifolds with parallel mean curvature vector in a semi-Riemannian space form

N
n+p
p (c). Moreover we extend also to spacelike submanifolds a gap theorem ob-

tained by Brasil et al. in [9] and Chaves and Sousa in [10] for hypersurfaces. In
the context of submanifolds, there is a well known result of Ishihara [11] that,
for an n-dimensional complete maximal spacelike submanifold Mn immersed in

N
n+p
p (c), if c ≥ 0, then Mn is totally geodesic and if c < 0, then 0 ≤ S ≤ −npc.

In [12], Alias and Romero studied the complete maximal spacelike subman-

ifolds Mn in S
n+p
q (c). They prove that if Mn is compact maximal spacelike in

S
n+p
q (c) with Ric(M) ≥ (n − 1)c, then Mn is totally geodesic. M. Mariano [13]

studied the complete spacelike submanifolds Mn with parallel mean curvature
and second fundamental form locally timelike in a semi-Riemannian space form

N
n+p
q (c).

In this paper, we apply Cheng-Yau’s technique to complete submanifolds in

S
n+p
q (1) in order to prove the following results

Theorem 1.1. Let x : Mn → S
n+p
q (1) (n ≥ 3, 1 ≤ q ≤ p) be a substantial isomet-

ric immersion of a complete Riemannian manifold. Assume that the normalized mean

curvature vector of Mn in S
n+p
q (1) is parallel and constant normalized scalar curvature

R satisfying R ≤ 1. if the squared norm of the second fundamental form S satisfies
sup S ≤ 2

√
n − 1, then either

(1) S = nH2, Mn is totally umbilical submanifold and S = n(1 − R); or
(2) sup S = 2

√
n − 1 and Mn (n = 2) is totally umbilical submanifold, or Mn

(n ≥ 3) lies in a totally geodesic submanifold Sn+1
1 (1) of S

n+p
q (1) and Mn isometric to

a hyperbolic cylinder Sn−1(1 − tanh2 r)× H1(1 − coth2 r).
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Theorem 1.2. Let Mn be a complete spacelike submanifold in S
n+p
q (1) (1 ≤ q ≤ p) with

parallel normalized mean curvature vector. If sup K denote the function that assigns to
each point of Mn the supremum of the sectional curvature at that point, there exists a
constant β(n, q, H) such that if sup K ≤ β(n, q, H), then either

(1) n = 2 and M2 is totally umbilical or
(2) n ≥ 3 and Mn is totally geodesic.

2 Preliminaries

Let S
n+p
q (1) be an (n + p)-dimensional semi-Riemannian space with index q (1 ≤

q ≤ p). Let Mn be an n-dimensional connected spacelike submanifold immersed

in S
n+p
q (1). We choose a local field of semi-Riemannian orthonormal frames

e1, · · · , en+p in S
n+p
q (1) such that at each point of Mn, e1, · · · , en span the tangent

of Mn and from an orthonormal frame there. We use the following convention on
the range of indices:

1 ≤ A, B, C, · · · ,≤ n + p; 1 ≤ i, j, k, · · · ,≤ n; n + 1 ≤ α, β, γ, · · · ,≤ n + p.

Take the correspondent dual coframe {ω1, · · · , ωn+p} such that the semi-Rie-

mannian metric of S
n+p
q (1) is given by ds2 = ∑i ω2

i − ∑α ω2
α = ∑A εAω2

A, we
define

εA = 1(1 ≤ A ≤ n + p − q); εA = −1(n + p − q + 1 ≤ A ≤ n + p).

then the structure equations for S
n+p
q (1) are given by

dωA = −∑
B

εBωBA ∧ ωA, εBωBA + εAωAB = 0, (2.1)

dωAB = −∑
C

εCωAC ∧ ωCB − 1

2 ∑
C

εCεDKABCDωC ∧ ωD. (2.2)

KABCD = εAεB(δACδBD − δADδBC). (2.3)

Next, we restrict those forms to Mn. First of all we get ωα = 0, so the Riemannian
metric of Mn is written as ds2 = ∑i ω2

i . Since 0 = dωα = − ∑j ωαj ∧ ωj, from
Cartan’s lemma, we can write

ωαi = ∑
j

hα
ijωj, hα

ij = hα
ji. (2.4)

Set

B = ∑
α,i,j

εαhα
ijωiωjeα, h =

1

n ∑
α

(∑
i

hα
ii)eα and H = |h| = 1

n

√

∑
α

(∑
i

hα
ii)

2

the second fundamental form, the mean curvature vector and the mean curvature
of Mn, respectively.
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Using the structure equations we obtain the Gauss equation

Rijkl = (δikδjl − δilδjk)−∑
α

εα(h
α
ilh

α
jk − hα

ikhα
jl). (2.5)

The normalized scalar curvature R is given by

n(n − 1)R = n(n − 1)− n2H2 + S, (2.6)

where S = ∑α,i,j(h
α
ij)

2 is the squared norm of the second fundamental form of Mn.

We also have the structure equations of the normal bundle of Mn

dωα = ∑
β

ωαβ ∧ ωβ, ωαβ + ωβα = 0, (2.7)

dωαβ = ∑
γ

ωαγ ∧ ωγα −
1

2 ∑
i,j

Rαβijωi ∧ ωj. (2.8)

where

Rαβij = ∑
l

(hα
ilh

β
l j − hα

jlh
β
li). (2.9)

Denote the first and the second covariant derivatives of hij as hijk and hijkl; we
have

∑
k

hα
ijkωk = dhα

ij + ∑
k

hα
kjωki + ∑

k

hα
ikωkj − ∑

β

εαεβh
β
ijωβα, (2.10)

∑
l

hα
ijklωl = dhα

ijk + ∑
m

hα
mjkωml + ∑

m

hα
imkωmj +∑

m

hα
ijmωmk − ∑

β

εαεβh
β
ijkωβα.(2.11)

Then we have the Codazzi equation and Ricci’s identity

hα
ijk = hα

ikj = hα
jik, (2.12)

hα
ijkl − hα

ijlk = ∑
m

hα
mjRmikl + ∑

m

hα
imRmjkl + ∑

β

εαεβh
β
ijRαβkl . (2.13)

Next, we compute the Laplacian ∆hα
ij = ∑k hijkk. From (2.11) and (2.13), it

follows that

∆hα
ij = ∑

k

hα
kkij + ∑

m,k

hα
kmRmijk +∑

m,i

hα
kmRmkjk + ∑

k,β

εαεβh
β
ikRαβjk. (2.14)

Now, suppose that the second fundamental form is locally timelike. Then, we
can assume that

B′ = −
n+p

∑
α=n+p−q+1

∑
i,j

hα
ijωiωjeα, (2.15)
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and ∑i,j hα
ij = 0 for all α ≤ n + p − q. hence,

h =
1

n

n+p

∑
α=n+p−q+1

(∑
i

hα
ii)eα. (2.16)

Therefore h is timelike in S
n+p
q (1) and

S =
n+p

∑
α=n+p−q+1

∑
i,j

(hα
ij)

2. (2.17)

Recall that Mn is a submanifold with parallel mean curvature vector h if

∇⊥ h
H ≡ 0, where ∇⊥ is the normal connection of Mn in S

n+p
q (1). If H 6= 0,

we choose en+p−q+1 = h/H. Thus

∑
k

hα
kki = 0, HαHn+p−q+1 = Hn+p−q+1Hα. (2.18)

Hn+p−q+1 =
1

n
trhn+p−q+1 = H and Hα =

1

n
trhα = 0, α 6= n + p − q + 1,(2.19)

where hα denotes the matrix [hα
ij]. Let us define

Φ
n+p−q+1
ij = h

n+p−q+1
ij − Hδij, Φα

ij = hα
ij, α 6= n + p − q + 1. (2.20)

Therefore

Φn+p−q+1 = Hn+p−q+1 − HI, Φα = Hα, α 6= n + p − q + 1, (2.21)

where Φα denotes the matrix (Φα
ij). Then

|µ|2 = |Φn+p−q+1|2 = tr(Hn+p−q+1)2 − nH2, (2.22)

|τ|2 = ∑
α 6=n+p−q+1

|Φα|2 = ∑
β 6=n+p−q+1

(h
β
ij)

2, (2.23)

and

tr(Φα) = 0, ∀α. (2.24)

Thus,

S =
n+p

∑
α=n+p−q+1

|Φα|2. (2.25)

By (2.22), (2.23), and (2.25), we get

S = |Φ|2 + nH2 = |µ|2 + |τ|2 + nH2, (2.26)

and so

∆S = ∆(tr(Hn+p−q+1)2) + ∆(|τ|2). (2.27)

We will need the following lemma.



738 S. Zhang

Lemma 2.1. [14] Let µ1, · · · , µn be real numbers such that ∑i µi = 0 and ∑i µ2
i = B,

with B is constant, then

|∑
i

µ3
i | ≤

n − 2
√

n(n − 1)
B

3
2 ,

and equality holds if and only if

µ1 = · · · = µn−1 = −
√

1

n(n − 1)
B, µn =

√

n − 1

n
B.

Lemma 2.2. Let Mn be a spacelike submanifold in S
n+p
q (1) (1 ≤ q ≤ p). Suppose that

the normalized scalar curvature R is constant and R ≤ 1. Then

∑
i,j,k,α

(hα
ijk)

2 ≥ n2|∇H|2

and the symmetric tensor T defined by (2.35) is positive semi-definite. Moreover,
i) when R < 1, if the equality holds on M, then H is constant and T is positive

definite;
ii) when R = 1, if the equality occurs on M, then either H is constant or M lies in a

totally geodesic subspace Sn+1
1 of S

n+p
p and, in the former case, the matrix hn+1 has rank

1.

Lemma 2.3. [15] Let a1, · · · , an; b1, · · · , bn(n ≥ 2) be real numbers satisfying ∑i bi =
0. Then

∑
i,j

aiaj(bi − bj)
2 ≥ − n√

n − 1
(∑

i

a2
i )(∑

i

b2
i ).

By substituting (2.5) and (2.9) in (2.14), we obtain

1

2
∆(tr(Hn+p−q+1)2) = ∑

i,j,k

(h
n+p−q+1
ijk )2 +∑

i,j

h
n+p−q+1
ij ∆h

n+p−q+1
ij

= ∑
i,j,k

(h
n+p−q+1
ijk )2 +∑

i,j

h
n+p−q+1
ij (nH)ij + ntrH2

n+p−q+1

−n2H2 − nHtrH3
n+p−q+1 + [trH2

n+p−q+1]
2

+ ∑
β>n+p−q+1

[trHn+p−q+1Hβ]
2, (2.28)

1

2
∆|τ|2 = ∑

i,j,k,α>n+p−q+1

(hα
ijk)

2 + ∑
i,j,α>n+p−q+1

hα
ij∆hα

ij

= ∑
i,j,k,α>n+p−q+1

(hα
ijk)

2 + n|τ|2 − nH ∑
α>n+p−q+1

tr(H2
αHn+p−q+1)

+ ∑
α>n+p−q+1

[tr(Hn+p−q+1Hα)]
2 + ∑

α,β>n+p−q+1

[tr(HαHβ)]
2. (2.29)
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It is easy to check that tr(µ) = tr(Φn+p−q+1) = 0. By using Lemma 2.1, we
obtain

−nHtrH3
n+p−q+1 ≥ − n(n − 2)

√

n(n − 1)
H|µ|3 − 3nH2|µ|2 − n2H4

≥ − n − 2

2
√

n − 1
|µ|2(anH2 +

1

a
|µ|2)− 3nH2|µ|2 − n2H4,(2.30)

where a is any positive number.
Letting a = (n − 2

√
n − 1)/(n − 2), and substituting (2.30) into (2.28), we

obtain

1

2
∆(tr(Hn+p−q+1)2) ≥ ∑

i,j,k

(h
n+p−q+1
ijk )2 + ∑

i,j

h
n+p−q+1
ij (nH)ij

+|µ|2{n − n

2
√

n − 1
S}. (2.31)

For a given α > n + p − q + 1, we may choose {e1, e2 · · · , en}, such that hα
ij =

hα
iiδij, h

n+p−q+1
ij = h

n+p−q+1
ii δij. Then

−nHtr(H2
α Hn+p−q+1) + [tr(Hn+p−q+1Hα)]

2 =
1

2 ∑
i,j

h
n+p−q+1
ii h

n+p−q+1
jj (hα

ii − hα
jj)

2,

Since ∑i hα
ii = ntrHα = 0, we can use Lemma 2.3 and obtain

− nH ∑
α>n+p−q+1

tr(H2
αHn+p−q+1) + ∑

α>n+p−q+1

[tr(Hn+p−q+1Hα)]
2

≥ − n

2
√

n − 1
|τ|2S. (2.32)

Substituting (2.32) into (2.29), we obtain

1

2
∆|τ|2 ≥ ∑

i,j,k,α>n+p−q+1

(hα
ijk)

2 + |τ|2{n − n

2
√

n − 1
S}. (2.33)

From (2.27), (2.31) and (2.33), we obtain

1

2
∆S ≥ ∑

α,i,j,k

(hα
ijk)

2 + ∑
i,j

h
n+p−q+1
ij (nH)ij + (S − nH2){n − n

2
√

n − 1
S}. (2.34)

Let T = Σi,jTijωiωj be a symmetric tensor on Mn defined by

Tij = nHδij − h
n+p−q+1
ij . (2.35)

According to Cheng-Yau [16], we introduce the operator � associated to T acting
on any C2-function f by

� f = ∑
i,j

Tij fij = ∑
i,j

(nHδij − h
n+p−q+1
ij ) fij.
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Choosing f = H in above expression, we have

�(nH) = ∑
i,j

(nHδij − h
n+p−q+1
ij )(nH)ij

=
1

2
∆(n2 H2)− |grad(nH)|2 − ∑

i,j

h
n+p−q+1
ij (nH)ij. (2.36)

From (2.34) to (2.36) and Lemma 2.2, we obtain the next Lemma has an essen-
tial role in the proofs of our results.

Lemma 2.4. Let Mn be a complete spacelike submanifold in S
n+p
q (1), (1 ≤ q ≤ p) with

parallel normalized mean curvature vector and constant normalized scalar curvature R,
R ≤ 1. Then the following inequality holds

�(nH) ≥ |Φ|2
(

n − n

2
√

n − 1
S

)

. (2.37)

The following Lemma appeared in [17], for p = 1. Like in the proof of Propo-
sition 2.2 in [18], we have

Lemma 2.5. Let M be a complete spacelike submanifold in S
n+p
q (1) (1 ≤ q ≤ p) with

constant normalized scalar curvature R, R ≤ 1. If the mean curvature H of Mn is
bounded, then there is a sequence of points {pk} ∈ Mn such that limk→∞ nH(pk) =
n sup H,limk→∞ |∇nH(pk)| = 0 and lim supk→∞(�(nH)(pk)) ≤ 0.

We recall the following indefinite version of a lemma due to Erbacher [19].

Lemma 2.6. Let ψ: Mn
s → Q

n+p
t (c) be an isometric immersion of a connected indefinite

Riemannian manifold into a space form. If there exists a k-dimensional parallel normal
subbundle L(p) which contains the first normal space N1(p) for all p ∈ Mn

s , then there

exists a (n + p + k)-dimensional totally geodesic submanifold Qn+p−k of Q
n+p
t (c) such

that ψ(Mn
s ) ⊂ Qn+p−k, i.e., ψ admits a reduction of codimension to k.

Lemma 2.7. [20][21] Let Mn be an n-dimensional complete Riemannian manifold whose
Ricci curvature is bound from below. Let F be a C2-function bounded from below on Mn.
Then there is a sequence of points {pk} in Mn, such that

lim
k→∞

|∇F(pk)| = 0, lim sup
k→∞

∆F(pk) ≥ 0, lim
k→∞

F(pk) = inf F.

3 Proof of the theorem

Proof of Theorem 1.1. The following relations may be readily from the (2.6) and
(2.25)

H2 =
S − n(n − 1)(R − 1)

n2
, (3.1)

|Φ|2 =
(n − 1)S + n(n − 1)(R − 1)

n
. (3.2)
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|Φ|2 = n(n − 1)(R − 1 + H2). (3.3)

By our assumption sup S ≤ 2
√

n − 1 and (3.1), we can know H is bounded.
By our assumptions, from Lemma 2.5, there is a sequence of points pk in Mn,

such that

lim
k→∞

(nH(pk)) = n sup H, lim sup
k→∞

(�(nH)(pk)) ≤ 0. (3.4)

As R is constant, it is clear from (3.1) and (3.3) that limk→∞(S(pk)) = sup S and
limk→∞(Φ(pk)) = sup Φ.

From Lemma 2.4 and (3.4), we obtain

sup |Φ|2(n − n

2
√

n − 1
sup S) = lim sup

k→∞

(�(nH)(pk)) = 0. (3.5)

Then sup |Φ|2 = 0 or sup S = 2
√

n − 1.
(1) If sup |Φ|2 = 0, then S = nH2, Mn is totally umbilical submanifold and

S = n(1 − R).
(2) If sup S = 2

√
n − 1, we get H is constant.

(i) If n = 2, according to Cheng [3] had proved the theorem, we can know Mn is
totally umbilical submanifold.
(ii) If n ≥ 3 and sup S = 2

√
n − 1, then all the estimates employed to derive

this inequality are, actually, equalities and keeping in mind Theorem 1 [22] and

Lemma 2.6, we can obtain Mn lies in a totally geodesic submanifold Sn+1
1 (1) of

S
n+p
q (1). From the equality in lemma 2.1, we know Mn isometric to a hyperbolic

cylinder Sn−1(1 − tanh2 r)× H1(1 − coth2 r) in Sn+1
1 (1).

Proof of Theorem 1.2. By (2.9), (2.14), (2.18) and (2.19), we obtain

∑
α,β,i,j,k

hα
ijh

β
kiRαβjk =

1

2 ∑
α,β

N(HαHβ − HβHα)

and

1

2
∆S = ∑

α,i,j,k

(hα
ijk)

2 + n ∑
α,i,j

hα
ijH

α
ij +

1

2 ∑
α,β

N(HαHβ − HβHα)

+ ∑
α,i,j,m,k

hα
ijh

α
kmRmijk + ∑

α,i,j,m,k

hα
ijh

α
miRmkjk, (3.6)

where N(A) = tr(AAt), for all matrix A = (aij).
Next, we will obtain a pointiest estimate for the last two terms. For each fixed

α, let λα
i be an eigenvalue of hα and denotes by sup K the supremum of the sec-

tional curvature at a point p of Mn. Then

2

(

∑
i,j,m,k

hα
ijh

α
kmRmijk + ∑

i,j,k,m

hα
ijh

α
miRmkjk

)

= ∑
i,k

(λα
i − λα

k )
2Rikik

≤ (sup K)∑
i,k

(λα
i − λα

k )
2

= 2n(sup K)N(Φα). (3.7)
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Therefore,

∑
α,i,j,m,k

hα
ijh

α
kmRmijk + ∑

α,i,j,m,k

hα
ijh

α
miRmkjk ≤ n(sup K)∑

α

N(Φα) = n(sup K)|Φ|2.(3.8)

On the other hand, since

∑
α≥n+p−q+1

tr(Hn+p−q+1(Hα)2) =

∑
α≥n+p−q+1

tr(Φn+p−q+1(Φα)2) + H|Φ|2 + 2Htr(Φn+p−q+1)2 + nH2, (3.9)

and

∑
α,β=n+p−q+1

[tr(HαHβ)]2 = ∑
α,β=n+p−q+1

[tr(ΦαΦβ)]2 + 2nH2tr(Φn+p−q+1)2 + n2H4.

By applying Lemma 2.3 to Φα and Φn+p−q+1, we obtain

|tr(Φn+p−q+1(Φα)2)| ≤ n − 2
√

n(n − 1)
|Φn+p−q+1||Φα|2

≤ n − 2
√

n(n − 1)
|Φ|3. (3.10)

Using the Cauchy-Schwartz inequality, it is easy to prove that

|Φ|4 ≤ q
n+p

∑
α=n+p−q+1

(N(Φα))2 ≤ q
n+p

∑
α=n+p−q+1

[tr(ΦαΦβ)]2. (3.11)

So, we obtain

∑
α,i,j,m,k

hα
ijh

α
kmRmijk + ∑

α,i,j,m,k

hα
ijh

α
miRmkjk

= n|Φ|2 − nH ∑
α

tr(Hn+p−q+1(Hα)2) + ∑
α,β

[tr(HαHβ)]2

+
1

2 ∑
α,β

N(Hα Hβ − HβHα)

≥ |Φ|2
( |Φ|2

q
− n(n − 2)

√

n(n − 1)
|H||Φ|+ n − nH2

)

. (3.12)

For technical reason, we will write the expression (3.6) for the Laplacian of S as

1

2
∆S ≥ (1 − a)

(

∑
α,i,j,m,k

hα
ijh

α
kmRmijk + ∑

α,i,j,m,k

hα
ijh

α
miRmkjk

)

+a

(

∑
α,i,j,m,k

hα
ijh

α
kmRmijk + ∑

α,i,j,m,k

hα
ijh

α
miRmkjk

)

(3.13)
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From (3.8), (3.11), (3.12) and (2.25), if a ≥ 1, we obtain

1

2
∆|Φ|2 =

1

2
∆S ≥

a|Φ|2
( |Φ|2

q
− n(n − 2)

√

n(n − 1)
|H||Φ|+ n

[

1 − H2 + (
1 − a

a
) sup K

])

. (3.14)

Let λ
n+p−q+1
i be an eigenvalue of hn+p−q+1. we know

Ric(ei) = (n − 1)− nHh
n+p−q+1
ii +∑

k

(h
n+p−q+1
ik )2

=

(

λ
n+p−q+1
i − nH

2

)2

+ (n − 1)− n2H2

4

≥ (n − 1)− n2H2

4
.

So, we know Ricci curvature of Mn is bounded from blow. By Lemma 2.7, Thus
we may apply Omori and Yau’s result [21] to the function F = 1√

1+|Φ|2
, which is

a positive smooth function on Mn. Like in the proof the theorem [23], then

0 ≥ sup |Φ|2
(

sup |Φ|2
q

− n(n − 2)
√

n(n − 1)
|H| sup |Φ|+

n

[

1 − H2 + (
1 − a

a
) sup K

])

. (3.15)

Let

β(n, q, H) =
a

4(a − 1)(n − 1)
(4(n − 1)− [q(n − 2)2 + 4(n − 1)]H2).

If sup K ≤ β(n, q, H), it can be easily checked that

sup |Φ|2
(

sup |Φ|2
q

− n(n − 2)
√

n(n − 1)
|H| sup |Φ|+

n

[

1 − H2 + (
1 − a

a
) sup K

])

≥ 0. (3.16)

Moreover, the equality holds if and only if sup K = β(n, q, H) and sup |Φ| =

nq(n − 2)/(2
√

n(n − 1)). Thus, if sup K < β(n, q, H), from (3.14) and (3.15), we
conclude that sup |Φ| = 0 and Mn is totally umbilical.

If sup K = β(n, q, H), we will suppose that Mn is not totally umbilical and
derive a contradiction. First, let us prove that q = 1. all the estimates employed to
derive this inequality are, actually, equalities. From (3.10) and (3.11), we deduce
that

lim sup
k→∞

(N(Φn+p−q+1(pk))) = lim sup
k→∞

(|Φ|2(pk)) = sup |Φ|2. (3.17)
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sup |Φ|4 = q
n+p

∑
α=n+p−q+1

lim sup
k→∞

(N(Φα))2(pk) =

q
n+p

∑
α=n+p−q+1

(lim sup
k→∞

N(Φα)(pk))
2. (3.18)

From (2.23), (2.25), (3.16) and (3.17), we have sup |Φ|4 = q sup |Φ|4 and which
implies q = 1.

Next, let us prove that sup K = 0. Since h is parallel and the equality holds in
(3.6), (3.9) and (3.12), we can get

0 = lim sup
k→∞

1

2
∆|Φ|2(pk) = n(sup K) sup |Φ|2 = n(sup K)(sup |Φ|)2.

Therefore, sup K = 0.
Now, we are in position to prove that Mn is totally umbilical. Observe that

sup K = 0 and q = 1 yield

0 = sup K = β(n, q, H) =
a

4(a − 1)(n − 1)
(4(n − 1)− n2H2).

Hence n2H2 = 4(n − 1), according to Montiel [6], either Mn is a totally umbilical
hypersurface or n > 2 and the supremum of the scalar curvature of Mn is equal
to (n − 2)2.

Because Mn is not totally umbilical, we conclude that the supremum of the
scalar curvature of Mn is equal to (n− 2)2, which contradicts the fact that sup K =
0. Therefore, Mn is totally umbilical.

AS a is arbitrary, taking the limit for a → ∞ in

sup K ≤ β(n, q, H) =
a

4(a − 1)(n − 1)
(4(n − 1)− [q(n − 2)2 + 4(n − 1)]H2),

we obtain

sup K ≤ β(n, q, H) =
1

4(n − 1)
(4(n − 1)− [q(n − 2)2 + 4(n − 1)]H2).

Moreover, since Mn is totally umbilical, if n ≥ 3, we have

1 − H2 = sup K ≤ 1

4(n − 1)
(4(n − 1)− [q(n − 2)2 + 4(n − 1)]H2),

thus q(n − 2)H2 ≤ 0, which implies H = 0 and shows that Mn is totally geodesic.
So the proof is concluded.
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