Non-archimedean function spaces and the Lebesgue dominated convergence theorem*

J. Kakol C. Perez-Garcia W. Śliwa

Abstract

Let $M(X,\mathbb{K})$ be the non-archimedean Banach space of all additive and bounded \mathbb{K} -valued measures on the ring of all clopen subsets of a zero-dimensional compact space X, where \mathbb{K} is a non-archimedean non-trivially valued complete field. It is known that $M(X,\mathbb{K})$ is isometrically isomorphic to the dual of the Banach space $C(X,\mathbb{K})$ of all continuous \mathbb{K} -valued maps on X with the sup-norm topology. Does the non-archimedean Lebesgue Dominated Convergence Theorem hold for the space $M(X,\mathbb{K})$? Only in the trivial case! We show (Theorem 2) that for every sequence $(f_n)_n$ in $C(X,\mathbb{K})$ such that $f_n(x) \to 0$ for all $x \in X$ and $||f_n|| \le 1$ for all $n \in \mathbb{N}$, one has $\int_X f_n d\mu \to 0$ for each $\mu \in M(X,\mathbb{K})$ iff X is finite. In the second part we characterize (Theorem 3) weakly Lindelöf non-archimedean Banach spaces E with a base as well as Corson $\sigma(E',E)$ -compact unit balls in their duals E' (Theorem 17). We also look at the Kunen space from the non-archimedean point of view.

1 Introduction

Let X be a compact space and let $M(X,\mathbb{R})$ be the space of all regular Borel measures on X. The classical Riesz Representation Theorem and the Lebesgue Domi-

^{*}This research for the first and second named author was supported by the project MTM2008 - 01502 and MTM2010-20190-C02-02, respectively, of the Spanish Ministry of Science and Innovation. The first and third named authors were supported by National Center of Science, Poland, grant no. N N201 605340

Received by the editors April 2011.

Communicated by F. Bastin.

²⁰⁰⁰ Mathematics Subject Classification: 46S10, 54C35.

Key words and phrases : Non-archimedean function spaces, non-archimedean Lebesgue property, Fréchet-Urysohn space, K-analytic space, Lindelöf space.

nated Convergence Theorem imply that every continuous linear real-valued functional $C(X,\mathbb{R}) \to \mathbb{R}$ is represented by a unique regular Borel measure μ on X and, if $(f_n)_n$ is a sequence of real-valued continuous functions on X which converges pointwise to zero and is uniformly bounded, then $\int_X f_n d\mu \to 0$ for every $\mu \in M(X,\mathbb{R})$. What about this very popular theorem for the non-archimedean case?

Let $\mathbb K$ be a non-archimedean non-trivially valued complete field with valuation |.|. Let X be a compact zero-dimensional space and let $\Omega(X)$ be the ring of all clopen subsets of X. By a *measure* on X we mean a map $\mu:\Omega(X)\to\mathbb K$ which is additive and bounded, i.e. $\|\mu\|:=\sup\{|\mu(U)|:U\in\Omega(X)\}<\infty$. The space $M(X,\mathbb K)$ of measures on X, with the natural operations and the norm $\|.\|$, is a Banach space.

There is a simple way to integrate continuous \mathbb{K} -valued functions on X with respect to a measure μ , [15], [19].

Let $C(X, \mathbb{K})$ be the Banach space of all \mathbb{K} -valued continuous maps on X equipped with the usual supremum norm $\|.\|$. Let $C(X, \mathbb{K})'$ be the topological dual of the space $C(X, \mathbb{K})$. The following Riesz Representation Theorem can be found in [15, Theorem 2.5.30], see also [19, Theorem 7.18] for generalizations.

Theorem 1. Let X be a compact zero-dimensional space. For every $\phi \in C(X, \mathbb{K})'$ there exists exactly one measure on X such that $\phi(f) = \int_X f d\mu$ for all $f \in C(X, \mathbb{K})$ and the map

$$M(X, \mathbb{K}) \to C(X, \mathbb{K})', \mu \mapsto \phi_{\mu},$$

is an isometrical isomorphism.

Let us identify $C(X, \mathbb{K})' = M(X, \mathbb{K})$. We say that X has the \mathbb{K} -Lebesgue property if for each sequence $(f_n)_n$ in $C(X, \mathbb{K})$ such that $f_n(x) \to 0$ for all $x \in X$ and $||f_n|| \le 1$ for all $n \in \mathbb{N}$, one has $\int_X f_n d\mu \to 0$ for each $\mu \in C(X, \mathbb{K})'$.

Since the space $C(X, \mathbb{K})$ has the Orlicz-Pettis property, i.e. every convergent sequence in the weak topology of $C(X, \mathbb{K})$ is norm-convergent, see [14, Corollary 2.5], we note that X has the \mathbb{K} -Lebesgue property iff for each sequence $(f_n)_n$ in $C(X, \mathbb{K})$ such that $f_n(x) \to 0$ for all $x \in X$ and $||f_n|| \le 1$ for all $n \in \mathbb{N}$, one has $||f_n|| \to 0$.

Let $C_p(X, \mathbb{K})$ be the space of all \mathbb{K} -valued continuous maps on X endowed with the pointwise topology. By σ_X we denote the weak topology of $C(X, \mathbb{K})$.

The main result of Section 2 is the next one, which establishes that the non-archimedean Lebesgue Dominated Convergence Theorem holds only in the trivial case: when *X* is finite.

Theorem 2. Let X be a compact zero-dimensional space. Let B be the closed unit ball in $C(X, \mathbb{K})$. The following assertions are equivalent.

- (i) X is finite.
- (ii) B is a Fréchet-Urysohn space in the weak topology of $C(X, \mathbb{K})$.
- (iii) For every decreasing sequence $(U_n)_n$ of clopen subsets of X there is an $m \in \mathbb{N}$ such that $U_n = U_m$ for all $n \geq m$.
 - (iv) X has the K-Lebesgue property.
- (v) Every uniformly bounded $C_p(X, \mathbb{K})$ -compact $(C_p(X, \mathbb{K})$ -metrizable) set is compact in the weak topology of $C(X, \mathbb{K})$.

On the other hand, in [11, Theorem 4.13] Katsaras showed a Lebesgue Dominated Convergence Theorem for a certain class of measures μ on X. Our Theorem 2 shows that such measures μ do not cover the whole dual $M(X, \mathbb{K})$.

Section 3 deals with compact zero-dimensional spaces X such that $C_p(X, \mathbb{K})$ is K-analytic (Lindelöf). It is known that if X is a compact scattered space (i.e., every closed subset L of X has an isolated point in L), then $C_p(X, \mathbb{R})$ is Lindelöf iff $C(X, \mathbb{R})$ is weakly Lindelöf. Also, it was proved in [17] that for a compact space X the real space $C_p(X, \mathbb{R})$ is K-analytic iff $C(X, \mathbb{R})$ is weakly K-analytic. The proofs of these classical results use the \mathbb{R} -Lebesgue property of X. The same argument cannot be used in the non-archimedean setting, since (as we show in Theorem 2) the Lebesgue theorem fails for this case. However, by using non-archimedean techniques we prove in Section 3 some p-adic versions of these classical results about $C_p(X, \mathbb{R})$. The key point to get these versions is the following

Theorem 3. Let \mathbb{K} be separable. Let E be a Banach space over \mathbb{K} with a base. The following assertions are equivalent.

```
(i) E is separable.
```

- (ii) $(E, \sigma(E, E'))$ is separable.
- (iii) E is analytic (K-analytic, Lindelöf).
- (iv) $(E, \sigma(E, E'))$ is analytic (K-analytic, Lindelöf).
- (v) E has a compact resolution.
- (vi) $(E, \sigma(E, E'))$ has a compact resolution.
- (vii) $B_{E'}$ is $\sigma(E', E)$ -(ultra)metrizable (where $B_{E'}$ is the closed unit ball in E').
- (viii) $(E', \sigma(E', E))$ is hereditarily separable, i.e., subsets of $(E', \sigma(E', E))$ are separable.
- (ix) $(E', \sigma(E', E))$ is linear hereditarily separable, i.e., linear subspaces of $(E', \sigma(E', E))$ are separable.
- (x) E is isomorphic to the Banach space $c_0(\mathbb{N}, \mathbb{K})$.

Let $\mathbb K$ be separable. It is known that $c_0(I,\mathbb K)$ is separable iff I is countable. Applying Theorem 3 for $E:=c_0(I,\mathbb K)$ we obtain that $c_0(I,\mathbb K)$ is weakly (K-)analytic iff I is countable. However, $c_0(I,\mathbb R)$ is weakly K-analytic (but not K-analytic) for any set I (since $c_0(I,\mathbb R)$ is a weakly compactly generated Banach space and Talagrand's [17] applies). Being motivated by remarkable Haydon-Kunen-Talagrand examples we characterize Corson $\sigma(E',E)$ -compactness for the unit ball of the dual of any non-archimedean Banach space E over a locally compact $\mathbb K$, see Theorem 17.

For basics on non-archimedean normed and locally convex spaces we refer to [19] and [15], respectively.

2 Proof of Theorem 2

We start with the following example motivating also Theorem 2. Recall that, for a prime number p, \mathbb{Q}_p is the field of the p-adic numbers equipped with its p-adic (non-archimedean) valuation, and \mathbb{Z}_p is the corresponding closed unit ball in \mathbb{Q}_p .

Example 4. Let \mathbb{K} be locally compact (e.g. $\mathbb{K} = \mathbb{Q}_p$). Let X be the closed ball $B(a,r) := \{x \in \mathbb{K} : |x - a| \le r\}$ (e.g. $X = \mathbb{Z}_p$). Then X is a zero-dimensional compact space not having the \mathbb{K} -Lebesgue property.

Proof. Since \mathbb{K} is locally compact, the valuation of \mathbb{K} is discrete. Let ρ be its uniformizing element, see [15]. We may assume that a=0 and $r=\rho^s$ for some $s\in\mathbb{Z}$. For each $n\in\mathbb{N}$ set $A_n:=\{x\in\mathbb{K}:|x|=\rho^{n-1}\rho^s\}$ and assume that f_n is the \mathbb{K} -valued characteristic function of A_n . Note that $(f_n)_n$ converges pointwise to zero on X and $\|f_n\|=1$ for each $n\in\mathbb{N}$. Hence X does not have the \mathbb{K} -Lebesgue property.

Now we prove Theorem 2.

Proof. (i) \Rightarrow (ii), (iv), (v) are obvious.

- (iv) \Rightarrow (iii): Let $(U_n)_n$ be a decreasing sequence of clopen subsets of X. Let $x \in X$. If $x \in \bigcap_n U_n$, then $\chi_{U_n}(x) \to 1$, where χ_{U_n} is the \mathbb{K} -valued characteristic function of the set U_n . If $x \notin \bigcap_n U_n$, then $\chi_{U_n}(x) \to 0$. This implies that $(\chi_{U_n})_n$ is a Cauchy sequence in $C_p(X,\mathbb{K})$. Also, it is clear that $\|\chi_{U_n} \chi_{U_m}\| \le 1$ for all $n, m \in \mathbb{N}$. Since X has the \mathbb{K} -Lebesgue property, $(\chi_{U_n})_n$ is Cauchy in the norm topology of $C(X,\mathbb{K})$, so there is an $m \in \mathbb{N}$ such that $\|\chi_{U_n} \chi_{U_m}\| < 1$ for all $n \ge m$, i.e., $|\chi_{U_n}(x) \chi_{U_m}(x)| < 1$ for all $x \in X$ and $x \in X$ and $x \in X$. Hence $x \in X$ and then $x \in X$ and $x \in$
- (iii) \Rightarrow (i): We prove that all the elements of X are isolated points. Then, by compactness of X we deduce that X is finite. Assume that there exists an element $x \in X$ which is not isolated; we derive a contradiction. Let $U_1 := U$ be a clopen neighbourhood of x. Since $U \neq \{x\}$, there are an $x_1 \in U \setminus \{x\}$ and a clopen neighbourhood U_2 of x such that $U_2 \subset U$ and $x_1 \in U \setminus U_2$. Again we have that $U_2 \neq \{x\}$ and with the same reasoning as before we find a clopen neighbourhood U_3 of x with $U_3 \subset U_2$ and an $x_2 \in U_2 \setminus U_3$. Continuing this procedure we construct a sequence x_1, x_2, \ldots in X and a decreasing sequence $(U_n)_n$ of clopen subsets of X such that $x_n \in U_n \setminus U_{n+1}$ for all $n \in \mathbb{N}$. Thus, all the inclusions in that decreasing sequence are strict, a contradiction with (iii).
- (ii) \Rightarrow (i): Let τ_B and σ_B be the restrictions to B of the norm topology and of the topology σ_X on $C(X, \mathbb{K})$ respectively. We prove that $\tau_B = \sigma_B$. For that, let $A \subset B$. Clearly $\overline{A}^{\tau_B} \subset \overline{A}^{\sigma_B}$. Now, let $f \in \overline{A}^{\sigma_B}$. By (ii) there is a sequence $(f_n)_n$ in A such that $f_n \to f$ in σ_X . Since $C(X, \mathbb{K})$ has the Orlicz-Pettis property we obtain that $f_n \to f$ in τ_B , hence $f \in \overline{A}^{\tau_B}$. Therefore, for any $A \subset B$ the closures of A in σ_B and σ_B coincide, i.e. $\tau_B = \sigma_B$.

Since B is compactoid in $(C(X, \mathbb{K}), \sigma_X)$ by [15, Theorem 5.4.1], and $\sigma_B = \tau_B$, we apply [15, Theorem 3.8.13] to deduce that B is a compactoid neighbourhood of zero in the Banach space $C(X, \mathbb{K})$. Then $C(X, \mathbb{K})$ is finite-dimensional by [15, Theorem 3.8.5], i.e. X is finite.

(v) \Rightarrow (iv): Let $(f_n)_n$ be a sequence such that $f_n \to 0$ in $C_p(X, \mathbb{K})$ and $||f_n|| \le 1$ for all n. Clearly $L := \{f_n : n \in \mathbb{N}\} \cup \{0\}$ is $C_p(X, \mathbb{K})$ -compact. Also, L is $C_p(X, \mathbb{K})$ -metrizable, by [15, Theorem 3.8.24], hence σ_X -compact by (v). Therefore, the pointwise topology and σ_X coincide on L, so $f_n \to 0$ in σ_X . Thus, X has the \mathbb{K} -Lebesgue property.

Remark 5. Implication (v) \Rightarrow (i) shows that Grothendieck's Theorem, [6, Theorem 4.2], fails for the spaces $C(X, \mathbb{K})$.

3 Non-archimedean $C_p(X, \mathbb{K})$ spaces and the Lindelöf property

A topological space X has a compact resolution if X has a family $\{K_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of compact subsets covering X such that $K_{\alpha} \subset K_{\beta}$ if $\alpha \leq \beta$ in $\mathbb{N}^{\mathbb{N}}$. X is called analytic if X is a continuous image of $\mathbb{N}^{\mathbb{N}}$; it is a K-analytic space if there is an upper semi-continuous compact-valued map from $\mathbb{N}^{\mathbb{N}}$ into X whose union is X, see [17], [16]. Note that separable complete metric spaces are analytic, analytic spaces are K-analytic, K-analytic spaces are Lindelöf and any K-analytic space admits a compact resolution. The converses of the above results fail, see [2], [16], [17]. Also, countable unions and products of K-analytic [analytic] spaces are K-analytic [analytic], see [16], [18].

The following proposition is motivated by Theorem 2(v) and will be useful in the proof of Corollary 10.

Proposition 6. Let X be a zero-dimensional space having a compact resolution (for example when X is σ -compact) and let $L \subset C_p(X, \mathbb{K})$ be a compact set. Then L is metrizable iff L is separable.

Proof. It is well-known that every metrizable compact space is separable. Now, assume that L is separable. Let S be a countable dense subset of L. The space $C_p(S, \mathbb{K})$ is metrizable by [14, Theorem 3.7.2]. Clearly, the map

$$\varphi: C_p(L, \mathbb{K}) \to C_p(S, \mathbb{K}), f \mapsto f|S,$$

is a continuous injection onto its metrizable range. It follows that $C_p(L, \mathbb{K})$ admits a weaker metric topology. Let $\delta: X \to C_p(L, \mathbb{K})$ be the continuous map defined by $x \mapsto \delta_x$, $\delta_x(f) := f(x)$, $x \in X$, $f \in L$. $\delta(X)$ has a compact resolution and, as a subset of $C_p(L, \mathbb{K})$, $\delta(X)$ admits a weaker metric topology. Then by Talagrand's [17], see also [3, Corollary 4.3], the space $\delta(X)$ is analytic, hence separable. For every $f \in L$ let $f_0: \delta(X) \to \mathbb{K}$ be the continuous function on $\delta(X)$ defined by $f_0(\delta_x) := f(x)$. Then $\{f_0: f \in L\}$ is a compact subset of $C_p(\delta(X), \mathbb{K})$ homeomorphic to L. Since $\delta(X)$ is separable, $C_p(\delta(X), \mathbb{K})$ admits a weaker metric topology, so L is metrizable.

Example 7. Proposition 6 fails if "compactness" of L is replaced by "compactoidity".

Indeed, let \mathbb{K} be locally compact. Let $E := (c_0(\mathbb{N}, \mathbb{K}), \sigma(c_0(\mathbb{N}, \mathbb{K}), \ell^{\infty}(\mathbb{N}, \mathbb{K})))$. Let $T := \{e_1, e_2, \ldots, \}$, where e_i are the unit vectors. Then T is bounded in E, hence compactoid by [15, Corollary 5.4.2], and T is metrizable and separable. By [15, Example 5.4.4] the closed absolutely convex hull L of T is nonmetrizable (although it is compactoid and separable). Finally, let X be the closed unit ball of E'. Observe that X is compact with respect to the weak*-topology on E' and that E is homeomorphically embedded in $C_p(X, \mathbb{K})$.

In [10] we showed a pure non-archimedean theorem stating that if E is a non-archimedean Banach space over a locally compact \mathbb{K} , then E endowed with the weak topology is a Lindelöf space iff E is separable. We extend this result (Theorem 3) for Banach spaces with a base over a separable \mathbb{K} (if \mathbb{K} is locally compact, then \mathbb{K} is separable and its valuation is discrete, so every Banach space over \mathbb{K} has a base, [15, Theorems 2.1.11, 2.5.4]). First we note the following

Lemma 8. *If E is a Banach space with a base, then every closed linear subspace of countable type of E is weakly closed.*

Proof. Let D be a closed linear subspace of countable type of E. By [19, Corollary 3.18], D is complemented in E, so there is a continuous linear projection $P: E \to E$ whose kernel is D. Then P is continuous if E is endowed with its weak topology (which is Hausdorff), so we obtain that $D = P^{-1}\{0\}$ is weakly closed.

Note that, by separability of \mathbb{K} , a locally convex space E over \mathbb{K} is separable iff there is a countable set whose linear hull is dense in E (iff the space is of countable type, in case E is metrizable).

Now we prove Theorem 3.

Proof. Clearly (i) \Rightarrow (ii) and (viii) \Rightarrow (ix). (ii) \Rightarrow (i) follows from Lemma 8 and (v) \Rightarrow (i) from [15, Theorem 11.5.3].

Recall again that every separable complete metric space is analytic, that analytic \Rightarrow *K*-analytic \Rightarrow existence of a compact resolution; *K*-analytic \Rightarrow Lindelöf, and that these last four properties are preserved by passing from the norm to the weak topology. Hence we have (i) \Rightarrow (iii) \Rightarrow (iv), (v) \Rightarrow (vi). Next we prove the remaining implications.

 $(E, \sigma(E, E'))$ is Lindelöf \Rightarrow (i): Let $(e_i)_{i \in I}$ be a base of E. Then E is linearly homeomorphic to $c_0(I, \mathbb{K})$, [19, Corollary 3.8], so it is enough to prove this implication for $E = c_0(I, \mathbb{K})$.

We follow the argument from [10, Theorem 7, (9) \Rightarrow (4)]: Assume I is uncountable; we derive a contradiction. Let $x \in E$. Put $I_x = \{i \in I : x_i = 0\}$. The functional $f_x : E \to \mathbb{K}$, $y \mapsto \sum_{i \in I_x} y_i$ is well defined, linear, and continuous. Set $\mathcal{W} := \{W_x : x \in E\}$, where $W_x = \{y \in E : |f_x(y)| < 1\}$. Since $x \in W_x$ for all $x \in E$, the family \mathcal{W} covers E. By assumption \mathcal{W} contains a countable subfamily $\{W_x : x \in X\}$ covering E, where E is a countable subset of E. There exists E is such that E is a consequently, E is for each E is a contradiction. Hence E is countable, so E is separable.

- (vi) \Rightarrow (v): Every separable closed linear subspace of *E* is complemented in *E*, [19, Corollary 3.18]. This implies that every continuous linear functional defined on a separable linear subspace of *E* admits a continuous linear extension to the whole space. Then every weakly compact subset of *E* is norm-compact by [15, Theorem 5.8.5], and we are done.
 - (i) \Leftrightarrow (vii): It follows from [15, Theorem 7.6.10] and its proof.
- (i) \Rightarrow (viii): Since every separable Banach space is linearly homeomorphic to $c_0 := c_0(\mathbb{N}, \mathbb{K})$, it suffices to prove this implication for $E := c_0$. Let e_1, e_2, \ldots be the unit vectors of E. It is easily seen that every $x = (x_n)_n \in \ell^{\infty}$ (= E') can be written

as $x = \sum_n x_n e_n$ in the weak*-topology $\sigma^* := \sigma(\ell^{\infty}, c_0)$ and that $e_n \to 0$ in this topology. In particular, $B_{E'}$ is the σ^* -closed absolutely convex hull of $\{e_1, e_2, \ldots\}$, and by separability of $\mathbb K$ we obtain that $B_{E'}$ is σ^* -separable. Also, by [15, Theorem 3.8.24], $B_{E'}$ is σ^* -metrizable. Then $B_{E'}$ and all of its subsets are σ^* -separable.

Now, let $F \subset E'$ and let $\lambda \in \mathbb{K}$ with $|\lambda| > 1$. By the above, $F \cap \lambda^n B_{E'}$ is σ^* -separable for all n. Then, $F = \bigcup_n (F \cap \lambda^n B_{E'})$, being a countable union of σ^* -separable sets, is also σ^* -separable. Therefore, E' is σ^* -hereditarily separable.

(ix) \Rightarrow (i): It is enough to prove this implication for $E = c_0(I, \mathbb{K})$, where I is a set with the same cardinality as a base of E. Then clearly we have $(E', \sigma(E', E)) = (\ell^{\infty}(I, \mathbb{K}), \sigma(\ell^{\infty}(I, \mathbb{K}), c_0(I, \mathbb{K})))$.

Assume (ix) holds for $(\ell^{\infty}(I, \mathbb{K}), \sigma(\ell^{\infty}(I, \mathbb{K})), c_0(I, \mathbb{K}))$. Let $\{e_i : i \in I\}$ be the set formed by the canonical unit vectors of E and let D be the linear hull of this set. By assumption D is separable in $\sigma := \sigma(\ell^{\infty}(I, \mathbb{K}), c_0(I, \mathbb{K}))$, hence there exist $y_1, y_2, \ldots \in D$ such that $D \subset \overline{\{y_1, y_2, \ldots\}}^{\sigma}$. Then each element of D has null coordinates off of the countable set $\bigcup_n \{i \in I : (y_n)_i \neq 0\}$. Therefore I is countable, so $c_0(I, \mathbb{K})$ is separable.

 $(i) \Leftrightarrow (x)$: It follows from [15, Corollary 2.3.9].

We often use the terms "weakly separable", "weakly analytic", instead of " $\sigma(E, E')$ -separable", " $\sigma(E, E')$ -analytic", ...

It was proved in [17] that for a compact space X the real space $C_p(X, \mathbb{R})$ is K-analytic iff $C(X, \mathbb{R})$ is weakly K-analytic. By using the previous results of this section, we will give in Corollary 11 a non-archimedean counterpart of the above classical result, when X is a zero-dimensional compact abelian group, see also Corollary 12.

We will use the following additional fact

Theorem 9. Let X be a zero-dimensional compact space. The following are equivalent.

- (i) X is metrizable.
- (ii) X is ultrametrizable.

If, in addition, X is a zero-dimensional compact abelian group, then (i), (ii) are equivalent to:

(iii) X has countable tightness (i.e., if $A \subset X$ and $x \in \overline{A}$, then there exists a countable subset $B \subset A$ such that $x \in \overline{B}$).

Proof. (ii) \Rightarrow (i) \Rightarrow (iii) is obvious. (i) \Rightarrow (ii): Since X is compact and metrizable, X is second-countable. Hence X is ultrametrizable by [19, p. 39]. If X is a zero-dimensional compact abelian group, (iii) \Rightarrow (i) follows from [8, Theorem 2].

For any non-empty set Γ put $\Sigma(\Gamma) := \{x \in \mathbb{R}^{\Gamma} : \{x(\gamma) \neq 0\}$ is countable} endowed with the product topology. It is known that each space $\Sigma(\Gamma)$ is Fréchet-Urysohn, see [13].

A compact space X is called *Corson-compact* if X is homeomorphic to a compact subset of some $\Sigma(\Gamma)$. We refer to [5] and [12] for the properties of Corson-compact spaces used in the sequel.

Corollary 10. Let X be a zero-dimensional compact space and let \mathbb{K} be separable. The following assertions are equivalent.

- (i) The Banach space $C(X, \mathbb{K})$ is separable (analytic, K-analytic, Lindelöf, has a compact resolution).
- (ii) $(C(X, \mathbb{K}), \sigma_X)$ is separable (analytic, K-analytic, Lindelöf, has a compact resolution).
 - (iii) $C_v(X, \mathbb{K})$ is separable (analytic).
 - (iv) X is (ultra)metrizable.
 - (v) X is Corson-compact and separable.
 - (vi) X is separable and $C_p(X, \mathbb{K})$ is K-analytic.
- *Proof.* (i) \Leftrightarrow (ii) is a direct consequence of Theorem 3, as $C(X, \mathbb{K})$ has an orthonormal base [15, Theorem 2.5.22]. (iv) \Rightarrow (i) follows from Theorem 9 and [15, Theorem 2.5.24]. (ii) \Rightarrow (iii) is obvious since, on $C(X, \mathbb{K})$, the pointwise topology is weaker than the weak topology. (iii) \Rightarrow (iv): If $C_p(X, \mathbb{K})$ is separable, then (iv) follows from [15, Theorem 4.3.4].
- (iv) \Leftrightarrow (v): Every metric compact space is separable and Corson-compact, and every separable Corson-compact space is metrizable (note that $\Sigma(\Gamma)$ is dense \mathbb{R}^{Γ}), so ultrametrizable by Theorem 9.

From what we have already proved, it is clear that any of the properties (i)-(v) implies (vi).

(vi) \Rightarrow (iv): $C_p(X, \mathbb{K})$ is K-analytic, so it has a compact resolution. Also, X is homeomorphically embedded in $C_p(C_p(X, \mathbb{K}), \mathbb{K})$. Then applying Proposition 6 we get that X is metrizable and so ultrametrizable by Theorem 9.

Corollary 11. Let X be a zero-dimensional compact abelian group. Then (i)—(vi) are equivalent to

- (vii) X is Corson-compact.
- (viii) X has countable tightness.
- (ix) $C_p(X, \mathbb{K})$ is K-analytic (Lindelöf).
- *If,* in addition, \mathbb{K} is locally compact, then (i)—(vi) are equivalent to
- (x) $C_p(X, \mathbb{K})$ has a compact resolution.

Proof. Clearly (v) \Rightarrow (vii). (iv) \Leftrightarrow (viii) follows from Theorem 9. Also, (ii) \Rightarrow (ix), (x) are obvious, since on $C(X, \mathbb{K})$, the pointwise topology is weaker than the weak one.

- (vii) \Rightarrow (viii): Every Corson-compact space is Fréchet-Urysohn, hence has countable tightness.
- (ix) \Rightarrow (viii): Assume that $C_p(X, \mathbb{K})$ is Lindelöf. Let $A \subset X$ and let $x \in \overline{A}$. Set $\mathcal{F} := \{ f \in C(X, \mathbb{K}) : f(x) = 1 \}$. Since \mathcal{F} is a closed subspace of $C_p(X, \mathbb{K})$, the space \mathcal{F} is Lindelöf. For each $y \in A$ set

$$V_y := \{ g \in C(X, \mathbb{K}) : g(y) \neq 0 \}.$$

Clearly each V_y is open in $C_p(X,\mathbb{K})$. Fix $f \in \mathcal{F}$. Since $f(\overline{A}) \subset \overline{f(A)}$, there exists $y \in A$ such that $f(y) \neq 0$. This implies that $\mathcal{F} \subset \bigcup \{V_y : y \in A\}$. Hence there exists a countable set $B \subset A$ such that $\mathcal{F} \subset \bigcup \{V_y : y \in B\}$. We show that $x \in \overline{B}$. Assume $x \notin \overline{B}$. By zero-dimensionality of X there is a clopen set U in X such that $x \in U$ and $\overline{B} \subset X \setminus U$. Then the characteristic function on U, $\chi_U : X \to \mathbb{K}$, is continuous and satisfies

$$\chi_U(x) = 1$$
, $\chi_U(X \setminus U) = \{0\}$.

Since $\chi_U \in \mathcal{F}$, there exists $y \in B$ such that $\chi_U \in V_y$. As $y \in U$ we conclude that $y \in U \cap B$, a contradiction. Therefore, X has countable tightness.

Now assume that \mathbb{K} is locally compact. By [9, Theorem 14] $C_p(X, \mathbb{K})$ is K-analytic if it has a compact resolution, which proves $(x) \Rightarrow (ix)$.

Corollary 11 is not true for zero-dimensional compact spaces in general, as we will see in Remark 16.

As a direct consequence of Corollary 10 we note

Corollary 12. Let X be a zero-dimensional compact space and let \mathbb{K} be separable. Then $C_p(X, \mathbb{K})$ is separable (analytic) iff $C(X, \mathbb{K})$ is weakly separable (weakly analytic).

Alster and Pol [1, Theorem] proved

Proposition 13. *If* X *is Corson-compact and* M *is a separable metric space, then* C(X, M) *is Lindelöf in the pointwise topology.*

The remarkable Haydon-Kunen-Talagrand example (under the continuum hypothesis) of a non-separable Corson-compact space X such that the real space $C_p(X,\mathbb{R})$ is Lindelöf but $C(X,\mathbb{R})$ is not weakly Lindelöf can be found in [12, Theorem 5.9].

The following corollary provides a large class of compact spaces related with a non-archimedean version of the mentioned Haydon-Kunen-Talagrand example.

Corollary 14. Let \mathbb{K} be separable. If X is a non-separable zero-dimensional Corson-compact space, then $C_p(X,\mathbb{K})$ is Lindelöf and $C(X,\mathbb{K})$ is not weakly Lindelöf.

Proof. $C_p(X, \mathbb{K})$ is Lindelöf by Proposition 13. $C(X, \mathbb{K})$ is not weakly Lindelöf by Corollary 10.

In [1, Example 7] Alster and Pol constructed a non-separable Corson-compact space $X_0 \subset \{0,1\}^T$ with $|T| = \aleph_1$ such that $X_0 \subset \Sigma(\aleph_1)$ and $C_p(X_0, \mathbb{R})$ is not K-analytic. Note the following non-archimedean version of the Alster-Pol's example (which supplements also Proposition 13).

Example 15. Let \mathbb{K} be separable. Then $C_p(X_0, \mathbb{K})$ is not K-analytic although it is Lindelöf.

Indeed, $C_p(X_0, \mathbb{K})$ is Lindelöf by Proposition 13. To prove the first claim, suppose that $C_p(X_0, \mathbb{K})$ is K-analytic; we derive a contradiction. Then $C_p(X_0, \mathbb{K}^{\mathbb{N}})$ is K-analytic, since it is homeomorphic to $C_p(X_0, \mathbb{K})^{\mathbb{N}}$, a countable product of K-analytic spaces. Also, by [9, Proposition 19] there exists a continuous surjection $S_{\varphi}: C_p(X_0, \mathbb{K}^{\mathbb{N}}) \to C_p(X_0, \mathbb{R})$. So $C_p(X_0, \mathbb{R})$ is K-analytic, a contradiction.

Remark 16. Corollary 14 and Example 15 show that Corollary 11 is not true for general zero-dimensional compact spaces *X*.

Gul'ko proved that in the classical case the closed unit ball of the dual of a weakly K-analytic Banach space is Corson-compact in the weak* topology. Also, Kunen constructed (under the continuum hypothesis) an uncountable separable compact scattered (hence zero-dimensional) space Z such that $C(Z, \mathbb{R})$ is weakly

Lindelöf and the weak* dual is hereditarily separable, see for example [7]. Next we provide non-archimedean variants of the above classical facts.

If \mathbb{K} is locally compact, the closed unit ball $B_{E'}$ in the dual of a non-archimedean Banach space E is a weak*-compact abelian group. Also, \mathbb{K} is separable and its valuation is discrete, so every Banach space over \mathbb{K} has a base, [15, Theorems 2.1.11, 2.5.4]. Hence the previous results of this section apply to get the following

Theorem 17. Let E be a Banach space over a locally compact \mathbb{K} . Then (i)-(ix) of Theorem 3 are equivalent to (i)-(x) of Corollaries 10 and 11, by taking $X:=B_{E'}$ equipped with the restriction to X of the weak* topology $\sigma(E',E)$.

Proof. It follows immediately from Theorem 3 and Corollaries 10, 11 (one has just to look at Theorem 3(vii) and Corollary 10(iv)).

When \mathbb{K} is locally compact, the weak* dual F of the non-separable Banach space $\ell^{\infty}(\mathbb{N},\mathbb{K})$ is separable ([4, Proposition 4]), but the space F is not hereditarily separable by Theorem 17. Also, the weak* dual F of the real Banach space $\ell^{\infty}(\mathbb{N},\mathbb{R})$ is separable but not hereditarily separable. Indeed, otherwise it is easily seen that F has countable tightness. Hence $\ell^{\infty}(\mathbb{N},\mathbb{R})$ has the Corson's property (C) by [5, Theorem 12.41], a contradiction, [5, Excercise 12.44] (recall that a real or complex Banach space F has the *Corson's property* (C) if for every family of closed convex subsets of F with empty intersection there is a countable subfamily with empty intersection).

On the other hand, there are situations in sharp contrast with the classical case, as we show in the next examples.

Example 18. Let \mathbb{K} be locally compact and let I be an uncountable set. Let $B_{\mathbb{K}}$ and $B_{\mathbb{R}}$ be the closed unit ball in the dual of the Banach space $c_0(I,\mathbb{K})$ and $c_0(I,\mathbb{R})$, respectively. Then $B_{\mathbb{R}}$ is Corson-compact in the weak* topology and $B_{\mathbb{K}}$ is not.

Indeed, the claim about $B_{\mathbb{K}}$ follows from Theorem 17, as $c_0(I, \mathbb{K})$ is not separable. $c_0(I, \mathbb{R})$ is weakly K-analytic, since it is a WCG Banach space, [5]; so Gul'ko result (mentioned above) applies.

Example 19. Let \mathbb{K} be locally compact and let Z be the Kunen compact space. Then the weak* dual of $C(Z, \mathbb{K})$ is hereditarily separable and the weak* dual of $C(Z, \mathbb{K})$ is not.

Indeed, the claim about $C(Z, \mathbb{R})$ was already mentioned above (see the comments after Remark 16). Now, suppose that the weak* dual of $C(Z, \mathbb{K})$ is hereditarily separable. Then $C(Z, \mathbb{K})$ is separable by Theorem 17 and so Z must be ultrametrizable by Corollary 10. On the other hand, every metrizable scattered compact space is countable, a contradiction (since Z by assumption is uncountable).

Acknowledgement. The authors wish to thank the Referee for useful remarks and comments.

References

- [1] K. Alster, R. Pol, On function spaces of compact subspaces of Σ -products of the real line, Fund. Math., **107** (1980), 135–143.
- [2] B. Cascales, On K-analytic locally convex spaces, Arch. Math., 49 (1987), 232-244.
- [3] B. Cascales, L. Oncina, Compactoid filters and USCO maps, J. Math. Anal. Appl., 282 (2003), 826–843.
- [4] N. De Grande-De Kimpe, On the structure of locally K-convex spaces with a Schauder basis, Indag. Math., **34** (1972), 396–406.
- [5] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, V. Zizler, *Functional Analysis and Infinite-Dimensional Geometry*, Canad. Math. Soc., Springer (2001).
- [6] K. Floret, Weakly Compact Sets, Lecture Notes in Math., 801, Springer, Berlin (1980).
- [7] P. Holický, M. Šmídek, L. Zajíček, Convex functions with non Borel set of Gâteaux differentiability points, Comment. Math. Univ. Carolinae, **39** (1998), 469–482.
- [8] J. Kąkol, M. López-Pellicer, E. Peinador, V. Tarieladze, *Lindelöf spaces* C(X) *over topological groups*, Forum Math., **20** (2008), 201–212.
- [9] J. Kąkol, W. Śliwa, Descriptive topology in non-archimedean function spaces $C(X, \mathbb{K})$, part I, submitted.
- [10] J. Kąkol, W. Śliwa, On the weak topology of Banach spaces over non-archimedean fields, Topology Appl., **158** (2011), 1131–1135.
- [11] A. K. Katsaras *On p-adic vector measure spaces*, J. Math. Anal. Appl., **365** (2010), 342-357.
- [12] S. Negrepontis, *Banach spaces and topology*, Handbook of set theoretic topology, Edited by Kunen-Vangham, Els., **23** (1984), 1045–1142.
- [13] N. Noble, *The continuity of functions on cartesian products*, Trans. Math. Soc., **149** (1970), 187–198.
- [14] C. Perez-Garcia, W. H. Schikhof, *The Orlicz-Pettis property in p-adic analysis*, Collect. Math., **43** (1992), 225-233.
- [15] C. Perez-Garcia, W. H. Schikhof, *Locally Convex Spaces over non-Archimedean Valued Fields*, Cambridge Studies in Advanced Mathematics, **119**, Cambridge Univ. Press (2010).
- [16] C. A. Rogers, J. E. Jayne, C. Dellacherie, F. Topsøe. J. Hoffman-Jørgensen, D. A. Martin, A. S. Kechris, A. H. Stone, *Analytic Sets*, Academic Press (1980).

- [17] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math., **110** (1979), 407–438.
- [18] M. Valdivia, *Topics in Locally Convex Spaces*, North-Holland, Amsterdam (1982).
- [19] A. C. M. van Rooij, *Non-archimedean Functional Analysis*, Marcel Dekker, New York (1978).

Faculty of Mathematics and Informatics A. Mickiewicz University 61 — 614 Poznań, Poland email:kakol@amu.edu.pl, sliwa@amu.edu.pl

Department of Mathematics, Universidad de Cantabria, Facultad de Ciencias Avda. de los Castros 39071 Santander, Spain email:perezmc@unican.es