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Abstract

Let M(X, K) be the non-archimedean Banach space of all additive and
bounded K-valued measures on the ring of all clopen subsets of a zero-
dimensional compact space X, where K is a non-archimedean non-trivially
valued complete field. It is known that M(X, K) is isometrically isomorphic
to the dual of the Banach space C(X, K) of all continuous K-valued maps on
X with the sup-norm topology. Does the non-archimedean Lebesgue Domi-
nated Convergence Theorem hold for the space M(X, K)? Only in the trivial
case! We show (Theorem 2) that for every sequence ( fn)n in C(X, K) such
that fn(x) → 0 for all x ∈ X and ‖ fn‖ ≤ 1 for all n ∈ N, one has

∫
X fndµ → 0

for each µ ∈ M(X, K) iff X is finite. In the second part we characterize (The-
orem 3) weakly Lindelöf non-archimedean Banach spaces E with a base as
well as Corson σ(E′ , E)-compact unit balls in their duals E′ (Theorem 17).
We also look at the Kunen space from the non-archimedean point of view.

1 Introduction

Let X be a compact space and let M(X, R) be the space of all regular Borel mea-
sures on X. The classical Riesz Representation Theorem and the Lebesgue Domi-
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nated Convergence Theorem imply that every continuous linear real-valued func-
tional C(X, R) → R is represented by a unique regular Borel measure µ on X
and, if ( fn)n is a sequence of real-valued continuous functions on X which con-
verges pointwise to zero and is uniformly bounded, then

∫
X fndµ → 0 for every

µ ∈ M(X, R). What about this very popular theorem for the non-archimedean
case?

Let K be a non-archimedean non-trivially valued complete field with valua-
tion |.|. Let X be a compact zero-dimensional space and let Ω(X) be the ring of
all clopen subsets of X. By a measure on X we mean a map µ : Ω(X) → K which
is additive and bounded, i.e. ‖µ‖ := sup{|µ(U)| : U ∈ Ω(X)} < ∞. The space
M(X, K) of measures on X, with the natural operations and the norm ‖.‖, is a
Banach space.

There is a simple way to integrate continuous K-valued functions on X with
respect to a measure µ, [15], [19].

Let C(X, K) be the Banach space of all K-valued continuous maps on X equip-
ped with the usual supremum norm ‖.‖. Let C(X, K)′ be the topological dual of
the space C(X, K). The following Riesz Representation Theorem can be found in
[15, Theorem 2.5.30], see also [19, Theorem 7.18] for generalizations.

Theorem 1. Let X be a compact zero-dimensional space. For every φ ∈ C(X, K)′ there
exists exactly one measure on X such that φ( f ) =

∫
X f dµ for all f ∈ C(X, K) and the

map
M(X, K) → C(X, K)′ , µ 7→ φµ,

is an isometrical isomorphism.

Let us identify C(X, K)′ = M(X, K). We say that X has the K-Lebesgue prop-
erty if for each sequence ( fn)n in C(X, K) such that fn(x) → 0 for all x ∈ X and
‖ fn‖ ≤ 1 for all n ∈ N, one has

∫
X fndµ → 0 for each µ ∈ C(X, K)′ .

Since the space C(X, K) has the Orlicz-Pettis property, i.e. every convergent
sequence in the weak topology of C(X, K) is norm-convergent, see [14, Corollary
2.5], we note that X has the K-Lebesgue property iff for each sequence ( fn)n in
C(X, K) such that fn(x) → 0 for all x ∈ X and ‖ fn‖ ≤ 1 for all n ∈ N, one has
‖ fn‖ → 0.

Let Cp(X, K) be the space of all K-valued continuous maps on X endowed
with the pointwise topology. By σX we denote the weak topology of C(X, K).

The main result of Section 2 is the next one, which establishes that the non-
archimedean Lebesgue Dominated Convergence Theorem holds only in the triv-
ial case: when X is finite.

Theorem 2. Let X be a compact zero-dimensional space. Let B be the closed unit ball in
C(X, K). The following assertions are equivalent.

(i) X is finite.
(ii) B is a Fréchet-Urysohn space in the weak topology of C(X, K).
(iii) For every decreasing sequence (Un)n of clopen subsets of X there is an m ∈ N

such that Un = Um for all n ≥ m.
(iv) X has the K-Lebesgue property.
(v) Every uniformly bounded Cp(X, K)-compact (Cp(X, K)-metrizable) set is com-

pact in the weak topology of C(X, K).
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On the other hand, in [11, Theorem 4.13] Katsaras showed a Lebesgue Domi-
nated Convergence Theorem for a certain class of measures µ on X. Our Theorem
2 shows that such measures µ do not cover the whole dual M(X, K).

Section 3 deals with compact zero-dimensional spaces X such that Cp(X, K)
is K-analytic (Lindelöf). It is known that if X is a compact scattered space (i.e.,
every closed subset L of X has an isolated point in L), then Cp(X, R) is Lindelöf iff
C(X, R) is weakly Lindelöf. Also, it was proved in [17] that for a compact space X
the real space Cp(X, R) is K-analytic iff C(X, R) is weakly K-analytic. The proofs
of these classical results use the R-Lebesgue property of X. The same argument
cannot be used in the non-archimedean setting, since (as we show in Theorem
2) the Lebesgue theorem fails for this case. However, by using non-archimedean
techniques we prove in Section 3 some p-adic versions of these classical results
about Cp(X, R). The key point to get these versions is the following

Theorem 3. Let K be separable. Let E be a Banach space over K with a base. The
following assertions are equivalent.

(i) E is separable.
(ii) (E, σ(E, E′)) is separable.
(iii) E is analytic (K-analytic, Lindelöf).
(iv) (E, σ(E, E′)) is analytic (K-analytic, Lindelöf).
(v) E has a compact resolution.
(vi) (E, σ(E, E′)) has a compact resolution.
(vii) BE′ is σ(E′ , E)-(ultra)metrizable (where BE′ is the closed unit ball in E′).
(viii) (E′ , σ(E′ , E)) is hereditarily separable, i.e., subsets of (E′ , σ(E′ , E)) are separa-
ble.
(ix) (E′ , σ(E′ , E)) is linear hereditarily separable, i.e., linear subspaces of (E′ , σ(E′ , E))
are separable.
(x) E is isomorphic to the Banach space c0(N, K).

Let K be separable. It is known that c0(I, K) is separable iff I is countable. Ap-
plying Theorem 3 for E := c0(I, K) we obtain that c0(I, K) is weakly (K-)analytic
iff I is countable. However, c0(I, R) is weakly K-analytic (but not K-analytic) for
any set I (since c0(I, R) is a weakly compactly generated Banach space and Tala-
grand’s [17] applies). Being motivated by remarkable Haydon-Kunen-Talagrand
examples we characterize Corson σ(E′ , E)-compactness for the unit ball of the
dual of any non-archimedean Banach space E over a locally compact K, see The-
orem 17.

For basics on non-archimedean normed and locally convex spaces we refer to
[19] and [15], respectively.

2 Proof of Theorem 2

We start with the following example motivating also Theorem 2. Recall that, for
a prime number p, Qp is the field of the p-adic numbers equipped with its p-adic
(non-archimedean) valuation, and Zp is the corresponding closed unit ball in Qp.
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Example 4. Let K be locally compact (e.g. K = Qp). Let X be the closed ball B(a, r) :=
{x ∈ K : |x − a| ≤ r} (e.g. X = Zp). Then X is a zero-dimensional compact space not
having the K-Lebesgue property.

Proof. Since K is locally compact, the valuation of K is discrete. Let ρ be its uni-
formizing element, see [15]. We may assume that a = 0 and r = ρs for some
s ∈ Z. For each n ∈ N set An := {x ∈ K : |x| = ρn−1ρs} and assume that fn

is the K-valued characteristic function of An. Note that ( fn)n converges point-
wise to zero on X and ‖ fn‖ = 1 for each n ∈ N. Hence X does not have the
K-Lebesgue property.

Now we prove Theorem 2.

Proof. (i) ⇒ (ii), (iv), (v) are obvious.
(iv) ⇒ (iii): Let (Un)n be a decreasing sequence of clopen subsets of X. Let

x ∈ X. If x ∈
⋂

n Un, then χUn(x) → 1, where χUn is the K-valued characteristic
function of the set Un. If x 6∈

⋂
n Un, then χUn(x) → 0. This implies that (χUn)n

is a Cauchy sequence in Cp(X, K). Also, it is clear that ‖χUn − χUm‖ ≤ 1 for all
n, m ∈ N. Since X has the K-Lebesgue property, (χUn)n is Cauchy in the norm
topology of C(X, K), so there is an m ∈ N such that ‖χUn − χUm‖ < 1 for all
n ≥ m, i.e., |χUn(x) − χUm(x)| < 1 for all x ∈ X and n ≥ m. Hence χUn = χUm ,
and then Un = Um for all n ≥ m.

(iii) ⇒ (i): We prove that all the elements of X are isolated points. Then,
by compactness of X we deduce that X is finite. Assume that there exists an
element x ∈ X which is not isolated; we derive a contradiction. Let U1 := U be
a clopen neighbourhood of x. Since U 6= {x}, there are an x1 ∈ U \ {x} and a
clopen neighbourhood U2 of x such that U2 ⊂ U and x1 ∈ U \ U2. Again we
have that U2 6= {x} and with the same reasoning as before we find a clopen
neighbourhood U3 of x with U3 ⊂ U2 and an x2 ∈ U2 \ U3. Continuing this
procedure we construct a sequence x1, x2, . . . in X and a decreasing sequence
(Un)n of clopen subsets of X such that xn ∈ Un \Un+1 for all n ∈ N. Thus, all the
inclusions in that decreasing sequence are strict, a contradiction with (iii).

(ii) ⇒ (i): Let τB and σB be the restrictions to B of the norm topology and of
the topology σX on C(X, K) respectively. We prove that τB = σB. For that, let

A ⊂ B. Clearly A
τB ⊂ A

σB . Now, let f ∈ A
σB . By (ii) there is a sequence ( fn)n in

A such that fn → f in σX. Since C(X, K) has the Orlicz-Pettis property we obtain

that fn → f in τB, hence f ∈ A
τB . Therefore, for any A ⊂ B the closures of A in

σB and τB coincide, i.e. τB = σB.
Since B is compactoid in (C(X, K), σX ) by [15, Theorem 5.4.1], and σB = τB,

we apply [15, Theorem 3.8.13] to deduce that B is a compactoid neighbourhood
of zero in the Banach space C(X, K). Then C(X, K) is finite-dimensional by [15,
Theorem 3.8.5], i.e. X is finite.

(v) ⇒ (iv): Let ( fn)n be a sequence such that fn → 0 in Cp(X, K) and ‖ fn‖ ≤ 1
for all n. Clearly L := { fn : n ∈ N}

⋃
{0} is Cp(X, K)-compact. Also, L is

Cp(X, K)-metrizable, by [15, Theorem 3.8.24], hence σX-compact by (v). There-
fore, the pointwise topology and σX coincide on L, so fn → 0 in σX. Thus, X has
the K-Lebesgue property.
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Remark 5. Implication (v) ⇒ (i) shows that Grothendieck’s Theorem, [6, Theorem
4.2], fails for the spaces C(X, K).

3 Non-archimedean Cp(X, K) spaces and the Lindelöf property

A topological space X has a compact resolution if X has a family {Kα : α ∈ NN}
of compact subsets covering X such that Kα ⊂ Kβ if α ≤ β in NN. X is called

analytic if X is a continuous image of NN; it is a K-analytic space if there is an
upper semi-continuous compact-valued map from NN into X whose union is X,
see [17], [16]. Note that separable complete metric spaces are analytic, analytic
spaces are K-analytic, K-analytic spaces are Lindelöf and any K-analytic space
admits a compact resolution. The converses of the above results fail, see [2], [16],
[17]. Also, countable unions and products of K-analytic [analytic] spaces are K-
analytic [analytic]; closed subspaces of a K-analytic [analytic] space are K-analytic
[analytic], see [16], [18].

The following proposition is motivated by Theorem 2(v) and will be useful in
the proof of Corollary 10.

Proposition 6. Let X be a zero-dimensional space having a compact resolution (for exam-
ple when X is σ-compact) and let L ⊂ Cp(X, K) be a compact set. Then L is metrizable
iff L is separable.

Proof. It is well-known that every metrizable compact space is separable. Now,
assume that L is separable. Let S be a countable dense subset of L. The space
Cp(S, K) is metrizable by [14, Theorem 3.7.2]. Clearly, the map

ϕ : Cp(L, K) → Cp(S, K), f 7→ f |S,

is a continuous injection onto its metrizable range. It follows that Cp(L, K) admits
a weaker metric topology. Let δ : X → Cp(L, K) be the continuous map defined
by x 7→ δx, δx( f ) := f (x), x ∈ X, f ∈ L. δ(X) has a compact resolution and, as a
subset of Cp(L, K), δ(X) admits a weaker metric topology. Then by Talagrand’s
[17], see also [3, Corollary 4.3], the space δ(X) is analytic, hence separable. For
every f ∈ L let f0 : δ(X) → K be the continuous function on δ(X) defined by
f0(δx) := f (x). Then { f0 : f ∈ L} is a compact subset of Cp(δ(X), K) homeomor-
phic to L. Since δ(X) is separable, Cp(δ(X), K) admits a weaker metric topology,
so L is metrizable.

Example 7. Proposition 6 fails if “compactness” of L is replaced by “compactoidity”.

Indeed, let K be locally compact. Let E := (c0(N, K), σ(c0(N, K), ℓ∞(N, K))).
Let T := {e1, e2, . . . , }, where ei are the unit vectors. Then T is bounded in E,
hence compactoid by [15, Corollary 5.4.2], and T is metrizable and separable. By
[15, Example 5.4.4] the closed absolutely convex hull L of T is nonmetrizable (al-
though it is compactoid and separable). Finally, let X be the closed unit ball of E′.
Observe that X is compact with respect to the weak∗-topology on E′ and that E is
homeomorphically embedded in Cp(X, K).
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In [10] we showed a pure non-archimedean theorem stating that if E is a non-
archimedean Banach space over a locally compact K, then E endowed with the
weak topology is a Lindelöf space iff E is separable. We extend this result (Theo-
rem 3) for Banach spaces with a base over a separable K (if K is locally compact,
then K is separable and its valuation is discrete, so every Banach space over K

has a base, [15, Theorems 2.1.11, 2.5.4]). First we note the following

Lemma 8. If E is a Banach space with a base, then every closed linear subspace of count-
able type of E is weakly closed.

Proof. Let D be a closed linear subspace of countable type of E. By [19, Corollary
3.18], D is complemented in E, so there is a continuous linear projection P : E → E
whose kernel is D. Then P is continuous if E is endowed with its weak topology
(which is Hausdorff), so we obtain that D = P−1{0} is weakly closed.

Note that, by separability of K, a locally convex space E over K is separable iff
there is a countable set whose linear hull is dense in E (iff the space is of countable
type, in case E is metrizable).

Now we prove Theorem 3.

Proof. Clearly (i) ⇒ (ii) and (viii) ⇒ (ix). (ii) ⇒ (i) follows from Lemma 8 and (v)
⇒ (i) from [15, Theorem 11.5.3].

Recall again that every separable complete metric space is analytic, that ana-
lytic ⇒ K-analytic ⇒ existence of a compact resolution; K-analytic ⇒ Lindelöf,
and that these last four properties are preserved by passing from the norm to the
weak topology. Hence we have (i) ⇒ (iii) ⇒ (iv), (v) ⇒ (vi). Next we prove the
remaining implications.

(E, σ(E, E′)) is Lindelöf ⇒ (i): Let (ei)i∈I be a base of E. Then E is linearly
homeomorphic to c0(I, K), [19, Corollary 3.8], so it is enough to prove this impli-
cation for E = c0(I, K).

We follow the argument from [10, Theorem 7, (9) ⇒ (4)]: Assume I is un-
countable; we derive a contradiction. Let x ∈ E. Put Ix = {i ∈ I : xi = 0}. The
functional fx : E → K, y 7→ ∑i∈Ix

yi is well defined, linear, and continuous. Set
W := {Wx : x ∈ E}, where Wx = {y ∈ E : | fx(y)| < 1}. Since x ∈ Wx for all
x ∈ E, the family W covers E. By assumption W contains a countable subfamily
{Wx : x ∈ X} covering E, where X is a countable subset of E. There exists j ∈ I
such that xj = 0 for each x ∈ X. Then j ∈

⋂
x∈X Ix. Consequently, fx(ej) = 1

for each x ∈ X, where ej ∈ E such that (ej)i := δji for all i ∈ I. We proved that
ej 6∈ Wx for all x ∈ X, a contradiction. Hence I is countable, so E is separable.

(vi) ⇒ (v): Every separable closed linear subspace of E is complemented in E,
[19, Corollary 3.18]. This implies that every continuous linear functional defined
on a separable linear subspace of E admits a continuous linear extension to the
whole space. Then every weakly compact subset of E is norm-compact by [15,
Theorem 5.8.5], and we are done.

(i) ⇔ (vii): It follows from [15, Theorem 7.6.10] and its proof.
(i) ⇒ (viii): Since every separable Banach space is linearly homeomorphic to

c0 := c0(N, K), it suffices to prove this implication for E := c0. Let e1, e2, . . . be the
unit vectors of E. It is easily seen that every x = (xn)n ∈ ℓ∞ (= E′) can be written
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as x = ∑n xn en in the weak∗-topology σ∗ := σ(ℓ∞, c0) and that en → 0 in this
topology. In particular, BE′ is the σ∗-closed absolutely convex hull of {e1, e2, . . .},
and by separability of K we obtain that BE′ is σ∗-separable. Also, by [15, Theorem
3.8.24], BE′ is σ∗-metrizable. Then BE′ and all of its subsets are σ∗-separable.

Now, let F ⊂ E′ and let λ ∈ K with |λ| > 1. By the above, F ∩ λnBE′ is
σ∗-separable for all n. Then, F =

⋃
n(F ∩ λnBE′), being a countable union of σ∗-

separable sets, is also σ∗-separable. Therefore, E′ is σ∗-hereditarily separable.
(ix) ⇒ (i): It is enough to prove this implication for E = c0(I, K), where I is a

set with the same cardinality as a base of E. Then clearly we have (E′ , σ(E′ , E)) =
(ℓ∞(I, K), σ(ℓ∞(I, K), c0(I, K))).

Assume (ix) holds for (ℓ∞(I, K), σ(ℓ∞(I, K)), c0(I, K)). Let {ei : i ∈ I} be
the set formed by the canonical unit vectors of E and let D be the linear hull of
this set. By assumption D is separable in σ := σ(ℓ∞(I, K), c0(I, K)), hence there

exist y1, y2, . . . ∈ D such that D ⊂ {y1, y2, . . .}
σ
. Then each element of D has

null coordinates off of the countable set
⋃

n{i ∈ I : (yn)i 6= 0}. Therefore I is
countable, so c0(I, K) is separable.

(i) ⇔ (x): It follows from [15, Corollary 2.3.9].

We often use the terms “weakly separable”, “weakly analytic”, .... instead of
“σ(E, E′)-separable”, “σ(E, E′)-analytic”, ...

It was proved in [17] that for a compact space X the real space Cp(X, R) is
K-analytic iff C(X, R) is weakly K-analytic. By using the previous results of this
section, we will give in Corollary 11 a non-archimedean counterpart of the above
classical result, when X is a zero-dimensional compact abelian group, see also
Corollary 12.

We will use the following additional fact

Theorem 9. Let X be a zero-dimensional compact space. The following are equivalent.
(i) X is metrizable.
(ii) X is ultrametrizable.
If, in addition, X is a zero-dimensional compact abelian group, then (i), (ii) are equiv-

alent to:
(iii) X has countable tightness (i.e., if A ⊂ X and x ∈ A, then there exists a countable

subset B ⊂ A such that x ∈ B).

Proof. (ii) ⇒ (i) ⇒ (iii) is obvious. (i) ⇒ (ii): Since X is compact and metrizable,
X is second-countable. Hence X is ultrametrizable by [19, p. 39]. If X is a zero-
dimensional compact abelian group, (iii) ⇒ (i) follows from [8, Theorem 2].

For any non-empty set Γ put Σ(Γ) := {x ∈ RΓ : {x(γ) 6= 0} is countable}
endowed with the product topology. It is known that each space Σ(Γ) is Fréchet-
Urysohn, see [13].

A compact space X is called Corson-compact if X is homeomorphic to a com-
pact subset of some Σ(Γ). We refer to [5] and [12] for the properties of Corson-
compact spaces used in the sequel.

Corollary 10. Let X be a zero-dimensional compact space and let K be separable. The
following assertions are equivalent.
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(i) The Banach space C(X, K) is separable (analytic, K-analytic, Lindelöf, has a com-
pact resolution).

(ii) (C(X, K), σX) is separable (analytic, K-analytic, Lindelöf, has a compact resolu-
tion).

(iii) Cp(X, K) is separable (analytic).
(iv) X is (ultra)metrizable.
(v) X is Corson-compact and separable.
(vi) X is separable and Cp(X, K) is K-analytic.

Proof. (i) ⇔ (ii) is a direct consequence of Theorem 3, as C(X, K) has an orthonor-
mal base [15, Theorem 2.5.22]. (iv) ⇒ (i) follows from Theorem 9 and [15, The-
orem 2.5.24]. (ii) ⇒ (iii) is obvious since, on C(X, K), the pointwise topology is
weaker than the weak topology. (iii) ⇒ (iv): If Cp(X, K) is separable, then (iv)
follows from [15, Theorem 4.3.4].

(iv) ⇔ (v): Every metric compact space is separable and Corson-compact, and
every separable Corson-compact space is metrizable (note that Σ(Γ) is dense RΓ),
so ultrametrizable by Theorem 9.

From what we have already proved, it is clear that any of the properties (i)−(v)
implies (vi).

(vi) ⇒ (iv): Cp(X, K) is K-analytic, so it has a compact resolution. Also, X is
homeomorphically embedded in Cp(Cp(X, K), K). Then applying Proposition 6
we get that X is metrizable and so ultrametrizable by Theorem 9.

Corollary 11. Let X be a zero-dimensional compact abelian group. Then (i)−(vi) are
equivalent to

(vii) X is Corson-compact.
(viii) X has countable tightness.
(ix) Cp(X, K) is K-analytic (Lindelöf).
If, in addition, K is locally compact, then (i)−(vi) are equivalent to
(x) Cp(X, K) has a compact resolution.

Proof. Clearly (v) ⇒ (vii). (iv) ⇔ (viii) follows from Theorem 9. Also, (ii) ⇒
(ix), (x) are obvious, since on C(X, K), the pointwise topology is weaker than the
weak one.

(vii) ⇒ (viii): Every Corson-compact space is Fréchet-Urysohn, hence has
countable tightness.

(ix) ⇒ (viii): Assume that Cp(X, K) is Lindelöf. Let A ⊂ X and let x ∈ A. Set
F := { f ∈ C(X, K) : f (x) = 1}. Since F is a closed subspace of Cp(X, K), the
space F is Lindelöf. For each y ∈ A set

Vy := {g ∈ C(X, K) : g(y) 6= 0}.

Clearly each Vy is open in Cp(X, K). Fix f ∈ F . Since f (A) ⊂ f (A), there exists
y ∈ A such that f (y) 6= 0. This implies that F ⊂

⋃
{Vy : y ∈ A}. Hence there

exists a countable set B ⊂ A such that F ⊂
⋃
{Vy : y ∈ B}. We show that x ∈ B.

Assume x 6∈ B. By zero-dimensionality of X there is a clopen set U in X such that
x ∈ U and B ⊂ X \ U. Then the characteristic function on U, χU : X → K, is
continuous and satisfies

χU(x) = 1, χU(X \ U) = {0}.
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Since χU ∈ F , there exists y ∈ B such that χU ∈ Vy. As y ∈ U we conclude that
y ∈ U ∩ B, a contradiction. Therefore, X has countable tightness.

Now assume that K is locally compact. By [9, Theorem 14] Cp(X, K) is K-
analytic if it has a compact resolution, which proves (x) ⇒ (ix).

Corollary 11 is not true for zero-dimensional compact spaces in general, as we
will see in Remark 16.

As a direct consequence of Corollary 10 we note

Corollary 12. Let X be a zero-dimensional compact space and let K be separable. Then
Cp(X, K) is separable (analytic) iff C(X, K) is weakly separable (weakly analytic).

Alster and Pol [1, Theorem] proved

Proposition 13. If X is Corson-compact and M is a separable metric space, then C(X, M)
is Lindelöf in the pointwise topology.

The remarkable Haydon-Kunen-Talagrand example (under the continuum hy-
pothesis) of a non-separable Corson-compact space X such that the real space
Cp(X, R) is Lindelöf but C(X, R) is not weakly Lindelöf can be found in [12, The-
orem 5.9].

The following corollary provides a large class of compact spaces related with a
non-archimedean version of the mentioned Haydon-Kunen-Talagrand example.

Corollary 14. Let K be separable. If X is a non-separable zero-dimensional Corson-
compact space, then Cp(X, K) is Lindelöf and C(X, K) is not weakly Lindelöf.

Proof. Cp(X, K) is Lindelöf by Proposition 13. C(X, K) is not weakly Lindelöf by
Corollary 10.

In [1, Example 7] Alster and Pol constructed a non-separable Corson-compact
space X0 ⊂ {0, 1}T with |T| = ℵ1 such that X0 ⊂ Σ(ℵ1) and Cp(X0 , R) is not
K-analytic. Note the following non-archimedean version of the Alster-Pol’s ex-
ample (which supplements also Proposition 13).

Example 15. Let K be separable. Then Cp(X0, K) is not K-analytic although it is Lin-
delöf.

Indeed, Cp(X0, K) is Lindelöf by Proposition 13. To prove the first claim, sup-

pose that Cp(X0 , K) is K-analytic; we derive a contradiction. Then Cp(X0, KN)

is K-analytic, since it is homeomorphic to Cp(X0, K)N, a countable product of K-
analytic spaces. Also, by [9, Proposition 19] there exists a continuous surjection
Sϕ : Cp(X0, KN) → Cp(X0 , R). So Cp(X0, R) is K-analytic, a contradiction.

Remark 16. Corollary 14 and Example 15 show that Corollary 11 is not true for
general zero-dimensional compact spaces X.

Gul’ko proved that in the classical case the closed unit ball of the dual of a
weakly K-analytic Banach space is Corson-compact in the weak∗ topology. Also,
Kunen constructed (under the continuum hypothesis) an uncountable separable
compact scattered (hence zero-dimensional) space Z such that C(Z, R) is weakly
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Lindelöf and the weak∗ dual is hereditarily separable, see for example [7]. Next
we provide non-archimedean variants of the above classical facts.

If K is locally compact, the closed unit ball BE′ in the dual of a non-archimedean
Banach space E is a weak∗-compact abelian group. Also, K is separable and its
valuation is discrete, so every Banach space over K has a base, [15, Theorems
2.1.11, 2.5.4]. Hence the previous results of this section apply to get the following

Theorem 17. Let E be a Banach space over a locally compact K. Then (i)−(ix) of The-
orem 3 are equivalent to (i)−(x) of Corollaries 10 and 11, by taking X := BE′ equipped
with the restriction to X of the weak∗ topology σ(E′ , E).

Proof. It follows immediately from Theorem 3 and Corollaries 10, 11 (one has just
to look at Theorem 3(vii) and Corollary 10(iv)).

When K is locally compact, the weak∗ dual F of the non-separable Banach
space ℓ∞(N, K) is separable ([4, Proposition 4]), but the space F is not heredi-
tarily separable by Theorem 17. Also, the weak∗ dual F of the real Banach space
ℓ∞(N, R) is separable but not hereditarily separable. Indeed, otherwise it is easily
seen that F has countable tightness. Hence ℓ∞(N, R) has the Corson’s property
(C) by [5, Theorem 12.41], a contradiction, [5, Excercise 12.44] (recall that a real or
complex Banach space F has the Corson’s property (C) if for every family of closed
convex subsets of F with empty intersection there is a countable subfamily with
empty intersection).

On the other hand, there are situations in sharp contrast with the classical
case, as we show in the next examples.

Example 18. Let K be locally compact and let I be an uncountable set. Let BK and BR

be the closed unit ball in the dual of the Banach space c0(I, K) and c0(I, R), respectively.
Then BR is Corson-compact in the weak∗ topology and BK is not.

Indeed, the claim about BK follows from Theorem 17, as c0(I, K) is not sepa-
rable. c0(I, R) is weakly K-analytic, since it is a WCG Banach space, [5]; so Gul’ko
result (mentioned above) applies.

Example 19. Let K be locally compact and let Z be the Kunen compact space. Then the
weak∗ dual of C(Z, R) is hereditarily separable and the weak∗ dual of C(Z, K) is not.

Indeed, the claim about C(Z, R) was already mentioned above (see the com-
ments after Remark 16). Now, suppose that the weak∗ dual of C(Z, K) is hered-
itarily separable. Then C(Z, K) is separable by Theorem 17 and so Z must be
ultrametrizable by Corollary 10. On the other hand, every metrizable scattered
compact space is countable, a contradiction (since Z by assumption is uncount-
able).
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[5] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, V. Zizler, Func-
tional Analysis and Infinite-Dimensional Geometry, Canad. Math. Soc., Springer
(2001).

[6] K. Floret, Weakly Compact Sets, Lecture Notes in Math., 801, Springer, Berlin
(1980).
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