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Abstract

A2p (p > 1) times continuously differentiable complex-valued function
F = u+ivin a domain D C C is p-harmonic if F satisfies the p-harmonic
equation APF = A(AP~1)F = 0, where A represents the complex Laplacian
operator
2 2

A= 48—_ = 9 + i
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In this paper, the main aim is to investigate the subordination of p-harmonic
mappings. First, the characterization for p-harmonic mappings to be subor-
dinate are obtained. Second, we get two results on the relation of integral
means of subordinate p-harmonic mappings. Finally, we discuss the exis-
tence of extreme points for subordination families of p-harmonic mappings.
Two sufficient conditions for p-harmonic mappings to be extreme points of

the closed convex hulls of the corresponding subordination families are es-
tablished.

1 Introduction

A 2p (p > 1) times continuously differentiable complex-valued function F =
u +iv in a domain D C C is p-harmonic if F satisfies the p-harmonic equation
APF = A(AP~1)F = 0, where A represents the complex Laplacian operator
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02 02 02
A=tz = o2 T
A mapping F is p-harmonic in a simply connected domain D if and only if F
has the following representation:

p
F(z) = ) 2P VGy e (2),
k=1
where each G,_i1 is harmonic, i.e.,, AG,_;1(z) = 0 for k € {1,---,p} (cf.
[7, Proposition 1]).

Obviously, when p = 1 (resp. 2), F is harmonic (resp. biharmonic). The prop-
erties of harmonic and biharmonic mappings have been investigated by many
authors, see [1, 2, 3, 8, 11] etc.

Throughout this paper we consider p-harmonic mappings in the unit disk
D={zeC: |z| <1}

It is known that every composition of a harmonic mapping with an analytic
function is harmonic, but this useful fact does not always hold for p-harmonic
mappings (p > 1). For example, let F(z) = |z|*?"Vz and ¢(z) = z2. Then F is
p-harmonic and ¢ is analytic in ID. It is easy to show that F o ¢ is not p-harmonic.
Thus we can not give the definition of subordination of p-harmonic mappings by
composition with a Schwarz function as those in the cases of analytic functions
and harmonic mappings. Now we introduce the following definition.

Definition 1.1. Let

p p
fz) =Y [z Vg, 11(z) and F(z) = Y [zPF VG, 1i1(2)
k=1 k=1

be two p-harmonic mappings of ID. We will say that f is subordinate to F and
write f < F or f(z) < F(z) if there exists a Schwarz function ¢ of ID, that is, ¢ is
analytic, ¢(0) = 0 and |¢(z)| < |z| for z € ID, such that

p p
Y 2P gy k1 (2) = Y 12PFVG, ki (0(2). (1.1)
k=1 k=1

Obviously, when p = 1, this is the same as the case of harmonic mappings,
see [6, 11, 21] for the details.

Note that for analytic functions f and F, it is known that if F is univalent, then
f(D) C F(ID) if and only if f < F (cf. [10]). This useful property is not valid for
p-harmonic mappings, even for the case p = 1 (cf. [21]). We study this property
further. In Section 3, we establish the characterization for p-harmonic mappings
to be subordinate, which is stated as Theorem 3.1. The idea of the method used
in the proof of our main result comes from [12] which is about the decomposition
of harmonic mappings.

In [21], Schaubroeck considered the relation of the integral means of subordi-
nate harmonic mappings. The following is one of the main results in [21], which
is a generalization of the corresponding one in [17].
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Theorem A. ([21, Theorem 2.4]) Let f and F be harmonic in ID. If f < F, that is
f(z) = F(¢(z)) for some Schwarz function ¢, then Ms(r, f) < Ms(r, F) for s > 1 and

0 < r < 1, where M;(r, f) is the integral mean (2 fozn |f(rei9)]5d9)%. Equality occurs
for 0 < r < 1 only when F is constant or when @ is a rotation, i.e., p(z) = €%z

In the proof of Theorem A, the fact that the harmonicity of f implies the sub-
harmonicity of | f| plays an important role in the corresponding discussions. But
this useful property does not always hold for p-harmonic mappings when p > 2,
which can be seen from the following example. Let F(z) = |z|> — z2. Then |F| is
not subharmonic in ID. In Section 4, by using a different method, we consider the
relation of the integral means of subordinate p-harmonic mappings. Our main re-
sults are Theorems 4.1 and 4.2, where Theorem 4.1 is a generalization of Theorem
A for p-harmonic mappings and Theorem 4.2 is a generalization of [19, Theorem
1].

Extreme points of analytic functions and harmonic mappings play an impor-
tant role in solving extremal problems. Many references have been in literature,
see [4, 5,13, 14, 18] etc. As the third aim of this paper, we study the sufficient con-
ditions for the extreme points of the closed convex hulls of subordination families
of p-harmonic mappings. Two results are obtained, which are Theorems 5.1 and
5.2.

Several useful lemmas will be proved in Section 2.

2 Several lemmas

In this section, we will prove several lemmas which are useful for the following
discussions.

Lemma 2.1. Let F(z) = ¥}, |z]2(k_1)Gp_k+1(z) with p > 2 be a p-harmonic map-
ping. If there is some 0 < p; < p — 1 such that

APF(z) =0,
then for each k € {p1+1,---,p}, Gp_g41 = 0.
Proof. First we consider the case p = 2. Then p; = 1.

For any biharmonic mapping F, assume F(z) = |z|?G1(z) + G2(z). If AF(z) =
0, then

G1(z) +z(Gy)2(z) +2(Gy)z(z) = 0.

Thus G = 0. The proof for this case is complete.

In the following we come to consider the case p > 2. For any p-harmonic map-
ping F, let F(z) = Y!_, |z12%"VG,_41(2) with Gy_gs1 = 1 p_ir1 + hop_ies1-
Assume there exists some 0 < p; < p — 1 such that AP1F(z) = 0. Then it follows
that

P 2(k—1
MY EPRIG, () =0,
k=p1+1

By straight computations,
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k=p1+1
_ 4p1( i azm(,Z|z(k—1)h1,p_k+1(z)) p aZPl(’Z|2(k_1)E2,p—k+1(z)))
k—pr dzP19zP1 et 0zP19zP1
. 71 (2 hy 41 (2)
= (L -y e pppn ZE @)
k=p1+1
P o o1 Zk—lﬁz —k+1(z)
b3 =) e ppn L ek @)
k=p1+1

pP—P1 s
= 4n Z |Z|2(k_1) (hT,p—pl—k+1(Z)+h2,p—p1—k+1(z))/
k=1

where foreachk € {1,--- ,p — p1},

(2.1)
oP1 (Zk+p1_1h1,ri—p1—k+1 (Z)) L
M ppy—ki1(2) = { (k+p1_1)”'k( ozP1 >/Z %fz;é()
(k+pi—1)- 'khlfp—m—kﬂ(o) ifz=0
and
(2.2)

1,p—p—k1(2) = { (k+p1—1)---k

<aP1 (Zk+p1_1h2,p—p1 —k+1 (Z))

)/zk_1 ifz#0
ifz=0

dzh
(k +p1— 1) o 'khZ,p—pl—k+1(O)
Let
P2 2(k—1 *
F(z) = k_zl 2PED (], 1 (2) + Ry ki1 (2)),
Hy,(z) = [2)2P27D (b 1 (z) + By (2))
and
Pz—l 2(k—1
Hp,1(2) = Hpy(2) = F*(2) = = ) [2P%70 (0], i
k=1

where py = p — p1. Then F* = 0. It follows that

HPz = HPz—l

(z) + E;Pz—kﬂ(z))f
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and Hp, is (p2 — 1)-harmonic. Thus

92(p2—1) (|z|2p2h>1'<,1 (z)) 9%p2-D) (|Z|2p2E>2k’1 (2)) )
9zP2—19zp2—1 ozP2—1gzr2—1
o2~ 1(zP2ky 1 (2)) 9Pl (2P2y 4 (2))
= 41,01z L1 2,1
472 py! (Z T +z T )
= 0.

N, (z) = 4!

C — - * -1 — * 7% —
Hencehi =0,h;; = 0and F*(z) = 2162:1 221 (hl,pz—k+1(z) +h2,pz—k+1(z)) =
0. Similarly, we have hik,pz—k—l—l =0and hz,Pz—k-Fl = 0foreachk e {1,---,p2—1}.
Equations (2.1) and (2.2) show that iy, ,, 41 = 0and hy, 11 = O for all
ke{l,---,p—p1}. Hence G,_y 4 = 0foreachk € {p1 +1,---,p}. ]

By using the similar proof method as in Lemma 2.1, we have the following
uniqueness of p-harmonic mappings.

Lemma 2.2. Let )

f(z) = kZl 2175 gy ks (2)
and )

F@) = L1416 ()

be two p-harmonic mappings. Then f = F if and only if g, xy1 = Gy ki1 for all
ke{l,---,p}.

By Lemma 2.2, the following useful result easily follows.

Lemma 2.3. Let )
fz) =Y 2P Vg, ia(2)
k=1
and

p
F(z) = ) 2P Y6y 411 (2)
k=1

be two p-harmonic mappings. Then f < F if and only if there exists some Schwarz
function @ such that g,_y11(z) = Gy_k41(9(2)) foreachk € {1,-- -, p}.

3 Characterization for subordination

In this section, using the decomposition of harmonic mappings and the relation
of regions for subordinate harmonic mappings, we give a characterization of sub-
ordination for p-harmonic mappings.

In [12], authors considered the decomposition of harmonic mappings and the
main tool in the proofs was the theory about the existence and uniqueness of
solutions to Beltrami equation with a given dilatation. In the theory of quasicon-
formal mappings, it is known that for any measurable function y with ||y[/e < 1,
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the Beltrami equation f; = i f, admits a homeomorphic solution F, and every so-
lution has the form f = ¢ o F for some analytic function ¢ (cf. [16]). A complex-
valued harmonic mapping with positive Jacobian in ID is known to satisfy the
Beltrami equation of second kind f; = af,, where a is an analytic function with
the property |a(z)| < 1in ID. On the other hand, every solution of such an equa-
tion is harmonic. Moreover, if ||a||c < 1, then the equation admits homeomorphic
solutions (cf. [15]).

We assume that all harmonic mappings mentioned in this section are sense-
preserving, i.e. have a positive Jacobian.

In [12], authors proved

Theorem B. Let f be a complex-valued nonconstant harmonic mapping defined on a
domain D C C and let a be its dilatation function. Then in order that f have a de-
composition f = F o ¢ for some function ¢ analytic in D and some univalent harmonic
mapping F defined on ¢(D), it is necessary and sufficient that |a(z)| # 1 on D and
a(z1) = a(zy) wherever f(z1) = f(z2). Under these conditions the representation is
unique up to conformal mappings; any other representation f = F o @ has the form
F=Foy land ¢ = o ¢ for some conformal mapping ¥ defined on ¢(D).

Using Theorem B, we obtain the following lemma.

Lemma 3.1. Let f and g be two harmonic mappings of ID, where f(0) = g(0) and g
is univalent. Then f < g ifand only if f(ID) C (D), |ag(z)| # 1, as(z1) = af(22)
wherever f(z1) = f(z2) and (¢ Yo = u(g™1)w, where as is the dilatation of f and
p=—agofL

Proof. Assume f < g. Then there is some Schwarz function ¢ such that f = go ¢.
The necessity follows from Theorem B.

Now, we come to prove the sufficiency. By the assumptions and Theorem B,
we see that there is an univalent harmonic mapping f; and an analytic function
@1 such that f = f1 0 @1. Since (¢7 1w = u(g!)w, by the uniqueness of qua-
siconformal mappings with a prescribed complex dilatation, we conclude that
f1 = g o i for some conformal mapping ¢ (cf. [16]). Thus

f=fopi=(gop)opr=go9,

where ¢ = ¢ o ¢1. From f(ID) C g(ID), we deduce that ¢ is a Schwarz function
and then f < g. n

Now, we are ready to state our main result of this section.

Theorem 3.1. Let )

f(z) = k; 2P Vgp k11 (2)
and )

F(z) = kZ1 2P*VG) ki (2)

be two p-harmonic mappings with g, _41(0) = G,_41(0) fork € {1,---,p}. Ifall
Gp—k+1 (k € {1,- -+, p}) are univalent harmonic mappings, then f < F if and only if
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foreachk € {1,---,p}, gy k11(D) C Gy 111(D), lapx41(2)| # 1, ap_i1(21) =
ap—k41(22) wherever g, _ky1(21) = gp-ki1(22), (G lr)w = pp—k1(G ),
where a, 1 is the dilatation of gp 11, Hp—k41 = —Ap—41° g;EkH and Gl_1 0g1 =
= Gylogy

The proof easily follows from Lemmas 2.3 and 3.1.

4 Integral means

In [21], Schaubroeck studied the relation of the integral means for subordinate
harmonic mappings. By using a different method, we generalize one of the main
results in [21], i.e., Theorem A, to the case of p-harmonic mappings. Our result is
as follows.

Theorem 4.1. Let

p p
f2) = Y 12" Vgpkia(z) and F(z) = ) 1275V Gy g (2)
k=1 k=1
be two p-harmonic mappings of ID. Suppose f < F. Then forany s > 1and 0 < r <
. 1
1, Ms(r, f) < Ms(r,F), where M (r, ) is the integral mean (o Ozn |f(re'?)|5d0) >
Equality occurs for 0 < r < 1 only when Gp,_y1 is constant for each k € {1,---,p}or

when ¢ is a rotation ¢(z) = ez for some 6 € [0,27].

Proof. Since f < F, it follows that f(0) = F(0), and then |f(0)|° = |F(0)|°.
Fixr € (0,1) and let

p p
£ =Y P Vg, 11(2) and F(z) = Y 256, 1 (2).
k=1 k=1

It is obvious that f, and F, are harmonic mappings. Since f < F, Lemma 2.3 im-
plies that there exists some Schwarz function ¢ such that g, 141(z) = G, _x+1(9(2))
for each k € {1,---,p}. It follows that f, < F.. By Theorem A, we have
M;(r1, fr) < Ms(rq, F) for any r1 € (0,1). Hence

27 , 2 P ,
/0 ]fr(rle‘9)|5d9 _ /0 ’ Z rz(k‘l)gp_k+1(r1e19)]5d6

k=1

27 .
< / IF, (r16)[°d6
0

p

2 2(k—1) i0
= [T 1L PRIG, a (e Fde.
k=1

Let 7y = r. Then
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k=1 0 ¥=1
SO
Ms(r, f) < Ms(r, F).
Assume that
M;(r, f) = Ms(r, F),
that is,

Ms(r, fr) = Ms(r, F).

A similar argument as in the proof of Theorem A shows that F, is constant or ¢ is
a rotation @(z) = e%z for some 0 € [0,27]. It is easy to show that F, = ¢, for each
r € (0,1) if and only if G,_j41 = cp_gy1 fork € {1,---,p}, where ¢, and ¢, _¢41
are constants depending only on r and k, respectively. The proof is complete. =

In [19], Nunokawa, Saitoh, Owa and Takahashi discussed the relation of sub-
ordination and integral means of real harmonic mappings. Their main result is
[19, Theorem 1]. In the following, we find an analogue of [19, Theorem 1] for
p-harmonic mappings.

Theorem 4.2. Suppose that

p P
f2) = Y 12P " Vgpkia(z) and F(z) = ) [2P5V Gy k1 (2)
k=1 k=1

are two p-harmonic mappings of D. If f < F, then for any r with 0 < r < 1and any s
withs > 1,

27 . 21 .
/0 Ref(re®)[*d6 < /0 ReF(re®)|°de. &.1)

Proof. Ttfollows from f < F thatRef(0) = ReF(0), and then |Ref(0)|° = |ReF(0)|°.
Fixr € (0,1) and let

P p
frlz) = Y P4 Vg, () and Fr(z) = ) P66y i (2)
k=1 k=1

Then both f, and F, are harmonic mappings. By Lemma 2.3, f, < F, and then
£(0) = F(0).

Let u,(z) = Refy(z) and U,(z) = ReF,(z). Since f, < F,, we know u,(z) =
Uy(¢(z)) for some Schwarz function ¢. Let g,, Q, be analytic functions whose
real parts are u, and U, respectively, and g,(0) = Q,(0). Then

and U,(z) = Qr(z) ;‘@r(z)

9-(2) +4,(2)
2

ur(z) =
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Obviously, u,(z) = U,(¢(z)) if and only if 4,(z) +7,(z) = Q:(9(2)) + Qs(9(2).
Thus q,(z) = Qr(¢(z)) which implies that g, < Q,. By [19, Theorem 1], for any
rp€(0,1)ands > 1,

27 i 27T X
/ Req, (r1e®)[5d6 < / IReQ, (r,¢®) [Fd6.
0 0

That is,

27 . 27 .
/0 IRef, (re®)Fdo < /0 IReF, (116 |°d6

and, thus forr; =rands > 1,

N 2(k1) 0 N 2(k1) 0
/o Re ) | r Sp—k+1(re”)?do < /o Re ) 7 Gp—k+1(re”)[°do.
k=1 k=1

The proof is complete. m

We remark that the inequality (4.1) does not hold in general for p-harmonic
mappings f and F when 0 < s < 1. This can be seen from the following result.

Theorem 4.3. Let f(z) = |z|2P~Vg(z) and F(z) = |z|2P~VG(z), where g and G are
analytic functions such that Re G(z) > 0 for any z € ID. Suppose f < F. Then for any
rwith) <r <landanyswith0 <s <1,

27 . 27 .
/ Ref (re®)[°d6 > / ReF (re®) [*do.
0 0

Proof. Tt follows from f(0) = F(0) = 0 that |[Ref(0)|° = |ReF(0)|°.
Since ReG(z) > 0and f < F, for any rq and r with 0 < r; < r < 1, we have
for some Schwarz function ¢,

Ref(rie) = |Ref(re?)|
= " ReG(p(ne?))
- rflz(zpnl) Ozn Re G(VeiV)Re:Z: j ZEQZ:Z; dv
r?(l’—l) rel’ + @(r1e')

27 .
_ 1 iv
- 2m2p-1) /o [ReF(re")l RereiV — go(rlel@)dv'

By Hoélder’s inequality, we obtain for any s with 0 < s < 1,
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1 1 + g(re)
27 relV — ¢(re?)

2n . iv 0V s iv i0\\ 1—s
= i / |Re1:(1,ez1/)|s (Re 1’61 + (P(rle' )) (Re 1”6. + 90(1’16' )) dv
21t Jo retv — @(ret?) retv — @(ryet?)

dv

27 .
/ Re F(re'")[*Re
0

1 27 ; relV + @(r1e'® s 1 27 relV 4+ g(rqet? 1—s
< (E/ IRe F(re"")| Re iV_QO( 1.9) dv) X (—/ Re iv_qo( 1.9) dv)
0 retV — ¢(r1e"?) 27 Jo retV — ¢(r1e?)
1 p2r , re + g(r1e®) . \s
= (E/ | ReF(re')| Re iV_QO - dv) ,
0 retV — ¢(r1e)

and then

relV — ¢(r1e?)

27 . 7 27w 1 27 . reiV + (i’ ei9) s
i0y|s _ L iv P\
/0 Ref(re®)[fdo = )/0 ( n/o ReF(rel")| Re dv) do
) on o , iv i0
b (in [ IReF(re) PR’ + plne )d9>dv
0 0

v

72s(p—1) 2 retv — ¢(V1€i9)
V%S(P—l) - .
J— 1w\ |S
= / ReF(re')[*dv.
Letting r; — r implies
27 . 27 ) 27 .
/ Ref (re®)[*dg > / ReF (el |*dv = / ReF(re®)|°de. .
0 0 0

Remark 4.1. Let f(z) = |z]2P~D(1 —z) and F(z) = |z]?P~V(1 — z") for large
enough 7 in Theorem 4.3. Then both f and F are p-harmonic and

27T . 27 .
/ Ref (re®)[°d6 > / ReF(re’®)[*do
0 0

for 0 < s < 1, which shows that the requirement “s > 1” in Theorem 4.2 is
necessary.

5 Extreme points of closed convex hulls of subordination fami-
lies

Before the statement of the main results, we first introduce the following concept.

Definition 5.1. Let X be a topological vector space over the field of complex num-
bers and D a set of X. A point x € D is called an extreme point of D if it has no
representation of the form x = ty + (1 — )z (0 < t < 1) as a proper convex
combination of two distinct points y and z in D.
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We denote by ED the set of all extreme points of D and by HD the closed convex
hull of D, that is, the smallest closed convex set containing D (cf. [10, Pag;]).

In [14], the authors proved two results on the extreme points of the family of
tunctions subordinate to a fixed analytic function. The main aim of this section is
to generalize these results to the case of p-harmonic mappings.

Theorem 5.1. Let F(z) = Y _, ]z|2(k_1)Gp_k+1(z) be p-harmonic in ID with

—(2
Gpie1(2) = Gy 1 (2) + Gy (2)

such that G; )k+1(0) = 0 and G; )k+1(0) = 0, and s(F) be the family of p-harmonic

mappings subordinate to F. Then each mapping f(z) = F(xz) with |x| = 1 belongs to
EHs(F).

Proof. Suppose, on the contrary, that f(z) = F(xz) doesn’t belong to EHs(F) for
some x with |x| = 1. Then there exist f; and f, € Hs(F) such that f; # f, and

f(z) = F(xz) = tfi(z) + (1 = 1) f2(2),

where 0 < t < 1,
2|er G ZI!Z“ (2) + C_s1(2)
1p—k+1(2 z lp k+1 1p—k+1\Z )
and

—(2
Z|z|2 DGz 2|z|2“ ) 1 (2) + Gy 1 (2))

(1) —_ c® _ M _ @ _
Obv1ously, G, s k1(0) = Gl,p—k+1(0) = Gz,p—k+1(0) = GZ,p—k+1(0) = 0 for each
ke{l,---,p}.
By Lemma 2.2, we get
Gpky1(x2) = tG1p_r1(2) + (1 = )G p—k41(2)

for each k € {1,--.p}. And then, using Gg; r1(0) = Gf;_kH(O) =

1 2
Gé/;_kH(O) = Gé/;_kH(O) =0, we have
1

Gy (x2) = 1G] () + (1= DG 11 (2)
and @) 2 2

Gp—k+1( z) = tGlp ka1 (2) + (1= t)GZp k12
foreachk € {1,---, p}. Hence either G\ )kH(xz) does not belong to EHS(G; )k+1)
or G; )k+1 (xz) does not belong to EHS(G;(¢2—)k+1) for each 1 < k < p, which contra-

dicts [14, Theorem 6]. Hence each f(z) = F(xz) (|x| = 1) belongs to EHs(F). =
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Denotes by H* (0 < s < o0) the class of p-harmonic mappings in ID subject to

the condition: )
1
M(r,F) = (5 /0 IF(re®)[*dp)

remains bounded as r = |z| — 1. The norm is defined as

1
s

|IF||s = lim M (r, F).
r—1

It is evident that H*1 D H*2if 0 < 51 < sp < co. Obviously, if

—(2
F(z g%uﬁkl bk (z z:uvkl V1 (2) +Gi(2),

then
p P
1 2
HﬂﬁzHg%GﬁHﬂ6+Hg%GﬁHﬁ%

that is, 216:1 G;l_) k1 and ZZ:1 G;(jz_)k 41 belong to the space H? for analytic func-
tions, see [9].

In order to state the next result, we introduce a concept.

Definition 5.2. An inner function is an analytic function ¢ in ID with |¢(z)| < 1
and |¢(e?)| = 1 for almost all 8 (cf. [9]).

Theorem 5.2. Let
p
Fz) = Y 12P* DG, 4 (2)
k=1

be p-harmonic in ID and s(F) be the family of mappings subordinate to F. Suppose
that F € H°, where 2 < s < oo. If ¢ is an inner function with ¢(0) = 0, then

f2) = 55, 121G, 11 (9(2)) € EHs(F).

Proof. The proof of Theorem 5.2 easily follows from the similar reasoning as in
the proof of [14, Theorem 7] and the following lemma. m

Lemma5.1. Let f(z) = Zzzl |z[2(k_1)gp_k+1(z) and F(z) = Zlle ]z|2(k_1)Gp_k+1(z)
be two p-harmonic mappings. Suppose f < F and F € H2. Then ||f|l2 = ||F||2 if and
only if there is some inner function ¢ with ¢(0) = 0 such that

Z R S E Z 27416, 41 (9(2))-
k=1 k=1
Proof. Suppose

4 2(k—1) 4 2(k—1) ( (1) =(2)
1@ = L gy s = Y (g0 + 82 )
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and
F(z g:!ﬂZk le Gpk+1(z 2:’42k Y G,_ k+ﬂi)4‘G;—kH(Z»-
=1
Since ) )
1 2
IFIB=11Y 8 B+ 11 Y 8213

k=1 k=1

and

IEII3 = Il Z Gp bealB+1 Z Gp el

we know that || f||2 = ||F||2 if and only if

| ng 2+ ng ealz =1 ZGP 2+l ZGP ke ll2-

It follows from f < F and Lemma 2.3 that Z,le gél_)k b = Zzzl G;l_)k 41 and
(2)

215:1 8p kt1 < 215:1 G;(jz_)kﬂ. By [10, Theorem 6.3], we have

SV AREY
| kzlgp_kﬂnz <l kzlcp_kﬂuz

and ) )
2 2
1Y 8l < 1Y Gyl
k=1 k=1
Hence
p p
(1) _ (1)
138l = 1Y 60z
k=1 k=1
and

P p
2 2
|| ;g;2k+1\|z P Gyl

From [20, Theorem 3] the proof follows. [ ]
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