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Abstract

Let M(X,K) be the non-archimedean Banach space of all additive and
bounded K-valued measures on the ring of all clopen subsets of a zero-
dimensional compact space X, where K is a non-archimedean non-trivially
valued complete field. It is known that M (X, K) is isometrically isomorphic
to the dual of the Banach space C(X, K) of all continuous K-valued maps on
X with the sup-norm topology. Does the non-archimedean Lebesgue Domi-
nated Convergence Theorem hold for the space M(X, K)? Only in the trivial
case! We show (Theorem 2) that for every sequence (f,), in C(X,K) such
that f,(x) — Oforall x € X and ||f,| < 1foralln € N, one has [, f,du — 0
for each p € M(X, K) iff X is finite. In the second part we characterize (The-
orem 3) weakly Lindel6f non-archimedean Banach spaces E with a base as
well as Corson ¢(E’, E)-compact unit balls in their duals E’ (Theorem 17).
We also look at the Kunen space from the non-archimedean point of view.

1 Introduction

Let X be a compact space and let M(X, R) be the space of all regular Borel mea-
sures on X. The classical Riesz Representation Theorem and the Lebesgue Domi-
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nated Convergence Theorem imply that every continuous linear real-valued func-
tional C(X,R) — R is represented by a unique regular Borel measure y on X
and, if (f)n is a sequence of real-valued continuous functions on X which con-
verges pointwise to zero and is uniformly bounded, then [ f,du — 0 for every
i € M(X,R). What about this very popular theorem for the non-archimedean
case?

Let K be a non-archimedean non-trivially valued complete field with valua-
tion |.|. Let X be a compact zero-dimensional space and let Q)(X) be the ring of
all clopen subsets of X. By a measure on X we mean a map y : Q(X) — K which
is additive and bounded, i.e. ||u|| := sup{|p(U)| : U € O(X)} < oo. The space
M(X,K) of measures on X, with the natural operations and the norm ||.||, is a
Banach space.

There is a simple way to integrate continuous K-valued functions on X with
respect to a measure y, [15], [19].

Let C(X, K) be the Banach space of all K-valued continuous maps on X equip-
ped with the usual supremum norm ||.||. Let C(X, K) be the topological dual of
the space C(X, K). The following Riesz Representation Theorem can be found in
[15, Theorem 2.5.30], see also [19, Theorem 7.18] for generalizations.

Theorem 1. Let X be a compact zero-dimensional space. For every ¢ € C(X,K)' there
exists exactly one measure on X such that ¢(f) = [ fdu forall f € C(X,K) and the
map

M(X,K) = C(X,K)', u — ¢y,

is an isometrical isomorphism.

Let us identify C(X,K)" = M(X, K). We say that X has the K-Lebesgue prop-
erty if for each sequence (f,), in C(X, K) such that f,(x) — 0 for all x € X and
|full < 1foralln € N, onehas [y fudu — 0 for each u € C(X,K)'.

Since the space C(X, K) has the Orlicz-Pettis property, i.e. every convergent
sequence in the weak topology of C(X, K) is norm-convergent, see [14, Corollary
2.5], we note that X has the K-Lebesgue property iff for each sequence (f;), in
C(X,K) such that f,(x) — O0forall x € X and ||f»]| < 1 for all n € IN, one has
1full = 0.

Let C,(X, K) be the space of all K-valued continuous maps on X endowed
with the pointwise topology. By ox we denote the weak topology of C(X, K).

The main result of Section 2 is the next one, which establishes that the non-
archimedean Lebesgue Dominated Convergence Theorem holds only in the triv-
ial case: when X is finite.

Theorem 2. Let X be a compact zero-dimensional space. Let B be the closed unit ball in
C(X,K). The following assertions are equivalent.

(i) X is finite.

(i1) B is a Fréchet-Urysohn space in the weak topology of C(X, K).

(iii) For every decreasing sequence (Uy, )y, of clopen subsets of X there is an m € IN
such that U, = Uy, for alln > m.

(iv) X has the IKK-Lebesgue property.

(v) Every uniformly bounded Cp,(X, K)-compact (C,(X, K)-metrizable) set is com-
pact in the weak topology of C(X, K).
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On the other hand, in [11, Theorem 4.13] Katsaras showed a Lebesgue Domi-
nated Convergence Theorem for a certain class of measures y on X. Our Theorem
2 shows that such measures p do not cover the whole dual M(X, K).

Section 3 deals with compact zero-dimensional spaces X such that C, (X, K)
is K-analytic (Lindelof). It is known that if X is a compact scattered space (i.e.,
every closed subset L of X has an isolated point in L), then C, (X, R) is Lindelof iff
C(X,R) is weakly Lindelof. Also, it was proved in [17] that for a compact space X
the real space Cy(X, R) is K-analytic iff C(X, R) is weakly K-analytic. The proofs
of these classical results use the R-Lebesgue property of X. The same argument
cannot be used in the non-archimedean setting, since (as we show in Theorem
2) the Lebesgue theorem fails for this case. However, by using non-archimedean
techniques we prove in Section 3 some p-adic versions of these classical results
about C»(X,R). The key point to get these versions is the following

Theorem 3. Let K be separable. Let E be a Banach space over K with a base. The
following assertions are equivalent.

(i) E is separable.

(ii) (E,o(E, E")) is separable.

(iii) E is analytic (K-analytic, Lindeldf).

(iv) (E, o0 (E, E")) is analytic (K-analytic, Lindelof).

(v) E has a compact resolution.

(vi) (E,0(E, E")) has a compact resolution.

(vii) Bps is 0(E', E)-(ultra)metrizable (where B is the closed unit ball in E'),

(viii) (E', 0 (E', E)) is hereditarily separable, i.e., subsets of (E',c(E’, E)) are separa-

ble.

(ix) (E', 0 (E’, E)) is linear hereditarily separable, i.e., linear subspaces of (E',o(E', E))

are separable.

(x) E is isomorphic to the Banach space cy(IN, K).

Let K be separable. It is known that ¢y (I, K) is separable iff I is countable. Ap-
plying Theorem 3 for E := cy(I, K) we obtain that cy(I, K) is weakly (K-)analytic
iff I is countable. However, ¢y(I, R) is weakly K-analytic (but not K-analytic) for
any set I (since co(I, R) is a weakly compactly generated Banach space and Tala-
grand’s [17] applies). Being motivated by remarkable Haydon-Kunen-Talagrand
examples we characterize Corson o (E’, E)-compactness for the unit ball of the
dual of any non-archimedean Banach space E over a locally compact K, see The-
orem 17.

For basics on non-archimedean normed and locally convex spaces we refer to
[19] and [15], respectively.
2 Proof of Theorem 2
We start with the following example motivating also Theorem 2. Recall that, for

a prime number p, Q, is the field of the p-adic numbers equipped with its p-adic
(non-archimedean) valuation, and Z,, is the corresponding closed unit ball in Q,.
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Example 4. Let K be locally compact (e.g. K = Qy). Let X be the closed ball B(a, ) :=
{x e K:|x—a| <r}(eg. X =2Zp). Then X is a zero-dimensional compact space not
having the IK-Lebesgue property.

Proof. Since K is locally compact, the valuation of K is discrete. Let p be its uni-
formizing element, see [15]. We may assume that 2 = 0 and r = p° for some
s € Z. Foreachn € Nset A, := {x € K : |x| = p" 1p°} and assume that f,
is the K-valued characteristic function of A,. Note that (f,;), converges point-
wise to zero on X and ||f,|| = 1 for each n € IN. Hence X does not have the
K-Lebesgue property. u

Now we prove Theorem 2.

Proof. (i) = (ii), (iv), (v) are obvious.

(iv) = (iii): Let (Uy), be a decreasing sequence of clopen subsets of X. Let
x € X. If x € N,, Uy, then xy, (x) — 1, where xy, is the K-valued characteristic
function of the set U,. If x & N, Uy, then xy, (x) — 0. This implies that (xu,)n
is a Cauchy sequence in C,(X,K). Also, it is clear that ||xu, — xu, || < 1 for all
n,m € IN. Since X has the K-Lebesgue property, (xu, )» is Cauchy in the norm
topology of C(X,K), so there is an m € IN such that ||xy, — xu, |l < 1 for all
n > m,ie., |xu,(x) — xu,(x)] < 1forallx € X and n > m. Hence xu, = Xxu,,
and then U,, = U,, for all n > m.

(iii) = (i): We prove that all the elements of X are isolated points. Then,
by compactness of X we deduce that X is finite. Assume that there exists an
element x € X which is not isolated; we derive a contradiction. Let U; := U be
a clopen neighbourhood of x. Since U # {x}, there are an x; € U\ {x} and a
clopen neighbourhood U, of x such that U, C U and x; € U\ U,. Again we
have that U, # {x} and with the same reasoning as before we find a clopen
neighbourhood Uj of x with U C U, and an x; € U, \ Uz. Continuing this
procedure we construct a sequence x1,xz,... in X and a decreasing sequence
(Uy )y, of clopen subsets of X such that x, € U, \ U1 for all n € N. Thus, all the
inclusions in that decreasing sequence are strict, a contradiction with (iii).

(ii) = (i): Let 73 and op be the restrictions to B of the norm topology and of
the topology ox on C(X,K) respectively. We prove that 73 = op. For that, let
A C B. Clearly A” ¢ A”. Now, let f € A”. By (ii) there is a sequence (f,,), in
A such that f, — f in ox. Since C(X, K) has the Orlicz-Pettis property we obtain
that f, — f in 7, hence f € A™. Therefore, for any A C B the closures of A in
o and Tg coincide, i.e. T3 = 3.

Since B is compactoid in (C(X,K), ox) by [15, Theorem 5.4.1], and o5 = 73,
we apply [15, Theorem 3.8.13] to deduce that B is a compactoid neighbourhood
of zero in the Banach space C(X, K). Then C(X,K) is finite-dimensional by [15,
Theorem 3.8.5], i.e. X is finite.

(v) = (iv): Let (f,)n be a sequence such that f;, — 0in C,(X, K) and |/ f,]| < 1
for all n. Clearly L := {f, : n € N}U{0} is C,(X,K)-compact. Also, L is
Cp(X, K)-metrizable, by [15, Theorem 3.8.24], hence ox-compact by (v). There-
fore, the pointwise topology and cx coincide on L, so f, — 0 in ox. Thus, X has
the IK-Lebesgue property. n
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Remark 5. Implication (v) = (i) shows that Grothendieck’s Theorem, [6, Theorem
4.2], fails for the spaces C(X, K).

3 Non-archimedean C,(X,K) spaces and the Lindel6f property

A topological space X has a compact resolution if X has a family {K, : « € NN}
of compact subsets covering X such that K, C Kgif & < fin NN, X is called
analytic if X is a continuous image of INN; it is a K-analytic space if there is an
upper semi-continuous compact-valued map from IN™ into X whose union is X,
see [17], [16]. Note that separable complete metric spaces are analytic, analytic
spaces are K-analytic, K-analytic spaces are Lindel6f and any K-analytic space
admits a compact resolution. The converses of the above results fail, see [2], [16],
[17]. Also, countable unions and products of K-analytic [analytic] spaces are K-
analytic [analytic]; closed subspaces of a K-analytic [analytic] space are K-analytic
[analytic], see [16], [18].

The following proposition is motivated by Theorem 2(v) and will be useful in
the proof of Corollary 10.

Proposition 6. Let X be a zero-dimensional space having a compact resolution (for exam-
ple when X is o-compact) and let L C C,(X,K) be a compact set. Then L is metrizable
iff L is separable.

Proof. 1t is well-known that every metrizable compact space is separable. Now,
assume that L is separable. Let S be a countable dense subset of L. The space
Cp(S,K) is metrizable by [14, Theorem 3.7.2]. Clearly, the map

¢ : Cp(L,K) — Cp(S,K), f — fIS,

is a continuous injection onto its metrizable range. It follows that C,, (L, K) admits
a weaker metric topology. Let § : X — C,(L,K) be the continuous map defined
by x — dy, 0x(f) := f(x), x € X, f € L. 6(X) has a compact resolution and, as a
subset of C,(L,K), 6(X) admits a weaker metric topology. Then by Talagrand’s
[17], see also [3, Corollary 4.3], the space J(X) is analytic, hence separable. For
every f € Llet fp : 6(X) — K be the continuous function on §(X) defined by
fo(0x) := f(x). Then {fy : f € L} is a compact subset of C,(4(X), K) homeomor-
phic to L. Since 6(X) is separable, C,(4(X), K) admits a weaker metric topology,
so L is metrizable. n

Example 7. Proposition 6 fails if “compactness” of L is replaced by “compactoidity”.

Indeed, let K be locally compact. Let E := (co(IN, K), o(co(IN, K), £° (N, K))).
Let T := {ey,ep,...,}, where ¢; are the unit vectors. Then T is bounded in E,
hence compactoid by [15, Corollary 5.4.2], and T is metrizable and separable. By
[15, Example 5.4.4] the closed absolutely convex hull L of T is nonmetrizable (al-
though it is compactoid and separable). Finally, let X be the closed unit ball of E’.
Observe that X is compact with respect to the weak*-topology on E’ and that E is
homeomorphically embedded in Cp,(X, K).
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In [10] we showed a pure non-archimedean theorem stating that if E is a non-
archimedean Banach space over a locally compact K, then E endowed with the
weak topology is a Lindelof space iff E is separable. We extend this result (Theo-
rem 3) for Banach spaces with a base over a separable K (if K is locally compact,
then K is separable and its valuation is discrete, so every Banach space over K
has a base, [15, Theorems 2.1.11, 2.5.4]). First we note the following

Lemma 8. If E is a Banach space with a base, then every closed linear subspace of count-
able type of E is weakly closed.

Proof. Let D be a closed linear subspace of countable type of E. By [19, Corollary
3.18], D is complemented in E, so there is a continuous linear projection P : E — E
whose kernel is D. Then P is continuous if E is endowed with its weak topology
(which is Hausdorff), so we obtain that D = P~1{0} is weakly closed. ]

Note that, by separability of K, a locally convex space E over K is separable iff
there is a countable set whose linear hull is dense in E (iff the space is of countable
type, in case E is metrizable).

Now we prove Theorem 3.

Proof. Clearly (i) = (ii) and (viii) = (ix). (ii) = (i) follows from Lemma 8 and (v)
= (i) from [15, Theorem 11.5.3].

Recall again that every separable complete metric space is analytic, that ana-
lytic = K-analytic = existence of a compact resolution; K-analytic = Lindelof,
and that these last four properties are preserved by passing from the norm to the
weak topology. Hence we have (i) = (iii) = (iv), (v) = (vi). Next we prove the
remaining implications.

(E,o(E, E")) is Lindelof = (i): Let (¢;);c; be a base of E. Then E is linearly
homeomorphic to cy(I, K), [19, Corollary 3.8], so it is enough to prove this impli-
cation for E = ¢y(I, K).

We follow the argument from [10, Theorem 7, (9) = (4)]: Assume I is un-
countable; we derive a contradiction. Let x € E. Put I, = {i € I : x; = 0}. The
functional fy : E = K, vy~ Y, y;is well defined, linear, and continuous. Set
W = {Wy : x € E}, where W, = {y € E : |fx(y)| < 1}. Since x € W, for all
x € E, the family W covers E. By assumption W contains a countable subfamily
{Wy : x € X} covering E, where X is a countable subset of E. There exists j € I
such that x; = 0 for each x € X. Then j € N,cx Ix. Consequently, fy(e;) = 1
for each x € X, where ¢; € E such that (¢;); := ¢j; for all i € I. We proved that
ej & W, for all x € X, a contradiction. Hence [ is countable, so E is separable.

(vi) = (v): Every separable closed linear subspace of E is complemented in E,
[19, Corollary 3.18]. This implies that every continuous linear functional defined
on a separable linear subspace of E admits a continuous linear extension to the
whole space. Then every weakly compact subset of E is norm-compact by [15,
Theorem 5.8.5], and we are done.

(i) & (vii): It follows from [15, Theorem 7.6.10] and its proof.

(i) = (viii): Since every separable Banach space is linearly homeomorphic to
co := ¢o(IN, K), it suffices to prove this implication for E := cy. Letey, ey, . . . be the
unit vectors of E. It is easily seen that every x = (x,,), € {*° (= E’) can be written
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as x = ), Xp e, in the weak*-topology ¢* := o(¢*°,cg) and that e, — 0 in this
topology. In particular, By is the o*-closed absolutely convex hull of {e1, e, ...},
and by separability of K we obtain that B is c*-separable. Also, by [15, Theorem
3.8.24], By is 0*-metrizable. Then Bys and all of its subsets are c*-separable.

Now, let F C E' and let A € K with |A| > 1. By the above, F N A"By is
o*-separable for all n. Then, F = J,(F N A"Bgs), being a countable union of ¢*-
separable sets, is also 0*-separable. Therefore, E’ is 0*-hereditarily separable.

(ix) = (i): It is enough to prove this implication for E = ¢o(I,K), where I is a
set with the same cardinality as a base of E. Then clearly we have (E’,¢(E’,E)) =
(4=(1,K), o (£ (1, K), ¢o(I, K))).

Assume (ix) holds for (¢/*°(I,K),c(¢*(1,KK)),co(I,K)). Let {e; : i € I} be
the set formed by the canonical unit vectors of E and let D be the linear hull of
this set. By assumption D is separable in ¢ := ¢ (¢*(I,K), co(I,K)), hence there
exist y1,v2,... € D such that D C {y1,y2, .. 37, Then each element of D has
null coordinates off of the countable set U, {i € I : (y»); # 0}. Therefore I is
countable, so ¢o(I,K) is separable.

(i) & (x): It follows from [15, Corollary 2.3.9]. u

s

We often use the terms “weakly separable”, “weakly analytic”, .... instead of
“0(E, E')-separable”, “o(E, E')-analytic”, ...

It was proved in [17] that for a compact space X the real space C,(X, R) is
K-analytic iff C(X, R) is weakly K-analytic. By using the previous results of this
section, we will give in Corollary 11 a non-archimedean counterpart of the above
classical result, when X is a zero-dimensional compact abelian group, see also
Corollary 12.

We will use the following additional fact

Theorem 9. Let X be a zero-dimensional compact space. The following are equivalent.

(i) X is metrizable.

(ii) X is ultrametrizable.

If, in addition, X is a zero-dimensional compact abelian group, then (i), (ii) are equiv-
alent to:

(iii) X has countable tightness (i.e.,if A C X and x € A, then there exists a countable
subset B C A such that x € B).

Proof. (ii) = (i) = (iii) is obvious. (i) = (ii): Since X is compact and metrizable,
X is second-countable. Hence X is ultrametrizable by [19, p. 39]. If X is a zero-
dimensional compact abelian group, (iii) = (i) follows from [8, Theorem 2]. ]

For any non-empty set I' put (T) := {x € R : {x(y) # 0} is countable}
endowed with the product topology. It is known that each space %(T') is Fréchet-
Urysohn, see [13].

A compact space X is called Corson-compact if X is homeomorphic to a com-
pact subset of some %(I'). We refer to [5] and [12] for the properties of Corson-
compact spaces used in the sequel.

Corollary 10. Let X be a zero-dimensional compact space and let K be separable. The
following assertions are equivalent.
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(i) The Banach space C(X,K) is separable (analytic, K-analytic, Lindelof, has a com-
pact resolution).

(i) (C(X,K), ox) is separable (analytic, K-analytic, Lindelof, has a compact resolu-
tion).

(iii) Cp(X, K) is separable (analytic).

(iv) X is (ultra)metrizable.

(v) X is Corson-compact and separable.

(vi) X is separable and C, (X, K) is K-analytic.

Proof. (i) < (ii) is a direct consequence of Theorem 3, as C(X, K) has an orthonor-
mal base [15, Theorem 2.5.22]. (iv) = (i) follows from Theorem 9 and [15, The-
orem 2.5.24]. (ii) = (iii) is obvious since, on C(X, K), the pointwise topology is
weaker than the weak topology. (iii) = (iv): If C,(X, K) is separable, then (iv)
follows from [15, Theorem 4.3.4].

(iv) & (v): Every metric compact space is separable and Corson-compact, and
every separable Corson-compact space is metrizable (note that £(T) is dense RT),
so ultrametrizable by Theorem 9.

From what we have already proved, it is clear that any of the properties (i) —(v)
implies (vi).

(vi) = (iv): Cp(X,K) is K-analytic, so it has a compact resolution. Also, X is
homeomorphically embedded in C,(C,(X, K), K). Then applying Proposition 6
we get that X is metrizable and so ultrametrizable by Theorem 9. m

Corollary 11. Let X be a zero-dimensional compact abelian group. Then (i)—(vi) are
equivalent to

(vii) X is Corson-compact.

(viii) X has countable tightness.

(ix) Cp(X, K) is K-analytic (Lindeldf).

If, in addition, K is locally compact, then (i)—(vi) are equivalent to

(x) Cp(X, K) has a compact resolution.

Proof. Clearly (v) = (vii). (iv) < (viii) follows from Theorem 9. Also, (ii) =
(ix), (x) are obvious, since on C(X, K), the pointwise topology is weaker than the
weak one.

(vii) = (viii): Every Corson-compact space is Fréchet-Urysohn, hence has
countable tightness.

(ix) = (viii): Assume that C,(X,K) is Lindelof. Let A C X and let x € A. Set
F = {f € C(X,K) : f(x) = 1}. Since F is a closed subspace of C,(X,K), the
space F is Lindelof. For each y € A set

Vy:=1{g € C(X,K) : g(y) # 0}.
Clearly each V; is open in C,(X, K). Fix f € F. Since f(A) C f(A), there exists
y € Asuch that f(y) # 0. This implies that 7 C U{V} : v € A}. Hence there
exists a countable set B C A such that F C (J{V}, : y € B}. We show that x € B.
Assume x ¢ B. By zero-dimensionality of X there is a clopen set U in X such that

x € Uand B C X\ U. Then the characteristic function on U, x;; : X — K, is
continuous and satisfies

xulx) =1, xu(X\U) = {0}.



Non-archimedean function spaces 181

Since xy € F, there exists y € B such that xi; € V). Asy € U we conclude that
y € U N B, a contradiction. Therefore, X has countable tightness.

Now assume that K is locally compact. By [9, Theorem 14] C,(X, K) is K-
analytic if it has a compact resolution, which proves (x) = (ix). ]

Corollary 11 is not true for zero-dimensional compact spaces in general, as we
will see in Remark 16.
As a direct consequence of Corollary 10 we note

Corollary 12. Let X be a zero-dimensional compact space and let K be separable. Then
Cp(X,K) is separable (analytic) iff C(X, K) is weakly separable (weakly analytic).

Alster and Pol [1, Theorem] proved

Proposition 13. If X is Corson-compact and M is a separable metric space, then C(X, M)
is Lindelof in the pointwise topology.

The remarkable Haydon-Kunen-Talagrand example (under the continuum hy-
pothesis) of a non-separable Corson-compact space X such that the real space
Cp(X,R) is Lindelof but C(X, R) is not weakly Lindelsf can be found in [12, The-
orem 5.9].

The following corollary provides a large class of compact spaces related with a
non-archimedean version of the mentioned Haydon-Kunen-Talagrand example.

Corollary 14. Let K be separable. If X is a non-separable zero-dimensional Corson-
compact space, then C,(X, K) is Lindelof and C(X, K) is not weakly Lindeldf.

Proof. C,(X,K) is Lindelof by Proposition 13. C(X, K) is not weakly Lindelof by
Corollary 10. m

In [1, Example 7] Alster and Pol constructed a non-separable Corson-compact
space Xo C {0,1}T with [T| = Ny such that Xy C %(®;) and C»(Xo, R) is not
K-analytic. Note the following non-archimedean version of the Alster-Pol’s ex-
ample (which supplements also Proposition 13).

Example 15. Let K be separable. Then C,(Xo,K) is not K-analytic although it is Lin-
delof.

Indeed, Cy (X, K) is Lindel6f by Proposition 13. To prove the first claim, sup-
pose that C,(Xo, K) is K-analytic; we derive a contradiction. Then C,(Xo, KN)
is K-analytic, since it is homeomorphic to C, (Xo, ]K)N, a countable product of K-

analytic spaces. Also, by [9, Proposition 19] there exists a continuous surjection
Sg : Cp(Xo, KN) — Cp(Xo, R). So C,(Xo, R) is K-analytic, a contradiction.

Remark 16. Corollary 14 and Example 15 show that Corollary 11 is not true for
general zero-dimensional compact spaces X.

Gul’ko proved that in the classical case the closed unit ball of the dual of a
weakly K-analytic Banach space is Corson-compact in the weak* topology. Also,
Kunen constructed (under the continuum hypothesis) an uncountable separable
compact scattered (hence zero-dimensional) space Z such that C(Z, R) is weakly
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Lindelof and the weak™ dual is hereditarily separable, see for example [7]. Next
we provide non-archimedean variants of the above classical facts.

If K is locally compact, the closed unit ball Bs in the dual of a non-archimedean
Banach space E is a weak*-compact abelian group. Also, K is separable and its
valuation is discrete, so every Banach space over K has a base, [15, Theorems
2.1.11, 2.5.4]. Hence the previous results of this section apply to get the following

Theorem 17. Let E be a Banach space over a locally compact K. Then (i)—(ix) of The-
orem 3 are equivalent to (i)—(x) of Corollaries 10 and 11, by taking X := B/ equipped
with the restriction to X of the weak* topology o (E', E).

Proof. 1t follows immediately from Theorem 3 and Corollaries 10, 11 (one has just
to look at Theorem 3(vii) and Corollary 10(iv)). ]

When K is locally compact, the weak* dual F of the non-separable Banach
space ¢/*(IN,K) is separable ([4, Proposition 4]), but the space F is not heredi-
tarily separable by Theorem 17. Also, the weak™ dual F of the real Banach space
¢*(IN, R) is separable but not hereditarily separable. Indeed, otherwise it is easily
seen that F has countable tightness. Hence /*°(IN, R) has the Corson’s property
(C) by [5, Theorem 12.41], a contradiction, [5, Excercise 12.44] (recall that a real or
complex Banach space F has the Corson’s property (C) if for every family of closed
convex subsets of F with empty intersection there is a countable subfamily with
empty intersection).

On the other hand, there are situations in sharp contrast with the classical
case, as we show in the next examples.

Example 18. Let K be locally compact and let I be an uncountable set. Let Bk and Br
be the closed unit ball in the dual of the Banach space co(I1, 1K) and cy(I, R), respectively.
Then BR is Corson-compact in the weak™ topology and By is not.

Indeed, the claim about Bk follows from Theorem 17, as cy(I, K) is not sepa-
rable. co(I, R) is weakly K-analytic, since it is a WCG Banach space, [5]; so Gul'ko
result (mentioned above) applies.

Example 19. Let K be locally compact and let Z be the Kunen compact space. Then the
weak* dual of C(Z,R) is hereditarily separable and the weak™ dual of C(Z,K) is not.

Indeed, the claim about C(Z,R) was already mentioned above (see the com-
ments after Remark 16). Now, suppose that the weak* dual of C(Z, K) is hered-
itarily separable. Then C(Z, K) is separable by Theorem 17 and so Z must be
ultrametrizable by Corollary 10. On the other hand, every metrizable scattered
compact space is countable, a contradiction (since Z by assumption is uncount-
able).
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