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Abstract

Let B be a certain Banach space consisting of analytic functions defined
on a bounded domain G in the complex plane. Let ¢ be an analytic multiplier
of B we denote by M,, and {Mq,}/ respectively, the operator of multiplication
by ¢ and the commutant of M. In this article under certain conditions on
¢ and G we characterize the commutant of M,. In particular, when ¢ is a

rational function with poles off G, under certain conditions on ¢ we show
that {M,} = {M.}'. We extend some results obtained in [4] and [6] about
the commutant of the operator M,,.

1 Introduction

Let G be a bounded domain in the complex plane. Let 3 be a Banach space con-
sisting of functions analytic on G such that 1 € B,zB C B and for every A € G
the linear functional e, of evaluation at A is bounded on B. Also assume that
ran(M; — A) = ker(e,) forevery A € Gandif f € Band |f(A)| > ¢ > 0 for every
A € G, then Jl—( is a multiplier of B.

In what follows G denotes a bounded domain in the complex plane, and by a
Banach space of analytic functions B on G, we mean, one satisfying the above
conditions.

Some examples of such spaces are as follows:
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1) The algebra A(G) which is the algebra of all continuous functions on the
closure of G that are analytic on G.

2) The Bergman space of analytic functions defined on G, LY (G) for 1 < p <
Q.

3) The spaces D, of all functions f(z) = Y_ f(1n)z", holomorphic in the complex
unit disc D, for which || f||? = Y(n +1)* | f(n) |*< o for every & > 1 or a < 0.

4) The analytic Lipschitz spaces Lip(, G) for 0 < a < 1, i.e., the space of all
analytic functions defined on G that satisfy a Lipschitz condition of order «.

5) The subspace lip(a, G) of Lip(a, G), consisting of functions f in Lip(«, G)
for which
&)~ fw)|

[z—w]*

limy s
6) The classical Hardy spaces H? for 1 < p < co.

Let E be a subset of C. We say that f is in H(E) if there is an open set U that
contains E such that f is analytic in U. We denote by B(a;r) the set {z € C :
|z —a| <r}.

A complex valued function ¢ defined on G is called a multiplier of B if pB C
B and the collection of all these multipliers is denoted by M (). As itis shown in
[11] each multiplier ¢ is bounded on G. Given a multiplier ¢, we call M,,, defined
by My(f) = ¢f for every function f € B, the operator of multiplication by ¢.

The continuity of M, follows from the Closed Graph Theorem. We denote {M(p}/
to be the set of all bounded linear operators X on B such that M, X = XM,, i.e.,

the commutant of M. It is easy to see that {M.} = {M,: ¢ € M(B)}. Two
good sources on this topics are [10] and [11].

Let ¢ be an analytic function in a neighborhood of G and A € G. If ¢ has a
zero of order one at A and ¢(z) # 0 for all z # A in G, we say that ¢ has only a
simple zero in G. Also for A € G if ¢ € A(G) has a zero of order one at A and
@(z) # 0for all z # ) in G, then we say that ¢ has only a simple zero in G.

Recall that a bounded linear operator T on a Banach space is called Fredholm,
if it is invertible modulo of the compact operators. It is known that T is Fredholm
if its range is closed and both kerT and kerT* are finite dimensional. If T is a
Fredholm operator, we define the index of T as

ind (T) = dim kerT — dim ker T*.

The commutant of multiplication operators on spaces of analytic functions on
D, were investigated by many authors for certain multiplication operators. See
for example, [1-8, 10-15]. only a few works has been done in studying commu-
tants of multiplications operators on the spaces of analytic functions on bounded
domains different from the unit disc. See for examples [4], [6], and [8].

The aim of this article is to investigate the commutant of the operator M, for
certain function ¢ € M(B). In particular, when ¢ is a polynomial or a rational
function with poles off G, under certain conditions on the its coefficients, we show
that {M(P}l = {M,}. In [4] Z. Cuckovi¢ and Dashan Fan have shown that if
G={zeC:r<|z| <1}, B=12(G) and p(z) = z +apz> + - - - + a,z", where
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a; > 0 and p(z) — p(1) has n distinct zeros, then {Mp}/ ={My: ¥ e M(B)}
As a result, Theorem 2.4 and Corollary 2.6 extend the result obtained in [4] to
Banach spaces of analytic functions on various domains G and certain polynomial
or rational symbols. Also we extend the results obtained in [6]. Moreover in the
both papers the authors used the condition that the zeros of the function p outside
G are distinct which we omit this condition.

2 The main results

We begin this section with a theorem about the commutant of the multiplication
operator M. In fact we show that if for some A € G the operator M,,_,(y)is a

Fredholm operator such that its index equal to —1, then {Mq,}/ = {M,}.

Theorem 2.1 Let B be a Banach space of analytic functions on G, and let
¢ € M(B). If there isa A € G such that M,,_,,) is a Fredholm operator with

ind(M,_,1)) = —1, then {M,} = {M.}".

Proof. Let T € {Mq,}/. It is easy to see that T*(e) ) and e are in ker(M,_,»))"-
Since M(P_ (1) Isone to :)ne and by assumptii)n ind(M,_e(1)) = —1, we conclude
that dim ker(M,,_,1))* = 1. Therefore T*(ey)) = ¥(A)e, for some constant
P(A). Hence, we have

T(f)(A) =<T(f),ex >=<f,T"(ex) >= ¢(A) < f,ex >=9p(A)f(A),

foreach f € B. Inparticular (A) = T(1)(A). Since M,,_(,) is Fredholm, there is
a positive number € such that if U is a bounded linear operator on B and ||U|| <
€, then M,_ )y + U is Fredholm and ind(M,_,1)) = ind(M,_,x) + U). Now
by continuity of ¢ — ¢(A) at A, there is a positive number ¢ such that for each
t € G with |t — A[ < 6, we have |p(t) — ¢(A)| < €. So the operator M,_ ) is
Fredholm and ind(M,_,;)) = —1. Hence T(f)(t) = T(1)(t)f(t) foreach f € B
and for every t € B(A;0) N G. Set ¢ = T(1). Since two analytic functions T(f)
and ¢ f are equal on B(A;0) N G and G is connected, we have T(f) = ¢ f for all
f € B, which proves the theorem. ]

Theorem 2.2 Let B be a Banach space of analytic functions on G, let ¢ €
M(B)NA(G), and let A € G. If ¢(z) — ¢(A) has only a simple zero in G, then
M,_y(n) is a Fredholm operator with ind(M,_,(1)) = —1, so by Theorem 2.1,

(Mg} ={My: ¥eM(B)}.

Proof. First we show that ran(M, — ¢(A)) = kerey. It is easy to see that
ran(M, — ¢(A)) C kere,.

To show the converse, since ran(M,; — A) = kere,, we have (¢ — ¢(A))(z) =
(z — A)h(z) for some h € B. Because ¢ € A(G), h has a continuous extension
on G which we denote it again with h. By assumption h(z) # 0 for every z € G.

Therefore % is in M(B) and we havez — A = %. Now if f € kere,, then
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f = (z — A)g for some function g € B. Hence

f= 2= — (p- pia))f.

Since ¢ € Band € M(B), we have § € B and kere, C ran(M, — ¢(A)).

From ran(M, — ¢(A)) = kere,, we conclude that ran(M, — ¢(A)) is closed
and dim ker(M(p_(P(A))* = 1. On the other hand M,,_,,) is one to one , there-
fore dim ker(M,,_, (1)) = 0. Hence M,,_,,(,) is a Fredholm operator and its index
equal to —1. n

From now on we assume that 7(z) = p(z)/4(z) is a rational function such that
p(z) and g(z) are polynomials without common factors. Also the poles of (z)
which are exactly the zeros of q(z) are off G.

Proposition 2.3 Let B be a Banach space of analytic functions on G, where G
is the interior of G, and let (z) = p(z)/q(z) be a rational function with poles
off G. If there are &« and B in G such that p(z) — p(«) has only a simple zero
in G, r(B) # 0, and |r(B)q(z) — p(a)] < |p(z) — p(a)| for each z € 9G, then

{Mr}/ = {Mz}/~

Proof. By assumptions, we have

p(z)9(B) —q(z)p(B) _ 9(B)(p(z) — p(a) —r(B)g(z) + p(a))
q(z)q(B) q(z)q(B) '
)

Thus, r(z) — r(B) = 0if and only if (p(z) — p(a) —r(B)q(z) + p(a) = 0. Using
general form of Rouche’s Theorem we conclude that r(z) — r(B) has only a simple
zero at B. So by Theorem 2.2, the proof is complete. n

r(z) —r(B) =

Remark. The above proposition holds if there are « and 8 in G such that q(z) —
g(«) has only a simple zero in G and r() # 0, moreover, |p(z) —r(B)g(a)| <
I7(B)(q(z) —gq(«))| for each z € 9G.

In Theorem 2.2, A is in G and ¢ € M(B) N A(G). The same proof does not
work for A € G. In the next theorem we obtain a similar result, whenever A € G

and ¢ € H(G) N M(B).

Theorem 2.4 Let ¢ € H(G ) NM(B),let A € G and let ¢(z) — ¢(A) has only a
simple zero in G. Then {Mq,} ={My: ¥YeM(B)}.

Proof. Let Q) be an open set that contains G such that ¢ € H(Q) and let g to be
defined in Q) x Q) by

(P(Zi:z)](W) 7+ w,
¢'(2) z=w.

It is obvious that g is continuous in () x ) and so g is uniformly continuous
in G x G. Since by assumption g(z,A) # 0 for each z € G and g(z,A) is contin-
uous as a function of z in G, there is some ¢ > 0 such that |g(z,A)| > ¢ for each
z € G. Now by uniform continuity of ¢ in G x G there is an open set U C G
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such that for each w € U and for all z € G, we have |g(z,w)| > 5. Therefore
@(z) — ¢(w) has only a simple zero in G for each w € U. Now by Theorem 2.2,
we have {M,} = {My: ¥ € M(B)}. ]

Corollary 2.5 Let B be a Banach space of analytic functions on G. Suppose
that ¢ € H(G) and for some A in G the function ¢(z) — ¢(A) has only a simple
zero in G. If € H(G) is a univalent map from G onto G, and ¢ o p € M(B),

In the next corollary we extend the result obtained in Theorem 4 in [4] to Ba-
nach spaces of analytic functions, to more general domains, Also we show that it
is not necessary that all of the n zeros of p(z) — p(1) are distinct .

Corollary 2.6 Let B be a Banach space of analytic functions on G, let G C D be
such that1 € G and let p(z) = z+4ayz%+ - - - +a,z", wherea; > 0fori =2,--- ,n.
Then {M,} = {M.}".

Proof. It is easy to see that p(1) > |p(z)| forallz € G — {1}, since p’(1) # 0 the
function p(z) — p(1) has only a simple zero in G, and by Theorem 2.4 the proof is
complete. n

Letr(z) = p(z)/q(z) be a rational function with poles off G, if n = max{deg(p),
deg(q)} = 1, then r is univalent and it is well known that {M,}" = {M,} . There-
fore in the reminder of this section we assume that n = max{deg(p), deg(q)} > 2.
Let A € G. If r(z) — r(A) has n — 1 zeros outside of G, then (MY = {M,;}. In
particular if p(z) has only a simple zero at a point A € G, then r(z) has only a
simple zero at A and therefore, {M,} = {M,} .

From now on, we assume that G C D.

Corollary 2.7 Let B be a Banach space of analytic functions on G. Suppose that
n > 2is an integer, a # 0 is a complex number with |a| > 1and p(z) = z"" +az. If
r(z) = % is a rational function with poles off G and 0 € G, then {M,} = {M,}".

Proof. Let A = 0 it is easy to see that 7(z) — r(A) = r(z) has n — 1 distinct zeros
outside of D. Hence by Theorem 2.4, we have {M,} = {My : ¥ € M(B)}.

In the next theorem we extend some results obtained in [6], in fact we omit
the condition that the zeros of the polynomials outside G must be distinct.

Theorem 2.8 Let B be a Banach space of analytic functions on G and let p =
ag + a1z + asz> + - - - +a,z" be a polynomial of degree n > 2 such that a; # 0. If
each of the following conditions holds, then {Mp}/ ={My: ¥YeM(B)}.

(a) For some real constant 6y, we have Arga; = 6 for a; # 0 withi > 1 and
1 € dG.

(b) For each a; # 0 withi > 1, Arga; = 6 for i odd and Arga; = 6y + 7 or
Arga; = 0y — 7t for i even,and —1 € G.

(c) There is a zyp € 9D NG such that all nonzero terms a;zy’ for i > 1 are
positive or all are negative.
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Proof. By assumption | p(1) —ao |=| a1 | + | a2 | +---+ | a, |. Therefore
p(z) — p(1) = 0 implies that

Mzt + a2 (= |+ e |+ ]

For z € D, we have
|mz+apz? - Fapz" |<|ay |+ |ao |+ +|an],

so p(z) — p(1) has no zero in D. On the other hand if w € dD is a zero of p(z) —
p(1), then

lar |+ oz |+ o+ lan| = [mw]+[aw® |+ +|a0"|
= | w4+ auw?+ -+ a,w" | .

Hence Arg(ajw + ayw? + -+ - + ay,w") = Arg (ayw). Since p(w) —ag = p(1) —
ag=e®(|a; |+ |ax| +---+ | ay |), we have Arg(a;w + apw? + - - - + a,w") =
Arg(ayw) = 6y, which implies that w = 1. It is easy to see that p’(1) # 0, so
the polynomial p(z) — p(1) has only a simple zero at 1, and by Theorem 2.4, (a)
holds.

Using similar argument as used in the proof of part (a) we conclude (b) and

(¢). ]
Proposition 2.9 Let B be a Banach space of analytic functions on D, let p be a
polynomial of degree n > 2 and let r(z) = % be a rational function. If there is

zo € dD such that |r(zg)| > |r(z)| forallz € D — {zy}, then {M,} = {M,} ..

Proof. By assumptions |r(zg)| > |r(z)| for all z € D — {z}, which implies
that r(z) — r(z9) has no zero in D — {z} and ' (z0) # 0. So we conclude that
r(z) — r(zo) has only a simple zero in D, and by Theorem 2.4, the proof is com-
plete. n

Remark. Proposition 2.9 holds if there is zy € 0D such that |r(zg)| < |r(z)]| for
allz e D — {zo} and 7' (z9) # 0.

Corollary 2.10 Suppose that B is a Banach space of analytic functions on G.
Let p(z) = anz" 4+ a,_1z" "' + - -+ + ay be a polynomial of degree n > 2 with
nonnegative real coefficients and let 1 € dG. If there is a positive integer m < n
such that a,, and a,,_1 are not equal to zero, then {MP}/ ={My: ¥YeM(B)}.

Proof. It is easy to see that |p(1)| > |p(z)| forallz € D — {1}. In fact, if z = ¢

for some 6, —r < 6 < mand |p(z)| = |p(1)], we have | a6 + a,,_1e/("=1¢ |=
Ap + apm—1. Thus, m0 = (m — 1)0 + 2k for some integer k. Hence z = 1, and so
by Proposition 2.9, the proof is complete. n

Lemma 2.11 Let functions f(z) and g(z) be analytic in the open unit disk
D and continuous on dD. Suppose that there is a point ¢ € 9D such that

If(z)] > |g(z)| for all z € aD — {¢%} and f(e) = —g(e®) £ 0. Let also
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the functions f(z) and g(z) have the derivatives at the point zg = /% and the
following inequality holds

() +g' (™)
f(ei®)
Then Ny, ¢ and Ny, the numbers of zeros of the functions f + ¢ and f according
to multiplicity in D are equal.
Proof. Set F(z) = f(e'%z) and G(z) = g(¢'%z). Then F(1) = —G(1) # 0, for all
z € 0D — {1} we have |F(z)| > |G(z)| and P+ - . Now by Corollary 2 in

F(1)
[9], the lemma follows. ]

< 0.

Proposition 2.12 Let 15 be a Banach space of analytic functions on D, let f and
¢ belong to H(D) and let f, ¢ and ¢'% satisfy in the conditions of Lemma 2.11. If
Ny, the number of zeros of f according to multiplicity in D is equal to zero, then

{Mpig} = {M:}.
Proof. By Lemma 2.11, we have Ny, = 0. Hence by assumption f + g has
only a simple zero at €%, and by Theorem 2.4, the proof is complete. n

In the next example we present some applications of the above theorems.

Example 2.13

a) If g(z) is a polynomial which has no zero in D, then there is a point A = ¢/%
such that |[g(A)| < |g(z)| for all z € D. Now let a = |a|e’® be a nonzero constant,
p(z) = z" +az""!,and A € G. Itis not hard to see that |p(z)| < |p())] for every
z € D — {A}. Hence by the proof of Proposition 2.9, 7(z) — r(zo ) has only a simple
zero in D, and therefore in G. Now by Theorem 2.4, we have {Mr}/ = {MZ}/,

where r(z) = % . For example r(z) = (Z_ng{% whenG ={ze€ C:c<

|z| < 1} for some nonnegative constant 0 < ¢ < 1, or G = D is such a rational
function.

b) Letr(z) = 23525% be a rational function, if in the remark after Pr_opo-
sition 2.3 we set « = B = 0, then r(z) — r(0) has only a simple zero in D, so
{M,} ={M:}.

c) Let G be an open set such that i € dG ( recall that after Proposition 2.5, we
assume that G C D). Let p(z) = z® — z° 4 2iz> — 4 and let q(z) be a polynomial
with zeros off G without common factor with p(z). If in Proposition 2.12 we set
f(z) =2iz% — 4, g(z) =z — 26 and 6y = ¥ we have

eieo(f/(eié)o) —|—g’(ei90)) B 17

f(et®) 2
Moreover |g(z)] < 2 < |f(z)]. In the other hand |g(z)| = |z — 1| = 2 if and
only if z = i or z = —i. But|f(—i)] = 6, so we have |f(z)| > |g(z)| for all
z € 0D — {¢®} and f(e%) = —g(e'®) +£ 0. Therefore p has only a simple zero at
ion D. Now if r(z) = %, then 7(z) has only a simple zero at i in G, and we have

{Mr}/ = {Mz}/-
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