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Abstract

Buildings of types Cn and Dn are defined by rank n polar spaces. The
associated building Grassmannians are polar and half-spin Grassmannians.
Apartments in dual polar spaces and half-spin Grassmannians were charac-
terized in [4]. We characterize apartments in all polar Grassmannians con-
sisting of non-maximal singular subspaces. This characterization is a partial
case of more general results concerning embeddings of polar Johnson graphs
in polar Grassmann graphs.

1 Introduction

A building [14] is a simplicial complex ∆ together with a family of subcomplexes
called apartments and satisfying some axioms. One of the axioms says that all
apartments are isomorphic to a certain Coxeter complex — the simplicial complex
associated with a Coxeter system. This Coxeter system defines the type of the
building — if X is the diagram of the Coxeter system then we say that ∆ is a
building of type X. The vertex set of ∆ can be labeled by the nodes of the diagram
X. All vertices corresponding to the same node form a Grassmannian. We do not
consider more general Grassmannians defined by subsets in the set of nodes [13].

Let G be one of the Grassmannians associated with ∆. The intersection of G
with an apartment is said to be an apartment in G. We say that two distinct vertices
a, b ∈ G are adjacent if there exists a simplex P ∈ ∆ such that P ∪ {a} and P ∪ {b}
are chambers (maximal simplices) of ∆. The Grassmannian G admits the structure
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of a partial linear space such that two distinct points are collinear if and only if
they are adjacent elements of G; this partial linear space is called the Grassmann
space of G. Let Γ be the associated Grassmann graph (the graph whose vertex set
is G and whose edges are pairs of adjacent vertices). Let also Γa be the restriction
of Γ to an apartment of G (the restrictions of Γ to any two apartments of G are
isomorphic). Consider a few examples:

(1) If X = An−1, n ≥ 4 then ∆ is the flag complex of an n-dimensional vector
space and the associated Grassmannians are Gk(V), k ∈ {1, . . . , n − 1}. If
G = Gk(V) then Γa is isomorphic to the Johnson graph J(n, k).

(2) If X = Cn then ∆ is the flag complex of a rank n polar space. If G is the associ-
ated dual polar space then Γa is isomorphic to the n-dimensional hypercube
graph Hn.

(3) If X = Dn then ∆ is the oriflamme complex obtained from a polar space of
type Dn. If G is one of the half-spin Grassmannians then Γa is isomorphic to
the n-dimensional half-cube graph 1

2 Hn.

(4) If X = Cn or Dn and G is formed by k-dimensional singular subspaces of the
associated rank n polar space, k < n − 1 then Γa is isomorphic to the polar
Johnson graph PJ(n, k) (this graph will be defined in Subsection 2.3).

By [3], the image of an embedding of Γa in Γ is not necessarily an apartment of
G. In the cases (1) and (3), apartments of G can be characterized as the images of
embeddings of Γa in Γ transferring maximal cliques of Γa to independent subsets
of the Grassmann space [4, Theorems 2.2 and 4.3]. In the case (2), every maximal
clique of Γa consists of two vertices and we use other condition known as local
independence [4, Theorem 3.1]). Similar characterizations of apartments in some
Grassmannians associated with buildings of exceptional types were obtained in
[9]. Also, [9] contains new proofs of the results from [4] mentioned above. These
proofs are based on the following fact: for any subset X ⊂ G and any x ∈ X
denote by X (x) the set formed by x and all elements of X adjacent with x, then
X is an apartment of G if for every x ∈ X there is an apartment Ax ⊂ G, x ∈ Ax

such that X (x) = Ax(x) and some technical conditions hold (this is a partial case
of a more general result [7, Theorem 3.3]).

Some results related to the characterization of apartments as the images of
isometric embeddings can be found in [11, 12].

It was noted above that buildings of types Cn and Dn are defined by rank n
polar spaces. The associated building Grassmannians are polar Grassmannians
(in particular, dual polar spaces) and half-spin Grassmannians. Apartments in
dual polar spaces and half-spin Grassmannians were characterized in [4]. In this
paper we characterize apartments in the remaining polar Grassmannians.

Let Π be a polar space of rank n ≥ 3 and let Γk(Π) be the Grassmann graph
formed by k-dimensional singular subspaces of Π. We investigate embeddings of
PJ(l, m) in Γk(Π) such that

m ≤ k ≤ n − 2 and l − m ≤ n − k.
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In the case when l − m = n − k, we get a characterization of apartments in
parabolic subspaces of the associated Grassmann space (Theorems 4.2 and 4.3).
Parabolic subspaces admit the natural structure of polar Grassmann spaces. As
an application, we show that parabolic subspaces can be characterized as con-
vex subspaces isomorphic to polar Grassmann spaces (Subsection 4.2); we refer
[2, 5, 6] for some results concerning characterizations of subspaces in polar Grass-
mann spaces.

Theorem 4.3 is a partial case of a more general result (Theorem 4.4), but we
give an independent proof of Theorem 4.3 based on [7, Theorem 3.3]. The latter
result can not be exploited if l −m < n− k. In this case, the images of embeddings
of PJ(l, m) in Γk(Π) can not be apartments of polar Grassmannians.

2 Polar Grassmannians

2.1 Partial linear space

Let P be a non-empty set and let L be a family of proper subsets of P. Elements
of P and L will be called points and lines, respectively. We say that two or more
points are collinear if there is a line containing all of them. The pair Π = (P,L) is
a partial linear space if the following axioms hold:

• every line contains at least two points and every point belongs to a line;

• for any distinct collinear points p, q ∈ P there is precisely one line contain-
ing them, this line will be denoted by p q.

Let Π = (P,L) be a partial linear space. We say that S ⊂ P is a subspace of
Π if for any distinct collinear points p, q ∈ S the line p q is contained in S. A
subspace is called singular if any two distinct points of the subspace are collinear.
The empty set and a single point are singular subspaces. Using Zorn lemma, we
show that every singular subspace is contained in a maximal singular subspace.
For every subset X ⊂ P the minimal subspace containing X, i.e. the intersection
of all subspaces containing X, is called spanned by X and denoted by 〈X〉. We say
that X is an independent subset if the subspace 〈X〉 can not be spanned by a proper
subset of X.

Let S be a subspace of Π (possible S = P). An independent subset X ⊂ S is
said to be a base of S if 〈X〉 = S. The dimension of S is defined as the smallest car-
dinality α such that S has a base of cardinality α + 1. The dimension of the empty
set and a single point is equal to −1 and 0 (respectively), lines are 1-dimensional
subspaces, 2-dimensional singular subspaces are called planes.

The collinearity graph ΓΠ is the graph whose vertex set is P and whose edges
are pairs of distinct collinear points. Suppose that ΓΠ is connected and define
the distance d(p, q) between points p, q ∈ P as the smallest number i such that
there is a path of the length i connecting p and q; a path connecting p and q is
said to be a geodesic if it consists of d(p, q) edges. A subspace S is called convex if
for any points p, q ∈ S every geodesic connecting p and q is contained in S. For
any X ⊂ P the intersection of all convex subspaces containing X is said to be the
convex closure of X.
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Two partial linear spaces Π = (P,L) and Π
′ = (P′,L′) are isomorphic if there

is a bijection f : P → P′ such that f (L) = L′. Any such bijection is called a
collineation of Π to Π′. Every collineation transfers subspaces to subspaces and
induces an isomorphism between the collinearity graphs; moreover, it is distance
preserving and the images of convex subspaces are convex subspaces (if the dis-
tance is well-defined).

2.2 Polar spaces and polar Grassmannians

A polar space is a partial linear space Π = (P,L) satisfying the following axioms:

• every line contains at least three points,

• there is no point collinear with all other points,

• if p ∈ P and L ∈ L then p is collinear with precisely one or all points of L,

• any flag formed by singular subspaces is finite.

If a polar space Π = (P,L) contains a singular subspace whose dimension is
greater than 1 then all maximal singular subspaces of Π are projective spaces of
the same dimension m ≥ 2 and the number m + 1 is called the rank of the polar
space. The collinearity relation of Π is denoted by ⊥: for points p, q ∈ P we write
p ⊥ q if p is collinear with q and p 6⊥ q otherwise. If X, Y ⊂ P then X ⊥ Y means
that every point of X is collinear with all points of Y. For any X ⊂ P we denote
by X⊥ the set of all points p ∈ P such that p ⊥ X.

Let Π = (P,L) be a polar space of rank n. Denote by Gk(Π) the Grassmannian
formed by k-dimensional singular subspaces of Π. Then G0(Π) = P and Gn−1(Π)
consists of maximal singular subspaces. Two elements of Gn−1(Π) are adjacent if
their intersection is (n − 2)-dimensional. In the case when k ≤ n − 2, elements
S, U ∈ Gk(Π) are adjacent if

dim(S ∩ U) = k − 1 and S ⊥ U.

The associated Grassmann graph is denoted by Γk(Π). This graph is connected.
Let S and U be incident singular subspaces of Π such that dim S < k < dim U.

Denote by [S, U]k the set of all X ∈ Gk(Π) satisfying S ⊂ X ⊂ U. In the case when
S = ∅, this set will be denoted by 〈U]k. Also, we write [S〉k for the set formed by
all elements of Gk(Π) containing S.

The dual polar space Gn−1(Π) is the partial linear space whose points are ele-
ments of Gn−1(Π) and whose lines are subsets of type

[S〉n−1, S ∈ Gn−2(Π).

The polar Grassmann space Gk(Π), 0 ≤ k ≤ n − 2 is the partial linear space whose
points are elements of Gk(Π) and whose lines are subsets of type

[S, U]k, S ∈ Gk−1(Π), U ∈ Gk+1(Π).

Note that G0(Π) = Π and Γk(Π) is the collinearity graph of Gk(Π).
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Lemma 2.1. [10, Proposition 4.15] If an element of Gk(Π) is collinear with two distinct
points on a line of Gk(Π) then it is collinear with all points on this line.

The class of maximal singular subspaces of Gk(Π) coincides with the class of
maximal cliques of Γk(Π). Every maximal singular subspace of Gn−1(Π) is a line.
In the case when 1 ≤ k ≤ n − 2, there are precisely the following two types of
maximal singular subspaces of Gk(Π) [10, Proposition 4.16]:

• the top 〈U]k, U ∈ Gk+1(Π),

• the star [S, M]k, S ∈ Gk−1(Π), M ∈ Gn−1(Π) and k ≤ n − 3.

Tops and stars are projective spaces of dimension k+ 1 and n− k− 1, respectively.
Every big star [S〉k , S ∈ Gk−1(Π) is a polar space of rank n − k [10, Lemma 4.4].
Let N be a (k − m − 1)-dimensional singular subspace of Π. Then [N〉k is a

subspace of Gk(Π); subspaces of such type are called parabolic. If S ∈ [N〉k then
[N, S]k−m is an m-dimensional singular subspace of the polar space [N〉k−m. This
correspondence is a collineation of the parabolic subspace [N〉k to the index m
Grassmann space of [N〉k−m.

2.3 Apartments in polar Grassmannians

A frame of Π is a set consisting of 2n distinct points p1, . . . , p2n ∈ P such that for
each i ∈ {1, . . . , 2n} there is unique σ(i) ∈ {1, . . . , 2n} satisfying pi 6⊥ pσ(i). Every
frame is an independent subset of Π. Thus any k + 1 mutually collinear points of
a frame span a k-dimensional singular subspace.

Let B = {p1, . . . , p2n} be a frame of Π. The associated apartment Ak ⊂ Gk(Π)
is formed by all k-dimensional singular subspaces spanned by subsets of B, i.e. it
consists of all subspaces

〈pi1 , . . . , pik+1
〉

such that

{i1, . . . , ik+1} ∩ {σ(i1), . . . , σ(ik+1)} = ∅.

Note that A0 = B.
For every subset X ⊂ Gk(Π) we denote by Γ(X ) the restriction of Γk(Π) to

X . Then Γ(An−1) is isomorphic to the n-dimensional hypercube graph Hn, every
maximal clique of this graph is a pair of adjacent vertices. If 1 ≤ k ≤ n − 2 then
there are precisely the following two types of maximal cliques of Γ(Ak):

• the top Tk(U) := Ak ∩ 〈U]k, U ∈ Ak+1,

• the star Sk(S, M) := Ak ∩ [S, M]k, S ∈ Ak−1, M ∈ An−1 and k ≤ n − 3.

Each of these cliques is a base of the maximal singular subspace containing it. For
every S ∈ Ak−1 the big star Bk(S) is the intersection of Ak with the big star [S〉k;
this is a frame of the polar space [S〉k.

Consider the set

J := {1, . . . , n,−1, . . . ,−n}.
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We say that a subset X ⊂ J is singular if

j ∈ X =⇒ −j 6∈ X.

We define the polar Johnson graph PJ(n, k), k ∈ {0, 1, . . . , n− 1} as the graph whose
vertex set is formed by all singular subsets consisting of k + 1 elements. Two
such subsets are adjacent (connected by an edge) if their intersection consists of
k elements, and in the case when k ≤ n − 2, we also require that their sum is
singular. The graphs PJ(n, k) and Γ(Ak) are isomorphic. A maximal clique of
PJ(n, k), 1 ≤ k ≤ n − 2 is said to be a top or a star if it is defined by a vertex of
PJ(n, k + 1) or a vertex of PJ(n, k − 1) and a vertex of PJ(n, n − 1), respectively.
If 1 ≤ k ≤ n − 3 then every X ∈ PJ(n, k − 1) defines the big star of PJ(n, k) which
consists of all vertices of PJ(n, k) containing X. The restriction of PJ(n, k) to every
big star is isomorphic to PJ(n − k, 0).

Lemma 2.2. Let X = {x1, . . . , xu} and Y = {y1, . . . , yv} be disjoint subsets of Π such
that

v ≤ u ≤ n, X ⊥ X, Y ⊥ Y.

Suppose that yi 6⊥ xj only in the case when i = j. If v = u or xv+1, . . . , xu form an
independent subset of Π then X ∪ Y can be extended to a frame of Π.

Proof. By [10, Lemma 4.3],

x⊥1 ∩ y⊥1 ∩ · · · ∩ x⊥v ∩ y⊥v (2.1)

is a polar space of rank n − v. If v = u then we take any frame B′ of the polar
space (2.1) and B′ ∪ {x1, y1, . . . , xv, yv} is a frame of Π containing X ∪ Y. In the
case when xv+1, . . . , xu form an independent subset of Π, we choose two disjoint
maximal singular subspaces of (2.1) such that one of them contains xv+1, . . . , xu.
As in [10, Subsection 4.1.4], we show that xv+1, . . . , xu can be extended to a frame
B′ of (2.1). Then B′ ∪ {x1, y1, . . . , xv, yv} is a frame of Π containing X ∪ Y.

Let l be a natural number not greater than n. An l-frame of Π is a set consisting
of 2l distinct points p1, . . . , p2l ∈ P such that for each i ∈ {1, . . . , 2l} there is
unique σ(i) ∈ {1, . . . , 2l} satisfying pi 6⊥ pσ(i). This is a frame of Π if l = n. In the
general case, every l-frame can be extended to a frame (Lemma 2.2).

Let B be an l-frame of Π and let k ≤ l − 1. Denote by X the set formed by
all elements of Gk(Π) spanned by subsets of B. Then X is the intersection of all
apartments of Gk(Π) defined by frames containing B. Also, Γ(X ) is isomorphic
to PJ(l, k).

2.4 Apartments in parabolic subspaces

Let S ∈ Gk−1(Π). Then [S〉k is a polar space. If B is a frame of [S〉k then there is
a frame B of Π such that S is spanned by a subset of B and B is a big star in the
associated apartment of Gk(Π) [10, Lemma 4.4].

Let N be a (k−m− 1)-dimensional singular subspace of Π. Since the parabolic
subspace [N〉k can be identified with the index m Grassmann space of the polar
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space [N〉k−m, frames of [N〉k−m define apartments in [N〉k . If A is an apartment of
[N〉k then there is a frame B of Π such that N is spanned by a subset of B and A
is the intersection of [N〉k with the associated apartment of Gk(Π). The restriction
of Γk(Π) to every apartment of [N〉k is isomorphic to PJ(n − k + m, m).

Let B be an l-frame of the polar space [N〉k−m (then l ≤ n − k + m). Suppose
that m ≤ l − 1 and denote by X the set formed by all elements of [N〉k spanned
by elements of B. Then Γ(X ) is isomorphic to PJ(l, m).

3 Embeddings of PJ(l, m) in Γk(Π)

Recall that an embedding of a graph Γ in a graph Γ′ is an injective mapping of the
vertex set of Γ to the vertex set of Γ′ such that two vertices of Γ are adjacent if and
only if their images are adjacent.

In this section we establish some simple facts concerning embeddings of polar
Johnson graphs in the Grassmann graph Γk(Π). First of all, we describe embed-
dings of PJ(l, 0) in Γk(Π) for l ≥ 3.

Example 3.1. Every big star [S〉k , S ∈ Gk−1(Π) is a polar space of rank n − k. If X
is an l-frame of [S〉k , l ≤ n − k then Γ(X ) is isomorphic to PJ(l, 0).

Example 3.2. Suppose that 1 ≤ k ≤ n − 3 and N ∈ Gk−2(Π), M ∈ Gk+2(Π)
are incident. Then [N, M]k is a polar space of rank 3 (it is well-known that the
Grassmann space formed by lines of a 3-dimensional projective space is a polar
space of rank 3). The restriction of Γk(Π) to every frame of [N, M]k is isomorphic
to PJ(3, 0).

Proposition 3.1. Let X be a subset of Gk(Π) such that Γ(X ) is isomorphic to PJ(l, 0)
and l ≥ 3. Then l ≤ n − k and one of the following possibilities is realized:

(1) there exists S ∈ Gk−1(Π) such that X is an l-frame of [S〉k (if l = n − k then X is
a frame),

(2) l = 3 and there exist incident N ∈ Gk−2(Π) and M ∈ Gk+2(Π) such that X is a
frame of [N, M]k.

Proof. We take any X ∈ X . There is unique Y ∈ X non-adjacent with X and
all other elements of X are adjacent with both X and Y. One of the following
possibilities is realized:

(1) dim(X ∩ Y) = k − 1 and X 6⊥ Y,

(2) dim(X ∩ Y) = k − 2.

In the first case, every Z ∈ X \ {X, Y} contains the (k − 1)-dimensional sin-
gular subspace S = X ∩ Y (otherwise Z intersects X and Y in distinct (k − 1)-
dimensional singular subspaces which implies that X ⊥ Y). So, X is contained in
the big star [S〉k . If l ≤ n − k then X is an l-frame of [S〉k (by the definition).

In the case when l > n− k, we consider X ′ ⊂ X such that Γ(X ′) is isomorphic
to PJ(n − k, 0). Then X ′ is a frame of [S〉k and every element of X \X ′ is adjacent
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with all elements of X ′. Since a polar space does not contain a point collinear with
all points of a frame [10, Corollary 4.1], the inequality l > n − k is impossible.

Consider the case (2). Let N = X ∩ Y. An easy verification shows that every
element of X \ {X, Y} intersects X and Y in (k − 1)-dimensional singular sub-
spaces containing N. Thus X ⊂ [N〉k and we can consider elements of X as lines
in the polar space [N〉k−1. We take non-adjacent X′, Y′ ∈ X \ {X, Y}. Then

PX = X ∩ X′, PY = Y ∩ X′, QX = X ∩ Y′, QY = Y ∩ Y′

are distinct points of [N〉k−1. Now consider any non-adjacent

X′′, Y′′ ∈ X \ {X, Y, X′ , Y′}.

Each of these lines intersects X′ in PX or PY and it intersects Y′ in QX or QY

(for example, if X′ ∩ X′′ does not coincide with PX or PY then X and Y both are
contained in the plane spanned by X′ and X′′ which is impossible). Therefore,
one of X′′, Y′′ is 〈PX , QY〉 and the other coincides with 〈PY, QX〉. This implies that
X consists of 6 elements, i.e. l = 3. Moreover, X ⊥ Y. The singular subspace
M = 〈X, Y〉 is (k + 2)-dimensional and X is a frame of [N, M]k.

If l − m ≥ 3 and m ≥ 1 then maximal cliques of PJ(l, m) are tops and stars.
Every embedding of PJ(l, m) in Γk(Π) transfers them to cliques of Γk(Π) — sub-
sets in stars or tops of Gk(Π). The image of a maximal clique of PJ(l, m) is not
necessarily contained in a unique maximal clique of Γk(Π).

Proposition 3.2. If l − m ≥ 3 and m ≥ 1 then the following assertions are fulfilled:

(1) There are no embeddings of PJ(l, m) in Γk(Π) if l − m > n − k.

(2) If l − m ≤ n − k then every embedding of PJ(l, m) in Γk(Π) transfers stars of
PJ(l, m) to independent subsets of Gk(Π); moreover, if l − m ≥ 4 then the image
of every star is contained in a star.

(3) If 4 ≤ l − m ≤ n − k then every embedding of PJ(l, m) in Γk(Π) sends every big
star of PJ(l, m) to an (l − m)-frame in a big star of Gk(Π) (this is a frame of a big
star if l − m = n − k).

Proof. Every big star of PJ(l, m) is isomorphic to PJ(l − m, 0). So, the statements
(1) and (3) follow from Proposition 3.1.

Every star of PJ(l, m) is contained in a big star of PJ(l, m). By Proposition 3.1,
its image is contained in a frame of a polar space which is a subspace of Gk(Π).
The image of our star is an independent subset of Gk(Π), since every subset in a
frame is independent. The second part of the statement (2) is a consequence of
the statement (3).

Proposition 3.3. If l ≥ 4 then every embedding of PJ(l, 1) in Γk(Π) maps all maximal
cliques of PJ(l, 1) to independent subsets of Gk(Π).

Proof. Let f be an embedding of PJ(l, 1) in Γk(Π) and l ≥ 4. By Proposition 3.2,
the image of every star is an independent subset of Gk(Π).
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Let T be a top of PJ(l, 1) and let S be a star of PJ(l, 1) intersecting T precisely
in two elements. The top T consists of three elements which will be denoted by
X1, X2, X3. Suppose that X1, X2 ∈ S . If f (T ) is not independent in Gk(Π) then
f (X3) is on the line of Gk(Π) joining f (X1) and f (X2). By Lemma 2.1, the latter
means that every element of f (S) is adjacent with f (X3). This is impossible, since
f is an embedding and X3 is not adjacent with all elements of S .

4 Main results

4.1 Characterization of apartments

By Proposition 3.1, every subset X ⊂ Gk(Π) such that Γ(X ) is isomorphic to
PJ(l, 0), l ≥ 3 can be extended to a frame of a certain polar space contained in
Gk(Π). On the other hand, there exists a subset X ⊂ Gn−1(Π) such that Γ(X ) is
isomorphic to Hn and X is not an apartment of Gn−1(Π) [3, Example 2]. So, we
need some additional conditions to characterize apartments.

We say that a subset X ⊂ Gn−1(Π) is locally independent if for every S ∈ X

{ S ∩ U : U ∈ X is adjacent with S }

is an independent subset of the projective space 〈S]n−2. Apartments of Gn−1(Π)
and apartments in parabolic subspaces of Gn−1(Π) are locally independent.

Theorem 4.1 (B.N. Cooperstein, A. Kasikova, E.E. Shult [4]). If X is a locally
independent subset of Gn−1(Π) and Γ(X ) is isomorphic to Hm then there exists an
(n − m − 1)-dimensional singular subspace N such that X is an apartment in the
parabolic subspace [N〉n−1.

Our first result is the following.

Theorem 4.2. Let l and m be natural numbers satisfying

0 < m ≤ k, l ≤ n and l − m = n − k > 1. (4.1)

Let also X be a subset of Gk(Π) such that Γ(X ) is isomorphic to PJ(l, m) and every
maximal clique of Γ(X ) is an independent subset of Gk(Π). Suppose that one of the
following conditions holds:

(1) 2m + 2 > l,

(2) X is not contained in any big star [S〉k , S ∈ Gk−1(Π).

Then there exists a (k − m − 1)-dimensional singular subspace N such that X is an
apartment in the parabolic subspace [N〉k.

The fact that for a subset X ⊂ Gk(Π) the graph Γ(X ) is isomorphic to PJ(l, m)
and every maximal clique of Γ(X ) is an independent subset of Gk(Π) can be
reformulated in the following form: X is the image of an embedding of PJ(l, m)
in Γk(Π) sending maximal cliques of PJ(n, k) to independent subsets of Gk(Π).
If 1 ≤ m ≤ l − 2 then maximal cliques of PJ(l, m) are tops and stars (the second
possibility is realized only in the case when m ≤ l − 3). By Propositions 3.2 and
3.3, the following assertions are fulfilled:
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• if l − m ≥ 3 then every embedding of PJ(l, m) in Γk(Π) transfers each star
of PJ(l, m) to an independent subset of Gk(Π),

• if l ≥ 4 then every embedding of PJ(l, 1) in Γk(Π) sends all maximal cliques
of PJ(l, 1) to independent subsets of Gk(Π).

The second fact implies the following.

Corollary 4.1. Suppose that n − k ≥ 3 and X is a subset of Gk(Π) such that Γ(X ) is
isomorphic to PJ(n − k + 1, 1). If X is not contained in any big star [S〉k , S ∈ Gk−1(Π)
then there exists a (k− 2)-dimensional singular subspace N such that X is an apartment
in the parabolic subspace [N〉k.

If m = l − 2 then Theorem 4.2 is a simple consequence of Theorem 4.1. The
equality n − k = l − m = 2 implies that k = n − 2. Since all maximal cliques of
PJ(l, l − 2) and Γn−2(Π) are tops, every embedding f of PJ(l, l − 2) in Γn−2(Π)
induces an injective mapping g of the vertex set of Hl to Gn−1(Π). An easy ve-
rification shows that the image of g is locally independent if f transfers tops to
independent subsets of tops. By Theorem 4.1, there is an (n − l − 1)-dimensional
singular subspace N such that the image of g is an apartment in the parabolic
subspace [N〉n−1. The image of f is the associated apartment in [N〉n−2. Since
n − k = l − m, the dimension of N is equal to k − m − 1.

To prove Theorem 4.2 in the case when m ≤ l − 3, we will use the following
result.

Theorem 4.3. Let l and m be natural numbers satisfying (4.1) and let m ≤ l − 3. If an
embedding of PJ(l, m) in Γk(Π) sends tops to independent subsets of Gk(Π) contained
in tops then there exists a (k − m − 1)-dimensional singular subspace N such that X is
an apartment in the parabolic subspace [N〉k.

Problem. Let l and m be natural numbers satisfying (4.1) and let l ≥ 2m + 2,
i.e. the condition (1) of Theorem 4.2 does not hold. Let also f be an embedding
of PJ(l, m) in Γk(Π) sending maximal cliques of PJ(l, m) to independent subsets
of Gk(Π). Show that the image of f is not contained in any big star of Gk(Π)
or construct a counterexample. Since every big star of Gk(Π) is a polar space
of rank n − k = l − m, our question can be reformulated as follows: is there an
embedding of PJ(l, m) in the collinearity graph of a rank l − m polar space such
that maximal cliques go to independent subsets?

4.2 Application: Convex subspaces of polar Grassmann spaces

In some cases, the Grassmann space Gk(Π) is not spanned by an apartment of
Gk(Π) [1, 3, 10]. By [8], the convex closure of every apartment of Gk(Π) coincides
with Gk(Π); moreover, if A is an apartment in a parabolic subspace then the
convex closure of A coincides with this parabolic subspace.

Corollary 4.2. Let Π′ be a polar space of rank l and let m be a natural number such that
the pair l, m satisfies (4.1). If S is a convex subspace of Gk(Π) isomorphic to Gm(Π′)
then there exists a (k − m − 1)-dimensional singular subspace N such that S = [N〉k.
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Proof. Let f be a collineation of Gm(Π
′) to S and let A be an apartment of Gm(Π

′).
By Theorem 4.2, f (A) is an apartment in a parabolic subspace of Gk(Π) or it is
contained in a big star [S〉k, S ∈ Gk−1(Π). In the second case, the image of 〈A〉
is also contained in [S〉k . Since [S〉k is a polar space, every point of f (〈A〉) is
collinear with at least one point on every line contained in f (〈A〉); but the same
does not hold for 〈A〉. So, there is a (k − m − 1)-dimensional singular subspace
N such that f (A) is an apartment in [N〉k. The subspace S contains the convex
closure of f (A), i.e. [N〉k. Then f−1([N〉k) is a convex subspace of Gm(Π′) con-
taining A which implies that S = [N〉k.

Remark 4.1. We keep the notation of Corollary 4.2. Every collineation of Gm(Π′)
to [N〉k is induced by a collineation of Π

′ to the polar space [N〉k−m except the case
when our polar spaces are of type D4 and m = 1. In this case, every collineation
of Gm(Π′) to [N〉k is induced by a collineation of Π′ to [N〉k−m or a collineation of
Π

′ to one of the half-spin Grassmann spaces of [N〉k−m. See [10, Section 4.6] for
the details.

If X is a convex subspace of Gk(Π) isomorphic to a polar space of rank n− k ≥
3 then one of the following possibilities is realized:

• X is a big star of Gk(Π),

• n − k = 3 and X = [N, M]k for some incident N ∈ Gk−2(Π), M ∈ Gk+2(Π).

This follows from Proposition 3.1 and the fact that every polar space is the convex
closure of any frame.

4.3 Generalizations of Theorems 4.2 and 4.3

By Proposition 3.2, embeddings of PJ(l, m) in Γk(Π) exist only in the case when
l − m ≤ n − k. If such an embedding sends tops of PJ(l, m) to independent sub-
sets of Gk(Π) contained in tops then m ≤ k. Indeed, every top of PJ(l, m) consists
of m + 2 elements and every top of Gk(Π) is a (k + 1)-dimensional projective
space. So, we get the following weak version of the condition (4.1):

0 < m ≤ k, l ≤ n and 3 ≤ l − m ≤ n − k. (4.2)

Theorem 4.4. Let l, m be natural numbers satisfying (4.2). Let also f be an embedding of
PJ(l, m) in Γk(Π) transferring tops to independent subsets of Gk(Π) contained in tops.
Then there exists a (k − m − 1)-dimensional singular subspace N such that the image of
f is contained in [N〉k; there is also an l-frame B ⊂ [N〉k−m such that every element in
the image of f is spanned by elements of B.

If l − m = n − k then B is a frame of the polar space [N〉k−m. So, Theorem 4.3
is a partial case of Theorem 4.4.

In the next section, we prove Theorem 4.4 and give an independent proof of
Theorem 4.3 based on a general result concerning apartments in building Grass-
mannians [7, Theorem 3.3]. In the case when l − m < n − k, the images of all
embeddings of PJ(l, m) in Γk(Π) are not apartments of building Grassmannians.
By this reason, [7, Theorem 3.3] can not be used to prove Theorem 4.4.

There is the following analog of Theorem 4.2.
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Theorem 4.5. Let l, m be natural numbers satisfying (4.2). Let also X be a subset of
Gk(Π) such that Γ(X ) is isomorphic to PJ(l, m) and every maximal clique of Γ(X ) is
an independent subset of Gk(Π). Suppose that one of the following conditions holds:

(1) m + 2 > n − k,

(2) l − m ≥ 4 and X is not contained in any big star [S〉k , S ∈ Gk−1(Π).

Then there exists a (k − m − 1)-dimensional singular subspace N such that X is con-
tained in [N〉k and there is an l-frame B ⊂ [N〉k−m such that every element of X is
spanned by elements of B.

Remark 4.2. Suppose that n − k = l − m. Then (1) coincides with the condition
(1) from Theorem 4.2 and if l − m = 3 then (1) holds for all m ≥ 2. This means
that Theorem 4.2 is a consequence of Theorem 4.5 in the following cases:

• l − m ≥ 4,

• l − m = 3 and m ≥ 2.

It was established above that Theorem 4.2 follows from Theorem 4.1 if l − m = 2.
Therefore, it is sufficient to prove Theorem 4.2 only in the case when l = 4, m = 1
if Theorem 4.5 is proved.

By Propositions 3.3, every embedding of PJ(l, 1) in Γk(Π) sends all maximal
cliques of PJ(l, 1) to independent subsets of Gk(Π) if l ≥ 4. This implies the
following.

Corollary 4.3. Suppose that n − k + 1 ≥ l ≥ 4 and X is a subset of Gk(Π) such that
Γ(X ) is isomorphic to PJ(l, 1). If X is not contained in any big star [S〉k, S ∈ Gk−1(Π)
then there exists a (k − 2)-dimensional singular subspace N such that X is contained in
[N〉k and there is an l-frame B ⊂ [N〉k−1 such that every element of X is spanned by
elements of B.

5 Proof of Theorems 4.3 and 4.4

5.1 Preliminary

Let B = {p1, . . . , p2l} be a frame of a certain rank l polar space Π′. For each
i ∈ {0, . . . , l − 1} the associated apartment of Gi(Π

′) will be denoted by Ai.
We say that a mapping f : Ai → Gj(Π) is adjacency preserving if it sends

any pair of adjacent elements of Ai to adjacent elements of Gj(Π). An adjacency
preserving mapping is not necessarily injective, but its restriction to every clique
of Γ(Ai) is injective. This mapping transfers maximal cliques of Γ(Ai) to subsets
in maximal cliques of Γj(Π), but the images of distinct maximal cliques are not
necessarily contained in distinct maximal cliques.

Lemma 5.1. Suppose that 0 < i ≤ l − 3, 0 < j ≤ n − 3 and f : Ai → Gj(Π) is an
adjacency preserving mapping which sends stars to subsets of stars. Then big stars go
to subsets of big stars; moreover, the image of every big star is contained in a unique big
star.
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Proof. Let S ∈ Ai−1. The big star Bi(S) is the sum of all stars Si(S, M), where
M ∈ Al−1 contains S. For every such M there exist

gS(M) ∈ Gj−1(Π) and hS(M) ∈ Gn−1(Π)

such that
f (Si(S, M)) ⊂ [gS(M), hS(M)]j.

If M and M′ are adjacent elements of Al−1 ∩ [S〉l−1 then the intersection of the
stars Si(S, M) and Si(S, M′) contains at least two elements. The same holds for
the intersection of their images (since the restriction of f to every clique of Γ(Ai)
is injective), i.e.

|[gS(M), hS(M)]j ∩ [gS(M′), hS(M′)]j| ≥ 2.

The latter implies that
gS(M) = gS(M′).

By connectedness (any M, M′ ∈ Al−1 ∩ [S〉l−1 can be connected by a path of
Γl−1(Π) contained in Al−1 ∩ [S〉l−1), this equality holds for all M, M′ ∈ Al−1

containing S. Therefore, the image of Bi(S) is in a big star of Gj(Π). Since the
intersection of two distinct big stars of Gj(Π) contains at most one element, there
is only one big star of Gj(Π) containing f (Bi(S)).

5.2 Proof of Theorem 4.4

Let m be a natural number such that the pair l, m satisfies (4.2). Let also i ∈
{0, . . . , m − 1} and let f : Am−i → Gk−i(Π) be a mapping satisfying the following
condition:

(T1) the restriction of the mapping to every top is injective and the image of
every top is an independent subset contained in a top,

Any two adjacent elements of Am−i are contained in a top and (T1) implies that
f is adjacency preserving. Hence its restriction to every clique of Γ(Am−i) is in-
jective. Since the intersection of two distinct tops of Gk(Π) contains at most one
element, the image of every top is contained in a unique top. We say that the
mapping f is special if it satisfies the following additional condition:

(T2) the images of adjacent tops1 are contained in distinct tops.

Lemma 5.2. Every special mapping f : Am−i → Gk−i(Π) transfers stars to subsets of
stars.

Proof. For every star S ⊂ Am−i there is a top T ⊂ Am−i intersecting S precisely
in two elements. By (T1), f (T ) is in a top. Since the intersection of two distinct
tops of Gk−i(Π) contains at most one element and | f (S) ∩ f (T )| = 2, f (S) is in a
star or in the top containing f (T ).

1We say that two tops of Aj, j ∈ {1, . . . , l − 2} are adjacent if the associated elements of Aj+1

are adjacent.
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Suppose that f (S) is not in a star. Then it is in the top containing f (T ). We
take any top T ′ ⊂ Am−i adjacent with T and such that |S ∩ T ′| = 2. As above,
f (S) is in a star or in the top containing f (T ′). Since f (S) is not in a star, it is
in the top containing f (T ′). By (T2), the tops containing f (T ) and f (T ′) are
distinct and their intersection contains at most one element. So, f (S) can not be
contained in a top.

Let f : Am → Gk(Π) be a special mapping. By Lemmas 5.1 and 5.2, it transfers
big stars to subsets of big stars and the image of every big star is contained in a
unique big star. Therefore, there is a mapping fm−1 : Am−1 → Gk−1(Π) such that

f (Bm(S)) ⊂ [ fm−1(S)〉k ∀ S ∈ Am−1.

If m > 1 then
fm−1(Tm−1(U)) ⊂ 〈 f (U)]k−1 ∀ U ∈ Am,

i.e. fm−1 transfers tops to subsets of tops. If m = 1 then f0 sends any pair of
distinct collinear points of B to elements of Gk−1(Π) which are adjacent or coinci-
dent.

Lemma 5.3. If m > 1 then fm−1 is special. If k = 1 then f0 transfers any pair of distinct
collinear points of B to adjacent elements of Gk−1(Π).

Proof. Let m > 1 and U ∈ Am. Denote by S1, . . . , Sm+1 the elements of the top
Tm−1(U). We take any point pj ∈ B \ U. Then 〈pj, U〉 belongs to Am+1 and the
top Tm(〈pj, U〉) consists of

S′
i := 〈pj, Si〉, i = 1, . . . , m + 1

and U. By (T1),
f (U), f (S′

1), . . . , f (S′
m+1)

are distinct and form an independent subset in a certain top of Gk(Π). Then

f (U) ∩ f (S′
1), . . . , f (U) ∩ f (S′

m+1)

are distinct and form an independent subset in the top 〈 f (U)]k−1 . It is clear that

fk−1(Si) = f (U) ∩ f (S′
i).

Therefore, fm−1 satisfies (T1) and the same arguments show that f0 maps any pair
of distinct collinear points of B to adjacent elements of Gk−1(Π) if m = 1. Since
fm−1 is induced by f and f is adjacency preserving, fm−1 satisfies (T2).

Remark 5.1. We are not be able to show that fm−1 is an embedding of PJ(l, m− 1)
in Γk−1(Π) if f is an embedding of PJ(l, m) in Γk(Π). By this reason, we consider
the class of special mappings instead of embeddings.

Step by step, we construct a sequence of mappings

fi : Ai → Gk−m+i(Π), i = m, m − 1, . . . , 0
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such that fm = f and fi is special if i ≥ 1. Moreover, we have

fi(Bi(S)) ⊂ [ fi−1(S)〉k−m+i ∀ S ∈ Ai−1,

fi−1(Ti−1(U)) ⊂ 〈 fi(U)]k−m+i−1 ∀ U ∈ Ai

for every i ≥ 1. The latter implies that if X ∈ Ai and Y ∈ Aj, i, j ≤ m are incident
then fi(X) and f j(Y) are incident.

For every i ∈ {1, . . . , 2l} we define Qi := f0(pi). Lemma 5.3 states that Qi and
Qj, j 6= i, σ(i) are adjacent elements of Gk−m(Π).

Lemma 5.4. If pi1 , . . . , pij+1
span an element of Aj, j ≤ m then

f j(〈pi1 , . . . , pij+1
〉) = 〈Qi1 , . . . , Qij+1

〉.

Proof. The case j = 0 is trivial. Suppose that j > 0 and prove the statement by
induction. By inductive hypothesis, f j−1 transfers

〈pi1 , . . . , pij−1
, pij

〉 and 〈pi1 , . . . , pij−1
, pij+1

〉

to
〈Qi1 , . . . , Qij−1

, Qij
〉 and 〈Qi1 , . . . , Qij−1

, Qij+1
〉,

respectively. These are adjacent elements of Gk−m+j−1(Π) contained in

f j(〈pi1 , . . . , pij+1
〉) ∈ Gk−m+j(Π)

and we get the required equality.

Let I be a subset of {1, . . . , 2l} consisting of l elements and satisfying I ∩
σ(I) = ∅. Then {Qi}i∈I is a clique in Γk−m(Π). If this clique is contained in a
top then for any distinct u, v, w ∈ I we have

f1(pu pv) = 〈Qu, Qv〉 = 〈Qu, Qw〉 = f1(pu pw)

which is impossible. Therefore,

N :=
⋂

i∈I

Qi ∈ Gk−m−1(Π).

For every j ∈ {1, . . . , 2l} \ I there exist i1, i2 ∈ I such that Qj, Qi1 , Qi2 form a
clique in Γk−m(Π). As above, we show that this clique can not be contained in a
top. Then N = Qi1 ∩ Qi2 is contained in Qj.

So, every Qi belongs to [N〉k−m and Qi, Qj are collinear points of the polar
space [N〉k−m if j 6= i, σ(i).

Suppose that f is an embedding of PJ(l, m) in Γk(Π). For every i ∈ {1, . . . , 2l}
we can choose i1, . . . , im ∈ {1, . . . , 2l} \ {i, σ(i)} such that

{i1, . . . , im} ∩ {σ(i1), . . . , σ(im)} = ∅.

Then
〈pi1 , . . . , pim

, pi〉 and 〈pi1 , . . . , pim
, pσ(i)〉
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are non-adjacent elements of Am and their images

〈Qi1 , . . . , Qim , Qi〉 and 〈Qi1 , . . . , Qim , Qσ(i)〉

are non-adjacent elements of Gk(Π). Hence Qi are Qσ(i) are non-collinear points

of the polar space [N〉k−m. The rank of this polar space is n − k + m ≥ l and
Q1, . . . , Q2l form an l-frame in [N〉k−m. By Lemma 5.4, every element in the image
of f is spanned by elements of this l-frame.

5.3 Proof of Theorem 4.3

Suppose that f : Am → Gk(Π) is an embedding of PJ(l, m) in Γk(Π) and the
condition (4.1) holds. The image of f will be denoted by X . We assume that f
transfers tops to independent subsets of Gk(Π) contained in tops. Subsets of type

X ∩ f (Tm(U)), U ∈ Am+1

are said to be tops of X . By Lemma 5.2, f sends stars to subsets of stars and
Lemma 5.1 implies that big stars go to subsets of big stars2.

By [7, Theorem 3.3], X is an apartment in a parabolic subspace of Gk(Π) if the
following holds:

(A) for every S ∈ X there exist a (k− m − 1)-dimensional singular subspace NS

and an apartment AS in the parabolic subspace [NS〉k such that S ∈ AS and
X (S) = AS(S)

3.

There is also a condition concerning three elements of X contained in a plane, but
in our case it is obvious.

We take any top

T = X ∩ 〈UT ]k, UT ∈ Gk+1(Π).

Let S1, . . . , Sm+2 be the elements of T . Since they form an independent subset of
〈U]k, the singular subspace

NT := S1 ∩ · · · ∩ Sm+2

is (k − m − 1)-dimensional and

Xi :=
⋂

j 6=i

Sj, i = 1, . . . , m + 2

form a base in the projective space [NT , UT ]k−m. Denote this base by BT .

Lemma 5.5. Let T and T ′ be distinct tops of X containing S. Then for every
Y ∈ T \ {S} there is unique Y′ ∈ T ′ \ {S} such that

Y ∩ S = Y′ ∩ S.

2In the case when l − m ≥ 4, this follows from Proposition 3.2.
3For any subset X ⊂ Gk(Π) and any S ∈ X we denote by X (S) the set consisting of S and all

elements of X adjacent with S.
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Proof. Consider S′ = f−1(S) ∈ Am and i, j ∈ {1, . . . , 2l} such that

f−1(T ) = Tm(〈S
′, pi〉) and f−1(T ′) = Tm(〈S

′ , pj〉).

If Y ∈ T \ {S} then f−1(Y) is spanned by pi and some K ∈ Am−1 contained in S′.
Then

Y′ := f (〈K, pj〉) ∈ T ′

is as required. Indeed, f−1(S), f−1(Y), f−1(Y′) belong to the big star Bm(K);
since f maps big stars to subsets of big stars, S, Y, Y′ are contained in a big star
which implies the required equality.

Let S ∈ X . Then X (S) coincides with the sum of all tops T ⊂ X containing S.
If a top T ⊂ X contains S then BT consists of m + 1 elements contained in S and
one element not in S, this element will be denoted by XT . Lemma 5.5 implies that
for any distinct tops T , T ′ ⊂ X containing S the following assertions are fulfilled:

(1) NT = NT ′ , i.e. NT does not depend on T and we denote this subspace by
NS;

(2) BT ∩ BT ′ consists of m + 1 elements contained in S and BT \ BT ′ = {XT }.

Let BS be the sum of all BT such that S ∈ T . Since there are precisely 2(l −m− 1)
distinct tops of X containing S, the statement (2) shows that BS is formed by m+ 1
elements contained in S and 2(l − m − 1) elements not in S.

From this moment, we will consider BS as a subset in the polar space [NS〉k−m.
Every X ∈ BS satisfying X ⊂ S is collinear with all other points of BS.

Lemma 5.6. Let T and T ′ be distinct tops of X containing S. Then XT and XT ′ are
collinear if and only if the tops f−1(T ) and f−1(T ′) are adjacent.

Proof. Let Y ∈ T \ {S}. By Lemma 5.5, there is unique Y′ ∈ T ′ \ {S} such that

Y ∩ S = Y′ ∩ S.

The tops f−1(T ) and f−1(T ′) are adjacent if and only if f−1(Y) and f−1(Y′) are
adjacent, i.e. Y and Y′ are adjacent (see the proof of Lemma 5.5). The latter is
equivalent to the fact that the elements of Gk+1(Π) associated with T and T ′ are
adjacent which gives the claim.

Lemma 5.7. For every X ∈ BS satisfying X 6⊂ S there is unique point of BS non-
collinear with X.

Proof. There is unique top T ⊂ X containing S and such that X = XT . Suppose
that f−1(T ) = Tm(U). Then U is spanned by f−1(S) and a point pi. Let U′ be the
subspace spanned by f−1(S) and pσ(i). Then

T ′ := f (Tm(U
′))

is unique top of X containing S and whose preimage is not adjacent with f−1(T ).
Lemma 5.6 guarantees that XT ′ is unique point of BS non-collinear with X.

It is easy to check that BS can be presented as the sum of two subsets satis-
fying the conditions of Lemma 2.2. Thus BS can be extended to a frame of the
polar space [NS〉k−m. If AS is the associated apartment of [NS〉k then S ∈ AS and
X (S) = AS(S).
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6 Proof of Theorems 4.2 and 4.5

6.1 Proof of Theorem 4.5

Let l and m be natural numbers satisfying (4.2).

Lemma 6.1. Let f be an embedding of PJ(l, m) in Γk(Π) transferring stars to subsets of
star. If the image of a certain top is contained in a star then the image of f is in a big star.

By Proposition 3.1, we have the following.

Corollary 6.1. If l − m ≥ 4 and an embedding of PJ(l, m) in Γk(Π) sends a certain top
to a subset of a star then the image of this embedding is contained in a big star.

Proof of Lemma 6.1. Let B be a frame of a rank l polar space Π′. For every i ∈
{0, . . . , l − 1} we denote by Ai the associated apartment of Gi(Π

′). Let also f :
Am → Gk(Π) be an embedding of PJ(l, m) in Γk(Π) transferring stars to subsets
of stars. By Lemma 5.1, big stars go to subsets of big stars. Suppose that the image
of Tm(T), T ∈ Am+1 is contained in a star. Then

f (Tm(T)) ⊂ [S〉k for some S ∈ Gk−1(Π).

If U ∈ Am−1 is contained in T then the intersection of the associated big star
Bm(U) with Tm(T) consists of 2 elements. Since big stars go to subsets of big
stars and the intersection of two distinct big stars of Gk(Π) contains at most one
element, the inclusion

f (Bm(U)) ⊂ [S〉k

holds for every U ∈ Am−1 contained in T.
Let T′ be an element of Am+1 adjacent with T. Then X := T ∩ T′ ∈ Am and

Tm(T) ∩ Tm(T
′) = {X}.

If Y ∈ Tm(T′) \ {X} then X ∩ Y is an element of Am−1 contained in T and we
have

f (Y) ∈ f (Bm(X ∩ Y)) ⊂ [S〉k.

Therefore,
f (Tm(T

′)) ⊂ [S〉k.

By connectedness, this inclusion holds for every T′ ∈ Am+1. So, the image of f is
contained in the big star [S〉k.

Let X be a subset of Gk(Π) such that Γ(X ) is isomorphic to PJ(l, m) and ev-
ery maximal clique of Γ(X ) is an independent subset of Gk(Π). Then X is the
image of an embedding f of PJ(l, m) in Γk(Π) which transfers maximal cliques
of PJ(l, m) to independent subsets of Gk(Π). The maximal cliques of PJ(l, m) are
stars and tops; they contain l − m and m + 2 elements, respectively. Their images
are independent subsets in maximal cliques of Γk(Π) — stars and tops which are
projective spaces of dimension n − k − 1 and k + 1, respectively. By Theorem 4.4,
it is sufficient to show that f sends tops to subsets of tops. If m + 2 > n − k (the
first condition of Theorem 4.5) then the images of tops can not be independent
subsets of stars; thus the image of every top is contained in a top. In the case
when l − m ≥ 4 and X is not contained in any big star of Gk(Π) (the second
condition of Theorem 4.5), Corollary 6.1 gives the claim.
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6.2 Proof of Theorem 4.2

By Remark 4.2, we restrict ourself to the case when l = 4 and m = 1.
Let B = {p1, . . . , p8} be a frame of a certain rank 4 polar space Π′. For ev-

ery i ∈ {0, . . . , 3} we denote by Ai the associated apartment of Gi(Π
′). There is

unique presentation of A3 as the sum of two disjoint subsets A+ and A− satisfy-
ing the following conditions:

• dim(X ∩ Y) belongs to {3, 1,−1} if X, Y ∈ Aδ, δ ∈ {+,−},

• dim(X ∩ Y) belongs to {2, 0} if X ∈ Aδ and Y ∈ A−δ;

here −δ is the complement of δ in {+,−}. Denote by Γδ, δ ∈ {+,−} the graph
whose vertex set is Aδ and whose edges are pairs X, Y ∈ Aδ satisfying

dim(X ∩ Y) = 1.

Note that the graphs Γ(B) = PJ(4, 0) and Γδ, δ ∈ {+,−} both are isomorphic to
the 4-dimensional half-cube graph 1

2 H4.
Let h : B → A−δ be an isomorphism between Γ(B) and Γ−δ. Then

h(pi) ∩ h(pj) ∈ A1 if j 6= i, σ(i).

Denote by g the transformation of A1 sending every line pi pj, j 6= i, σ(i) to the
intersection of h(pi) and h(pj). This is an automorphism of Γ(A1) = PJ(4, 1). We
will use the following fact: g transfers every top to a star S1(pu, U) such that U ∈ Aδ.

Proof. Any top of A1 consists of three lines pi pj, pi pl and pj pl . Then

h(pi), h(pj), h(pl)

are mutually adjacent elements of A−δ. By [10, Lemma 4.11],

h(pi) ∩ h(pj) ∩ h(pl) = g(pi pj) ∩ g(pi pl) ∩ g(pj pl)

is a point and the lines

h(pi) ∩ h(pj) = g(pi pj), h(pi) ∩ h(pl) = g(pi pl), h(pj) ∩ h(pl) = g(pj pl)

span an element of Aδ.

Lemma 6.2. Let f be an embedding of PJ(4, 1) in Γk(Π) such that the image of a certain
star is contained in a top. Then there exists an automorphism g of PJ(4, 1) such that f g
maps tops to subsets of tops.

Proof. Suppose that f : A1 → Gk(Π) is an embedding of PJ(4, 1) in Γk(Π) such
that the image of a certain star S1(pi, U) is contained in a top 〈N]k. Our first step
is to show that f transfers every star S ⊂ A1 formed by lines contained in U to a
subset of a top.

There are precisely 6 elements of A1 contained in U — 3 lines belong to the
star S1(pi , U) and the remaining 3 lines form a top. Let X1, X2, X3 and Y1, Y2, Y3

be the elements of the star and the top, respectively. Every element of the star
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is adjacent with precisely two elements of the top. Assume that Xu and Yv are
adjacent if u 6= v. Then f (Xu) is adjacent with f (Yv) if and only if u 6= v. By
Proposition 3.3, f (X1), f (X2), f (X3) form an independent subset in 〈N]k. Hence

U1 := f (X2) ∩ f (X3), U2 := f (X1) ∩ f (X3), U3 := f (X1) ∩ f (X2)

are distinct elements of Gk−1(Π). If f (Yj) does not contain Uj then it intersects
f (Xu) and f (Xv), u, v 6= j in distinct elements of Gk−1(Π). This implies the inclu-
sion

f (Yj) ⊂ 〈 f (Xu), f (Xv)〉 = N.

Since f (Xj) ⊂ N, f (Yj) is adjacent with f (Xj) which is impossible. So, every
f (Yj) contains Uj.

Consider any star S ⊂ A1 formed by lines contained in U and distinct from
the star S1(pi, U). It consists of Xj and Yu, Yv such that u, v 6= j. Then

f (Xj) = 〈Uu, Uv〉 ⊂ 〈 f (Yu), f (Yv)〉

which means that f (S) is contained in a top.
Let us take any U′ ∈ A3 such that

dim(U ∩ U′) = 1

and any point pj on the line L := U ∩ U′. The stars S1(pj, U) and S1(pj, U′)
both contain L. Let L1, L2 and L′

1, L′
2 be the remaining elements of S1(pj, U) and

S1(pj, U′), respectively. Every elements of S1(pj, U) \ {L} is adjacent with pre-
cisely one element of S1(pj, U′) \ {L}. We suppose that Li is adjacent with L′

j if

i = j. Then f (Li) and f (L′
j) are adjacent if and only if i = j. It was established

above that f (S1(pj, U)) is contained in a top 〈N′]k and Proposition 3.3 guarantees
that f (L), f (L1), f (L2) form an independent subset in 〈N′]k. Hence

U1 := f (L) ∩ f (L1) and U2 := f (L) ∩ f (L2)

are distinct elements of Gk−1(Π).
Since f (L′

1) is adjacent with f (L), f (L1) and non-adjacent with f (L2), we have
U1 ⊂ f (L′

1). Indeed, if this fails then f (L′
1) intersects f (L) and f (L1) in distinct

elements of Gk−1(Π) which implies the inclusion

f (L′
1) ⊂ 〈 f (L), f (L1)〉 = N′;

since f (L2) ⊂ N′, f (L′
1) is adjacent with f (L2) which is impossible. By the same

reason, U2 ⊂ f (L′
2). Therefore,

f (L) = 〈U1, U2〉 ⊂ 〈 f (L′
1), f (L′

2)〉

which means that the image of S1(pj, U′) is contained in a top.
As above, we establish that the stars formed by elements of A1 contained in

U′ go to subsets of tops.
For one of δ ∈ {+,−} we have U ∈ Aδ. Since the graph Γδ is connected, the

image of every star
S1(pu, U′), U′ ∈ Aδ (6.1)

is contained in a top. Let g be an automorphism of Γ(A1) transferring every top
to a star of type (6.1) (such automorphism was constructed above). Then f g is an
embedding of PJ(4, 1) in Γk(Π) sending tops to subset of tops.
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Let X be a subset of Gk(Π) such that Γ(X ) is isomorphic to PJ(4, 1). We as-
sume that X is not contained in any big star of Gk(Π). Then X is the image of an
embedding f of PJ(4, 1) in Γk(Π). By Proposition 3.3, f transfers maximal cliques
of PJ(l, m) to independent subsets of Gk(Π). If f sends stars to subsets of stars
then, by Lemma 6.1, tops go to subsets of tops (since the image of f is not con-
tained in any big star) and we apply Theorem 4.3. If the image of a certain star
is contained in a top then Lemma 6.2 implies the existence of an automorphism g
of J(4, 1) such that f g maps tops to subsets of tops. We apply Theorem 4.3 to f g
and get the claim, since the image of f g is X .
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