Zeros of the derivative of a p-adic meromorphic function and applications *

Kamal Boussaf Alain Escassut Jacqueline Ojeda

Abstract

Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value. We show that if the Wronskian of two entire functions in K is a polynomial, then both functions are polynomials. As a consequence, if a meromorphic function f on all K is transcendental and has finitely many multiple poles, then f' takes all values in K infinitely many times. We then study applications to a meromorphic function f such that $f' + bf^2$ has finitely many zeros, a problem linked to the Hayman conjecture on a p-adic field.

1 Introduction and Main Results

Notation and Definitions. Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value $|\cdot|$. Given $\alpha \in K$ and $R \in \mathbb{R}_+^*$, we denote by $d(\alpha, R)$ the disk $\{x \in K \mid |x - \alpha| \le R\}$ and by $d(\alpha, R^-)$ the disk $\{x \in K \mid |x - \alpha| < R\}$, by $\mathcal{A}(K)$ the K-algebra of analytic functions in K (i.e. the set of power series with an infinite radius of convergence), by $\mathcal{M}(K)$ the field of meromorphic functions in K and by K(x) the field of rational functions. Given $f,g \in \mathcal{A}(K)$, we denote by W(f,g) the Wronskian f'g - fg'.

We know that any non-constant entire function $f \in \mathcal{A}(K)$ takes all values in K. More precisely, a function $f \in \mathcal{A}(K)$ other than a polynomial takes all values in K infinitely many times (see [5], [8], [9]). Next, a non-constant meromorphic

Communicated by F. Brackx.

2000 Mathematics Subject Classification: 12J25; 46S10.

Key words and phrases: zeros of p-adic meromorphic functions, derivative, Wronskian.

^{*}Partially supported by CONICYT N° 79090014 (Inserción de Capital Humano a la Academia) Received by the editors August 2011.

function $f \in \mathcal{M}(K)$ takes every value in K, except at most one value. And more precisely, a meromorphic function $f \in \mathcal{M}(K) \setminus K(x)$ takes every value in K infinitely many times except at most one value (see [5], [9]).

Many previous studies were made on Picard's exceptional values for complex and p-adic functions and their derivatives (see [1], [3], [6], [7], [8]). Here we mean to examine precisely whether the derivative of a transcendental meromorphic function in K having finitely many multiple poles, may admit a value that is taken finitely many times and then we will look for applications to Hayman's problem when m=2.

From Theorem 4 [6], we can state the following Theorem A:

Theorem A: Let $h, l \in A(K)$ satisfy $W(h, l) = c \in K$, with h non-affine. Then c = 0 and $\frac{h}{l}$ is a constant.

Now we can improve Theorem A:

Theorem 1: Let $f,g \in A(K)$ be such that W(f,g) is a non-identically zero polynomial. Then both f,g are polynomials.

Remark: Theorem 1 does not hold in characteristic $p \neq 0$. Indeed, suppose the characteristic of K is $p \neq 0$. Let $\psi \in \mathcal{A}(K)$. Let $f = x(\psi)^p$ and let $g = (x+1)\psi^{-p}$. Since $p \neq 0$, we have $f' = (\psi)^p$, $g' = \psi^{-p}$ hence W(f,g) = 1 and this is true for any function $\psi \in \mathcal{A}(K)$.

Theorem 2: Let $f \in \mathcal{M}(K) \setminus K(x)$ have finitely many multiple poles. Then f' takes every value $b \in K$ infinitely many times.

We can easily show Corollary 2.1 from Theorem 2, though it is possible to get it through an expansion in simple elements.

Corollary 2.1: Let $f \in \mathcal{M}(K) \setminus K(x)$. Then f' belongs to $\mathcal{M}(K) \setminus K(x)$.

Open question: Do exists transcendental meromorphic functions f such that f' has finitely many zeros? By Theorem 2, such functions should have infinitely many multiple poles.

Now, we can look for some applications to Hayman's problem in a p-adic field. Let $f \in \mathcal{M}(K)$. Recall that in [9], [10] it was shown that if m is an integer ≥ 5 or m=1, then $f'+f^m$ has infinitely many zeros that are not zeros of f. If m=3 or m=4, for many functions $f \in \mathcal{M}(K)$, $f'+f^m$ has infinitely many zeros that are not zeros of f (see [2], [10]) but there remain some cases where it is impossible to conclude, except when the field has residue characteristic equal to zero (see [10]). When m=2, few results are known. Recall also that as far as complex meromorphic functions f are concerned, $f'+f^m$ has infinitely many zeros that are not zeros of f for every $m \geq 3$, but obvious counter-examples show this is wrong for m=1 (with $f(x)=e^x$) and for m=2 (with $f(x)=\tan(-x)$). Here we will particularly examine functions $f'+bf^2$, with $b \in K^*$.

Theorem 3: Let $b \in K^*$ and let $f \in \mathcal{M}(K)$ have finitely many zeros and finitely many residues at its simple poles equal to $\frac{1}{b}$ and be such that $f' + bf^2$ has finitely many zeros. Then f belongs to K(x).

Remark: If $f(x) = \frac{1}{x}$, the function $f' + bf^2$ has no zero whenever $b \neq 1$.

Theorem 4: Let $f \in \mathcal{M}(K) \setminus K(x)$ have finitely many multiple zeros and let $b \in K$. Then $\frac{f'}{f^2} + b$ has infinitely many zeros. Moreover, if $b \neq 0$, every zero α of $\frac{f'}{f^2} + b$ that is not a zero of $f' + bf^2$ is a simple pole of f such that the residue of f at α is equal to $\frac{1}{h}$.

Corollary 4.1: Let $b \in K^*$ and let $f \in \mathcal{M}(K) \setminus K(x)$ have finitely many multiple zeros and finitely many simple poles. Then $f' + bf^2$ has infinitely many zeros that are not zeros of f.

Remark: In Archimedean analysis, the typical example of a meromorphic function f such that $f' + f^2$ has no zero is tan(-x) and its residue is 1 at each pole of f. Here we find the same implication but we can't find an example satisfying such properties.

2 The Proofs

Notation: Given $f \in \mathcal{A}(K)$ and r > 0, we denote by |f|(r) the norm of uniform convergence on the disk d(0,r). This norm is known to be multiplicative (see [4], [5]).

Lemma 1 is well known (see Theorem 13.5 [4]):

Lemma 1: Let
$$f \in \mathcal{M}(K)$$
. Then $|f^{(k-1)}|(r) \leq \frac{|f|(r)}{r^{k-1}} \, \forall r > 0$, $\forall k \in \mathbb{N}^*$.

Proof of Theorem 1: First, by Theorem A, we check that the claim is satisfied when W(f,g) is a polynomial of degree 0. Now, suppose the claim holds when W(f,g) is a polynomial of certain degree d. We will show it for d+1. Let $f,g \in \mathcal{A}(K)$ be such that W(f,g) is a non-identically zero polynomial P of degree d+1.

By hypothesis, we have f'g - fg' = P, hence f''g - fg'' = P'. We can extract g' and get $g' = \frac{f'g - P}{f}$. Now, consider the function Q = f''g' - f'g'' and replace g' by what we just found: we can get $Q = f'(\frac{f''g - fg''}{f}) - \frac{Pf''}{f}$.

Now, we can replace f''g - fg'' by P' and obtain $Q = \frac{f'P' - Pf''}{f}$. Thus, in that expression of Q, we can write $|Q|(R) \leq \frac{|f|(R)|P|(R)}{R^2|f|(R)}$, hence $|Q|(R) \leq \frac{|P|(R)}{R^2}$ $\forall R > 0$. But by definition, Q belongs to $\mathcal{A}(K)$ and further, $\deg(Q) \leq \deg(P) - 2$. Consequently, Q is a polynomial of degree at most d - 2.

Now, suppose Q is not identically zero. Since Q = W(f', g') and since deg(Q) < d, by induction f' and g' are polynomials and so are f and g. Finally, suppose Q = 0. Then P'f' - Pf'' = 0 and therefore f' and P are two solutions of

the differential equation of order 1 for meromorphic functions in K: (\mathcal{E}) $y' = \psi y$ with $\psi = \frac{P'}{P}$, whereas y belongs to $\mathcal{A}(K)$. The space of solutions of (\mathcal{E}) is known to be of dimension 0 or 1 (see for instance Lemma 60.1 in [4]). Consequently, there exists $\lambda \in K$ such that $f' = \lambda P$, hence f is a polynomial. The same holds for g.

Proof of Theorem 2: Suppose f' has finitely many zeros. By classical results (see [4], [5]) we can write f in the form $\frac{h}{l}$ with h, $l \in \mathcal{A}(K)$, having no common zero. Consequently, each zero of W(h,l) is a zero of f' except if it is a multiple zero of l. But since l only has finitely many multiple zeros, it appears that W(h,l) has finitely many zeros and therefore is a polynomial. Consequently, by Theorem 1, both h and l are polynomials, a contradiction because f does not belong to K(x).

Now, consider f' - b with $b \in K$. It is the derivative of f - bx whose poles are exactly those of f, taking multiplicity into account. Consequently, f' - b also has infinitely many zeros.

Notation: Given $f \in \mathcal{M}(K)$, we will denote by $res_a(f)$ the residue of f at a.

Lemma 2: Let $f = \frac{h}{l} \in \mathcal{M}(K)$ with $h, l \in \mathcal{A}(K)$ having no common zero, let $b \in K^*$ and let $a \in K$ be a zero of $h'l - hl' + bh^2$ that is not a zero of $f' + bf^2$. Then a is a simple pole of f and $\operatorname{res}_a(f) = \frac{1}{h}$.

Proof: Clearly, if $l(a) \neq 0$, a is a zero of $f' + bf^2$. Hence, a zero a of $h'l - hl' + bh^2$ that is not a zero of $f' + bf^2$ is a pole of f. Now, when l(a) = 0, we have $h(a) \neq 0$ hence $l'(a) = bh(a) \neq 0$ and therefore a is a simple pole of f such that $\frac{h(a)}{l'(a)} = \frac{1}{b}$. But since a is a simple pole of f, we have $\operatorname{res}_a(f) = \frac{h(a)}{l'(a)}$ which ends the proof.

Proof of Theorem 3: Let $f=\frac{P}{l}$ with P a polynomial, $l\in\mathcal{A}(K)$ having no common zero with P. Then $f'+bf^2=\frac{P'l-l'P+bP^2}{l^2}$. By hypothesis, this function has finitely many zeros. Moreover, if a is a zero of $P'l-l'P+bP^2$ but is not a zero of $f'+bf^2$ then, by Lemma 2, a is a simple pole of f such that $\operatorname{res}_a(f)=\frac{1}{b}$. Consequently, $P'l-l'P+bP^2$ has finitely many zeros and so we may write $\frac{P'l-l'P+bP^2}{l^2}=\frac{Q}{l^2}$ with $Q\in K[x]$, hence $P'l-l'P=-bP^2+Q$. But then, by Theorem 1, l is a polynomial, which ends the proof.

Proof of Theorem 4: Let $g = \frac{f'}{f^2} + b$. Suppose b = 0. Since all zeros of f are simple zeros except maybe finitely many, g has finitely many poles of order ≥ 3 , hence a primitive G of g has finitely many multiple poles. Consequently, by Theorem 2, g has infinitely many zeros.

Now, suppose $b \neq 0$. Let α be a zero of g and let $f = \frac{h}{l}$ with h, $l \in \mathcal{A}(K)$ having no common zero. Then $\frac{f'}{f^2} + b = \frac{h'l - hl' + bh^2}{h^2}$. Since α is a zero of $\frac{f'}{f^2} + b$, it is not a zero of h and hence it is a zero of $h'l - hl' + bh^2$. Then by Lemma 2, if it is not a zero of $f' + bf^2$, it is a simple pole of f such that $\operatorname{res}_{\alpha}(f) = \frac{1}{b}$, which ends the proof of Theorem 4.

Acknowledgement: The authors are very grateful to Jean-Paul Bezivin for an important improvement concerning Theorem 1.

References

- [1] **W. Bergweiler and X. C. Pang** *On the derivative of meromorphic functions with multiple zeros,* J. Math. Anal. Appl. 278, pp. 285-292 (2003).
- [2] **K. Boussaf and J. Ojeda** *Value distribution of p-adic meromorphic functions*, Bulletin of the Belgian Mathematical Society Simon Stevin, Vol 18, n.4, p. 667-678 (2011).
- [3] **K. Boussaf** *Picard values of p-adic meromorphic function*, p-adic Numbers, Ultrametric Analysis and Applications. Vol. 2, N. 4, pp. 285-292 (2010).
- [4] **A. Escassut** *Analytic Elements in p-adic Analysis*. World Scientific Publishing Co. Pte. Ltd. (Singapore, 1995).
- [5] **A. Escassut** *p-adic Value Distribution*. Some Topics on Value Distribution and Differentiability in Complex and P-adic Analysis, pp. 42-138. Mathematics Monograph, Series 11. Science Press (Beijing, 2008).
- [6] **A. Escassut and J. Ojeda** Exceptional values of p-adic analytic functions and derivatives. Complex Variables and Elliptic Equations. Vol 56, N. 1-4, pp. 263-269 (2011).
- [7] **W. Hayman** *Picard values of meromorphic functions and their derivatives,* Annals of Mathematics. Vol. 70, N. 1, pp. 9-42 (1959).
- [8] **P. C. Hu and C. C. Yang** *Meromorphic Functions over non-Archimedean Fields.* Kluwer Academic Publishers (2000).
- [9] **J. Ojeda** Distribution de valeurs des fonctions méromorphes ultramétrique, applications de la Théorie de Nevanlinna. Thèse (N. d'ordre D.U. 1865). Université Blaise Pascal, Clermont-Ferrand, France (2008).

[10] **J. Ojeda** *Hayman's Conjecture over a p-adic field*. Taiwanese Journal of Mathematics. Vol. 12, N. 9, pp. 2295-2313 (2008).

Laboratoire de Mathématiques, CNRS UMR 6620 Université Blaise Pascal 24 Avenue des Landais BP 80026 63171 Aubière Cedex, France email: Kamal.Boussaf,Alain.Escassut@math.univ-bpclermont.fr

Departamento de Matemática Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción Concepción, Chile email: jacqojeda@udec.cl