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Abstract

Let B be a certain Banach space consisting of analytic functions defined
on a bounded domain G in the complex plane. Let ϕ be an analytic multiplier
of B we denote by Mϕ and {Mϕ}

′
respectively, the operator of multiplication

by ϕ and the commutant of Mϕ. In this article under certain conditions on
ϕ and G we characterize the commutant of Mϕ. In particular, when ϕ is a

rational function with poles off G, under certain conditions on ϕ we show
that {Mϕ}

′
= {Mz}

′
. We extend some results obtained in [4] and [6] about

the commutant of the operator Mϕ.

1 Introduction

Let G be a bounded domain in the complex plane. Let B be a Banach space con-
sisting of functions analytic on G such that 1 ∈ B, zB ⊂ B and for every λ ∈ G
the linear functional eλ of evaluation at λ is bounded on B. Also assume that
ran(Mz − λ) = ker(eλ) for every λ ∈ G and if f ∈ B and | f (λ)| > c > 0 for every
λ ∈ G, then 1

f is a multiplier of B.

In what follows G denotes a bounded domain in the complex plane, and by a
Banach space of analytic functions B on G, we mean, one satisfying the above
conditions.

Some examples of such spaces are as follows:
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1) The algebra A(G) which is the algebra of all continuous functions on the
closure of G that are analytic on G.

2) The Bergman space of analytic functions defined on G, LP
a (G) for 1 ≤ p ≤

∞.
3) The spaces Dα of all functions f (z) = ∑ f̂ (n)zn , holomorphic in the complex

unit disc D, for which ‖ f‖2 = ∑(n + 1)α | f̂ (n) |2< ∞ for every α ≥ 1 or α ≤ 0.
4) The analytic Lipschitz spaces Lip(α, G) for 0 < α < 1, i.e., the space of all

analytic functions defined on G that satisfy a Lipschitz condition of order α.
5) The subspace lip(α, G) of Lip(α, G), consisting of functions f in Lip(α, G)

for which

limz→w
| f (z)− f (w) |

| z − w |α
= 0.

6) The classical Hardy spaces Hp for 1 ≤ p ≤ ∞.

Let E be a subset of C. We say that f is in H(E) if there is an open set U that
contains E such that f is analytic in U. We denote by B(a; r) the set {z ∈ C :
|z − a| < r}.

A complex valued function ϕ defined on G is called a multiplier of B if ϕB ⊂
B and the collection of all these multipliers is denoted by M(B). As it is shown in
[11] each multiplier ϕ is bounded on G. Given a multiplier ϕ, we call Mϕ, defined
by Mϕ( f ) = φ f for every function f ∈ B, the operator of multiplication by ϕ.

The continuity of Mϕ follows from the Closed Graph Theorem. We denote {Mϕ}
′

to be the set of all bounded linear operators X on B such that MϕX = XMϕ, i.e.,

the commutant of Mϕ. It is easy to see that {Mz}
′
= {Mϕ : ϕ ∈ M(B)}. Two

good sources on this topics are [10] and [11].
Let ϕ be an analytic function in a neighborhood of G and λ ∈ G. If ϕ has a

zero of order one at λ and ϕ(z) 6= 0 for all z 6= λ in G, we say that ϕ has only a
simple zero in G. Also for λ ∈ G if ϕ ∈ A(G) has a zero of order one at λ and
ϕ(z) 6= 0 for all z 6= λ in G, then we say that ϕ has only a simple zero in G.

Recall that a bounded linear operator T on a Banach space is called Fredholm,
if it is invertible modulo of the compact operators. It is known that T is Fredholm
if its range is closed and both kerT and kerT∗ are finite dimensional. If T is a
Fredholm operator, we define the index of T as

ind (T) = dim kerT − dim ker T∗.

The commutant of multiplication operators on spaces of analytic functions on
D, were investigated by many authors for certain multiplication operators. See
for example, [1-8, 10-15]. only a few works has been done in studying commu-
tants of multiplications operators on the spaces of analytic functions on bounded
domains different from the unit disc. See for examples [4], [6], and [8].

The aim of this article is to investigate the commutant of the operator Mϕ for
certain function ϕ ∈ M(B). In particular, when ϕ is a polynomial or a rational
function with poles off G, under certain conditions on the its coefficients, we show

that {Mϕ}
′
= {Mz}

′
. In [4] Ž. Čučković and Dashan Fan have shown that if

G = {z ∈ C : r < |z| < 1}, B = L2
a(G) and p(z) = z + a2z2 + · · ·+ anzn, where
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ai ≥ 0 and p(z) − p(1) has n distinct zeros, then {Mp}
′
= {MΨ : Ψ ∈ M(B)}.

As a result, Theorem 2.4 and Corollary 2.6 extend the result obtained in [4] to
Banach spaces of analytic functions on various domains G and certain polynomial
or rational symbols. Also we extend the results obtained in [6]. Moreover in the
both papers the authors used the condition that the zeros of the function p outside
G are distinct which we omit this condition.

2 The main results

We begin this section with a theorem about the commutant of the multiplication
operator Mϕ. In fact we show that if for some λ ∈ G the operator Mϕ−ϕ(λ)is a

Fredholm operator such that its index equal to −1, then {Mϕ}
′
= {Mz}

′
.

Theorem 2.1 Let B be a Banach space of analytic functions on G, and let
ϕ ∈ M(B). If there is a λ ∈ G such that Mϕ−ϕ(λ) is a Fredholm operator with

ind(Mϕ−ϕ(λ)) = −1, then {Mϕ}
′
= {Mz}

′
.

Proof. Let T ∈ {Mϕ}
′
. It is easy to see that T∗(eλ) and eλ are in ker(Mϕ−ϕ(λ))

∗.

Since Mϕ−ϕ(λ) is one to one and by assumption ind(Mϕ−ϕ(λ)) = −1, we conclude

that dim ker(Mϕ−ϕ(λ))
∗ = 1. Therefore T∗(eλ)) = ψ(λ)eλ for some constant

ψ(λ). Hence, we have

T( f )(λ) =< T( f ), eλ >=< f , T∗(eλ) >= ψ(λ) < f , eλ >= ψ(λ) f (λ),

for each f ∈ B. In particular ψ(λ) = T(1)(λ). Since Mϕ−ϕ(λ) is Fredholm, there is

a positive number ǫ such that if U is a bounded linear operator on B and ||U|| <
ǫ, then Mϕ−ϕ(λ) + U is Fredholm and ind(Mϕ−ϕ(λ)) = ind(Mϕ−ϕ(λ) + U). Now

by continuity of ϕ − ϕ(λ) at λ, there is a positive number δ such that for each
t ∈ G with |t − λ| < δ, we have |ϕ(t) − ϕ(λ)| < ǫ. So the operator Mϕ−ϕ(t) is

Fredholm and ind(Mϕ−ϕ(t)) = −1. Hence T( f )(t) = T(1)(t) f (t) for each f ∈ B

and for every t ∈ B(λ; δ) ∩ G. Set ψ = T(1). Since two analytic functions T( f )
and ψ f are equal on B(λ; δ) ∩ G and G is connected, we have T( f ) = ψ f for all
f ∈ B, which proves the theorem.

Theorem 2.2 Let B be a Banach space of analytic functions on G, let ϕ ∈
M(B) ∩ A(G), and let λ ∈ G. If ϕ(z) − ϕ(λ) has only a simple zero in G, then
Mϕ−ϕ(λ) is a Fredholm operator with ind(Mϕ−ϕ(λ)) = −1, so by Theorem 2.1,

{Mϕ}
′
= {MΨ : Ψ ∈ M(B)}.

Proof. First we show that ran(Mϕ − ϕ(λ)) = kereλ. It is easy to see that
ran(Mϕ − ϕ(λ)) ⊂ kereλ.

To show the converse, since ran(Mz − λ) = kereλ, we have (ϕ − ϕ(λ))(z) =
(z − λ)h(z) for some h ∈ B. Because ϕ ∈ A(G), h has a continuous extension
on G which we denote it again with h. By assumption h(z) 6= 0 for every z ∈ G.

Therefore 1
h is in M(B) and we have z − λ = ϕ(z)−ϕ(λ)

h(z)
. Now if f ∈ kereλ, then
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f = (z − λ)g for some function g ∈ B. Hence

f =
ϕ − ϕ(λ)

h
g = (ϕ − ϕ(λ))

g

h
.

Since g ∈ B and 1
h ∈ M(B), we have

g
h ∈ B and kereλ ⊂ ran(Mϕ − ϕ(λ)).

From ran(Mϕ − ϕ(λ)) = kereλ, we conclude that ran(Mϕ − ϕ(λ)) is closed
and dim ker(Mϕ−ϕ(λ))

∗ = 1. On the other hand Mϕ−ϕ(λ) is one to one , there-

fore dim ker(Mϕ−ϕ(λ)) = 0. Hence Mϕ−ϕ(λ) is a Fredholm operator and its index
equal to −1.

From now on we assume that r(z) = p(z)/q(z) is a rational function such that
p(z) and q(z) are polynomials without common factors. Also the poles of r(z)
which are exactly the zeros of q(z) are off G.

Proposition 2.3 Let B be a Banach space of analytic functions on G, where G
is the interior of G, and let r(z) = p(z)/q(z) be a rational function with poles
off G. If there are α and β in G such that p(z) − p(α) has only a simple zero
in G, r(β) 6= 0, and |r(β)q(z) − p(α)| < |p(z) − p(α)| for each z ∈ ∂G, then

{Mr}
′
= {Mz}

′
.

Proof. By assumptions, we have

r(z)− r(β) =
p(z)q(β) − q(z)p(β)

q(z)q(β)
=

q(β)(p(z) − p(α)− r(β)q(z) + p(α))

q(z)q(β)
.

Thus, r(z) − r(β) = 0 if and only if (p(z) − p(α) − r(β)q(z) + p(α) = 0. Using
general form of Rouche’s Theorem we conclude that r(z)− r(β) has only a simple
zero at β. So by Theorem 2.2, the proof is complete.

Remark. The above proposition holds if there are α and β in G such that q(z)−
q(α) has only a simple zero in G and r(β) 6= 0, moreover, |p(z) − r(β)q(α)| <

|r(β)(q(z) − q(α))| for each z ∈ ∂G.

In Theorem 2.2, λ is in G and ϕ ∈ M(B) ∩ A(G). The same proof does not
work for λ ∈ G. In the next theorem we obtain a similar result, whenever λ ∈ G
and ϕ ∈ H(G) ∩M(B).

Theorem 2.4 Let ϕ ∈ H(G) ∩M(B), let λ ∈ G and let ϕ(z)− ϕ(λ) has only a

simple zero in G. Then {Mϕ}
′
= {MΨ : Ψ ∈ M(B)}.

Proof. Let Ω be an open set that contains G such that ϕ ∈ H(Ω) and let g to be
defined in Ω × Ω by

g(z, w) =

{

ϕ(z)−ϕ(w)
z−w z 6= w,

ϕ′(z) z = w.

It is obvious that g is continuous in Ω × Ω and so g is uniformly continuous
in G × G. Since by assumption g(z, λ) 6= 0 for each z ∈ G and g(z, λ) is contin-
uous as a function of z in G, there is some ε > 0 such that |g(z, λ)| > ε for each
z ∈ G. Now by uniform continuity of g in G × G there is an open set U ⊂ G
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such that for each w ∈ U and for all z ∈ G, we have |g(z, w)| >
ε
2 . Therefore

ϕ(z) − ϕ(w) has only a simple zero in G for each w ∈ U. Now by Theorem 2.2,

we have {Mϕ}
′
= {MΨ : Ψ ∈ M(B)}.

Corollary 2.5 Let B be a Banach space of analytic functions on G. Suppose
that ϕ ∈ H(G) and for some λ in G the function ϕ(z) − ϕ(λ) has only a simple
zero in G. If ψ ∈ H(G) is a univalent map from G onto G, and ϕ ◦ ψ ∈ M(B),

then {Mϕ◦ψ}
′
= {Mz}

′
.

In the next corollary we extend the result obtained in Theorem 4 in [4] to Ba-
nach spaces of analytic functions, to more general domains, Also we show that it
is not necessary that all of the n zeros of p(z)− p(1) are distinct .

Corollary 2.6 Let B be a Banach space of analytic functions on G, let G ⊂ D be
such that 1 ∈ G and let p(z) = z+ a2z2 + · · ·+ anzn, where ai ≥ 0 for i = 2, · · · , n.

Then {Mp}
′
= {Mz}

′
.

Proof. It is easy to see that p(1) > |p(z)| for all z ∈ G −{1}, since p′(1) 6= 0 the
function p(z)− p(1) has only a simple zero in G, and by Theorem 2.4 the proof is
complete.

Let r(z) = p(z)/q(z) be a rational function with poles off G, if n = max{deg(p),

deg(q)} = 1, then r is univalent and it is well known that {Mr}
′
= {Mz}

′
. There-

fore in the reminder of this section we assume that n = max{deg(p), deg(q)} ≥ 2.

Let λ ∈ G. If r(z) − r(λ) has n − 1 zeros outside of G, then {Mr}
′
= {Mz}

′
. In

particular if p(z) has only a simple zero at a point λ ∈ G, then r(z) has only a

simple zero at λ and therefore, {Mr}
′
= {Mz}

′
.

From now on, we assume that G ⊂ D.

Corollary 2.7 Let B be a Banach space of analytic functions on G. Suppose that
n ≥ 2 is an integer, a 6= 0 is a complex number with |a| > 1 and p(z) = zn + az. If

r(z) =
p(z)
q(z)

is a rational function with poles off G and 0 ∈ G, then {Mr}
′
= {Mz}

′
.

Proof. Let λ = 0 it is easy to see that r(z)− r(λ) = r(z) has n − 1 distinct zeros

outside of D. Hence by Theorem 2.4, we have {Mr}
′
= {MΨ : Ψ ∈ M(B)}.

In the next theorem we extend some results obtained in [6], in fact we omit
the condition that the zeros of the polynomials outside G must be distinct.

Theorem 2.8 Let B be a Banach space of analytic functions on G and let p =
a0 + a1z + a2z2 + · · ·+ anzn be a polynomial of degree n ≥ 2 such that a1 6= 0. If

each of the following conditions holds, then {Mp}
′
= {MΨ : Ψ ∈ M(B)}.

(a) For some real constant θ0, we have Argai = θ0 for ai 6= 0 with i ≥ 1 and
1 ∈ ∂G.

(b) For each ai 6= 0 with i ≥ 1, Argai = θ0 for i odd and Argai = θ0 + π or
Argai = θ0 − π for i even, and −1 ∈ G.

(c) There is a z0 ∈ ∂D ∩ ∂G such that all nonzero terms aiz0
i for i ≥ 1 are

positive or all are negative.
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Proof. By assumption | p(1) − a0 |=| a1 | + | a2 | + · · ·+ | an |. Therefore
p(z) − p(1) = 0 implies that

| a1z + a2z2 + · · ·+ anzn |=| a1 | + | a2 | + · · ·+ | an | .

For z ∈ D, we have

| a1z + a2z2 + · · ·+ anzn |<| a1 | + | a2 | + · · ·+ | an |,

so p(z) − p(1) has no zero in D. On the other hand if w ∈ ∂D is a zero of p(z) −
p(1), then

| a1 | + | a2 | + · · ·+ | an | = | a1w | + | a2w2 | + · · ·+ | anwn |

= | a1w + a2w2 + · · ·+ anwn | .

Hence Arg(a1w + a2w2 + · · · + anwn) = Arg (a1w). Since p(w) − a0 = p(1) −
a0 = eiθ0(| a1 | + | a2 | + · · ·+ | an |), we have Arg(a1w + a2w2 + · · ·+ anwn) =
Arg(a1w) = θ0, which implies that w = 1. It is easy to see that p′(1) 6= 0, so
the polynomial p(z) − p(1) has only a simple zero at 1, and by Theorem 2.4, (a)
holds.

Using similar argument as used in the proof of part (a) we conclude (b) and
(c).

Proposition 2.9 Let B be a Banach space of analytic functions on D, let p be a

polynomial of degree n ≥ 2 and let r(z) = p(z)
q(z)

be a rational function. If there is

z0 ∈ ∂D such that |r(z0)| > |r(z)| for all z ∈ D − {z0}, then {Mr}
′
= {Mz}

′
. .

Proof. By assumptions |r(z0)| > |r(z)| for all z ∈ D − {z0}, which implies

that r(z) − r(z0) has no zero in D − {z0} and r
′
(z0) 6= 0. So we conclude that

r(z) − r(z0) has only a simple zero in D, and by Theorem 2.4, the proof is com-
plete.

Remark. Proposition 2.9 holds if there is z0 ∈ ∂D such that |r(z0)| ≤ |r(z)| for

all z ∈ D − {z0} and r
′
(z0) 6= 0.

Corollary 2.10 Suppose that B is a Banach space of analytic functions on G.
Let p(z) = anzn + an−1zn−1 + · · · + a0 be a polynomial of degree n ≥ 2 with
nonnegative real coefficients and let 1 ∈ ∂G. If there is a positive integer m ≤ n

such that am and am−1 are not equal to zero, then {Mp}
′
= {MΨ : Ψ ∈ M(B)}.

Proof. It is easy to see that |p(1)| > |p(z)| for all z ∈ D − {1}. In fact, if z = eiθ

for some θ, −π < θ ≤ π and |p(z)| = |p(1)|, we have | ameimθ + am−1ei(m−1)θ |=
am + am−1. Thus, mθ = (m − 1)θ + 2kπ for some integer k. Hence z = 1, and so
by Proposition 2.9, the proof is complete.

Lemma 2.11 Let functions f (z) and g(z) be analytic in the open unit disk
D and continuous on ∂D. Suppose that there is a point eiθ0 ∈ ∂D such that

| f (z)| > |g(z)| for all z ∈ ∂D − {eiθ0} and f (eiθ0) = −g(eiθ0) 6= 0. Let also
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the functions f (z) and g(z) have the derivatives at the point z0 = eiθ0 and the
following inequality holds

eiθ0( f ′(eiθ0) + g′(eiθ0))

f (eiθ0)
< 0.

Then N f+g and N f , the numbers of zeros of the functions f + g and f according
to multiplicity in D are equal.

Proof. Set F(z) = f (eiθ0 z) and G(z) = g(eiθ0 z). Then F(1) = −G(1) 6= 0, for all

z ∈ ∂D − {1} we have |F(z)| > |G(z)| and
F′(1)+G′(1)

F(1)
< 0. Now by Corollary 2 in

[9], the lemma follows.

Proposition 2.12 Let B be a Banach space of analytic functions on D, let f and
g belong to H(D) and let f , g and eiθ0 satisfy in the conditions of Lemma 2.11. If
N f , the number of zeros of f according to multiplicity in D is equal to zero, then

{M f+g}
′
= {Mz}

′
.

Proof. By Lemma 2.11, we have N f+g = 0. Hence by assumption f + g has

only a simple zero at eiθ0 , and by Theorem 2.4, the proof is complete.

In the next example we present some applications of the above theorems.

Example 2.13
a) If q(z) is a polynomial which has no zero in D, then there is a point λ = eiθ0

such that |q(λ)| ≤ |q(z)| for all z ∈ D. Now let a = |a|eiθ0 be a nonzero constant,
p(z) = zn + azn−1, and λ ∈ G. It is not hard to see that |p(z)| < |p(λ)| for every
z ∈ D −{λ}. Hence by the proof of Proposition 2.9, r(z)− r(z0) has only a simple

zero in D, and therefore in G. Now by Theorem 2.4, we have {Mr}
′
= {Mz}

′
,

where r(z) =
p(z)
q(z)

. For example r(z) = z7+iz6

(z−2i)4(z−5i)2 when G = {z ∈ C : c <

|z| < 1} for some nonnegative constant 0 ≤ c < 1, or G = D is such a rational
function.

b) Let r(z) = z2+z+4
z3+2z2+6z+4

be a rational function, if in the remark after Propo-

sition 2.3 we set α = β = 0, then r(z) − r(0) has only a simple zero in D, so

{Mr}
′
= {Mz}

′
.

c) Let G be an open set such that i ∈ ∂G ( recall that after Proposition 2.5, we
assume that G ⊂ D). Let p(z) = z8 − z6 + 2iz3 − 4 and let q(z) be a polynomial
with zeros off G without common factor with p(z). If in Proposition 2.12 we set
f (z) = 2iz3 − 4, g(z) = z8 − z6 and θ0 = π

2 we have

eiθ0( f ′(eiθ0) + g′(eiθ0))

f (eiθ0)
=

−17

2
.

Moreover |g(z)| ≤ 2 ≤ | f (z)|. In the other hand |g(z)| = |z2 − 1| = 2 if and
only if z = i or z = −i. But | f (−i)| = 6, so we have | f (z)| > |g(z)| for all

z ∈ ∂D − {eiθ0} and f (eiθ0) = −g(eiθ0) 6= 0. Therefore p has only a simple zero at

i on D. Now if r(z) =
p(z)
q(z)

, then r(z) has only a simple zero at i in G, and we have

{Mr}
′
= {Mz}

′
.
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