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Abstract

A 2p (p ≥ 1) times continuously differentiable complex-valued function
F = u + iv in a domain D ⊆ C is p-harmonic if F satisfies the p-harmonic
equation ∆pF = ∆(∆p−1)F = 0, where ∆ represents the complex Laplacian
operator

∆ = 4
∂2

∂z∂z̄
:=

∂2

∂x2
+

∂2

∂y2
.

In this paper, the main aim is to investigate the subordination of p-harmonic
mappings. First, the characterization for p-harmonic mappings to be subor-
dinate are obtained. Second, we get two results on the relation of integral
means of subordinate p-harmonic mappings. Finally, we discuss the exis-
tence of extreme points for subordination families of p-harmonic mappings.
Two sufficient conditions for p-harmonic mappings to be extreme points of
the closed convex hulls of the corresponding subordination families are es-
tablished.

1 Introduction

A 2p (p ≥ 1) times continuously differentiable complex-valued function F =
u + iv in a domain D ⊆ C is p-harmonic if F satisfies the p-harmonic equation
∆pF = ∆(∆p−1)F = 0, where ∆ represents the complex Laplacian operator
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∆ = 4
∂2

∂z∂z̄
:=

∂2

∂x2
+

∂2

∂y2
.

A mapping F is p-harmonic in a simply connected domain D if and only if F
has the following representation:

F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z),

where each Gp−k+1 is harmonic, i.e., ∆Gp−k+1(z) = 0 for k ∈ {1, · · · , p} (cf.
[7, Proposition 1]).

Obviously, when p = 1 (resp. 2), F is harmonic (resp. biharmonic). The prop-
erties of harmonic and biharmonic mappings have been investigated by many
authors, see [1, 2, 3, 8, 11] etc.

Throughout this paper we consider p-harmonic mappings in the unit disk
D = {z ∈ C : |z| < 1}.

It is known that every composition of a harmonic mapping with an analytic
function is harmonic, but this useful fact does not always hold for p-harmonic

mappings (p > 1). For example, let F(z) = |z|2(p−1)z and ϕ(z) = z2. Then F is
p-harmonic and ϕ is analytic in D. It is easy to show that F ◦ ϕ is not p-harmonic.
Thus we can not give the definition of subordination of p-harmonic mappings by
composition with a Schwarz function as those in the cases of analytic functions
and harmonic mappings. Now we introduce the following definition.

Definition 1.1. Let

f (z) =
p

∑
k=1

|z|2(k−1)gp−k+1(z) and F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z)

be two p-harmonic mappings of D. We will say that f is subordinate to F and
write f ≺ F or f (z) ≺ F(z) if there exists a Schwarz function ϕ of D, that is, ϕ is
analytic, ϕ(0) = 0 and |ϕ(z)| ≤ |z| for z ∈ D, such that

p

∑
k=1

|z|2(k−1)gp−k+1(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(ϕ(z)). (1.1)

Obviously, when p = 1, this is the same as the case of harmonic mappings,
see [6, 11, 21] for the details.

Note that for analytic functions f and F, it is known that if F is univalent, then
f (D) ⊂ F(D) if and only if f ≺ F (cf. [10]). This useful property is not valid for
p-harmonic mappings, even for the case p = 1 (cf. [21]). We study this property
further. In Section 3, we establish the characterization for p-harmonic mappings
to be subordinate, which is stated as Theorem 3.1. The idea of the method used
in the proof of our main result comes from [12] which is about the decomposition
of harmonic mappings.

In [21], Schaubroeck considered the relation of the integral means of subordi-
nate harmonic mappings. The following is one of the main results in [21], which
is a generalization of the corresponding one in [17].



Subordination of p-harmonic mappings 49

Theorem A. ([21, Theorem 2.4]) Let f and F be harmonic in D. If f ≺ F, that is
f (z) = F(ϕ(z)) for some Schwarz function ϕ, then Ms(r, f ) ≤ Ms(r, F) for s ≥ 1 and

0 ≤ r < 1, where Ms(r, f ) is the integral mean ( 1
2π

∫ 2π
0 | f (reiθ)|sdθ)

1
s . Equality occurs

for 0 < r < 1 only when F is constant or when ϕ is a rotation, i.e., ϕ(z) = eiθz.

In the proof of Theorem A, the fact that the harmonicity of f implies the sub-
harmonicity of | f | plays an important role in the corresponding discussions. But
this useful property does not always hold for p-harmonic mappings when p ≥ 2,
which can be seen from the following example. Let F(z) = |z|2 − z̄2. Then |F| is
not subharmonic in D. In Section 4, by using a different method, we consider the
relation of the integral means of subordinate p-harmonic mappings. Our main re-
sults are Theorems 4.1 and 4.2, where Theorem 4.1 is a generalization of Theorem
A for p-harmonic mappings and Theorem 4.2 is a generalization of [19, Theorem
1].

Extreme points of analytic functions and harmonic mappings play an impor-
tant role in solving extremal problems. Many references have been in literature,
see [4, 5, 13, 14, 18] etc. As the third aim of this paper, we study the sufficient con-
ditions for the extreme points of the closed convex hulls of subordination families
of p-harmonic mappings. Two results are obtained, which are Theorems 5.1 and
5.2.

Several useful lemmas will be proved in Section 2.

2 Several lemmas

In this section, we will prove several lemmas which are useful for the following
discussions.

Lemma 2.1. Let F(z) = ∑
p
k=1 |z|

2(k−1)Gp−k+1(z) with p ≥ 2 be a p-harmonic map-
ping. If there is some 0 < p1 ≤ p − 1 such that

∆p1 F(z) = 0,

then for each k ∈ {p1 + 1, · · · , p}, Gp−k+1 ≡ 0.

Proof. First we consider the case p = 2. Then p1 = 1.
For any biharmonic mapping F, assume F(z) = |z|2G1(z) + G2(z). If ∆F(z) =

0, then

G1(z) + z(G1)z(z) + z̄(G1)z̄(z) = 0.

Thus G1 ≡ 0. The proof for this case is complete.
In the following we come to consider the case p > 2. For any p-harmonic map-

ping F, let F(z) = ∑
p
k=1 |z|

2(k−1)Gp−k+1(z) with Gp−k+1 = h1,p−k+1 + h2,p−k+1.
Assume there exists some 0 < p1 ≤ p − 1 such that ∆p1 F(z) = 0. Then it follows
that

∆p1

(
p

∑
k=p1+1

|z|2(k−1)Gp−k+1(z)
)

= 0.

By straight computations,
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∆p1
(

p

∑
k=p1+1

|z|2(k−1)Gp−k+1(z)
)

= 4p1

(
p

∑
k=p1+1

∂2p1
(

|z|2(k−1)h1,p−k+1(z)
)

∂zp1 ∂z̄p1
+

p

∑
k=p1+1

∂2p1
(

|z|2(k−1)h2,p−k+1(z)
)

∂zp1 ∂z̄p1

)

= 4p1

(
p

∑
k=p1+1

(k − 1) · · · (k − p1)z̄
k−p1−1

∂p1
(

zk−1h1,p−k+1(z)
)

∂zp1

+
p

∑
k=p1+1

(k − 1) · · · (k − p1)z
k−p1−1

∂p1
(

z̄k−1h2,p−k+1(z)
)

∂z̄p1

)

= 4p1

p−p1

∑
k=1

|z|2(k−1)
(

h∗1,p−p1−k+1(z) + h
∗
2,p−p1−k+1(z)

)

,

where for each k ∈ {1, · · · , p − p1},

(2.1)

h∗1,p−p1−k+1(z) =







(k + p1 − 1) · · · k
(∂p1

(

zk+p1−1h1,p−p1−k+1(z)
)

∂zp1

)

/zk−1 if z 6= 0

(k + p1 − 1) · · · kh1,p−p1−k+1(0) if z = 0

and

(2.2)

h∗2,p−p1−k+1(z) =







(k + p1 − 1) · · · k
(∂p1

(

zk+p1−1h2,p−p1−k+1(z)
)

∂zp1

)

/zk−1 if z 6= 0

(k + p1 − 1) · · · kh2,p−p1−k+1(0) if z = 0
.

Let

F∗(z) =
p2

∑
k=1

|z|2(k−1)
(

h∗1,p2−k+1(z) + h
∗
2,p2−k+1(z)

)

,

Hp2(z) = |z|2(p2−1)
(

h∗1,1(z) + h
∗
2,1(z)

)

and

Hp2−1(z) = Hp2(z)− F∗(z) = −
p2−1

∑
k=1

|z|2(k−1)
(

h∗1,p2−k+1(z) + h
∗
2,p2−k+1(z)

)

,

where p2 = p − p1. Then F∗ ≡ 0. It follows that

Hp2 = Hp2−1
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and Hp2 is (p2 − 1)-harmonic. Thus

∆p2−1Hp2(z) = 4p2−1
(∂2(p2−1)

(

|z|2p2 h∗1,1(z)
)

∂zp2−1∂z̄p2−1
+

∂2(p2−1)
(

|z|2p2 h
∗
2,1(z)

)

∂zp2−1∂z̄p2−1

)

= 4p2−1p2!
(

z̄
∂p2−1

(

zp2 h∗1,1(z)
)

∂zp2−1
+ z

∂p2−1
(

z̄p2 h
∗
2,1(z)

)

∂z̄p2−1

)

= 0.

Hence h∗1,1 ≡ 0, h∗2,1 ≡ 0 and F∗(z) = ∑
p2−1
k=1 |z|2(k−1)

(

h∗1,p2−k+1(z)+ h
∗
2,p2−k+1(z)

)

≡

0. Similarly, we have h∗1,p2−k+1 ≡ 0 and h∗2,p2−k+1 ≡ 0 for each k ∈ {1, · · · , p2 − 1}.

Equations (2.1) and (2.2) show that h1,p−p1−k+1 ≡ 0 and h2,p−p1−k+1 ≡ 0 for all
k ∈ {1, · · · , p − p1}. Hence Gp−k+1 ≡ 0 for each k ∈ {p1 + 1, · · · , p}.

By using the similar proof method as in Lemma 2.1, we have the following
uniqueness of p-harmonic mappings.

Lemma 2.2. Let

f (z) =
p

∑
k=1

|z|2(k−1)gp−k+1(z)

and

F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z)

be two p-harmonic mappings. Then f = F if and only if gp−k+1 = Gp−k+1 for all
k ∈ {1, · · · , p}.

By Lemma 2.2, the following useful result easily follows.

Lemma 2.3. Let

f (z) =
p

∑
k=1

|z|2(k−1)gp−k+1(z)

and

F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z)

be two p-harmonic mappings. Then f ≺ F if and only if there exists some Schwarz
function ϕ such that gp−k+1(z) = Gp−k+1(ϕ(z)) for each k ∈ {1, · · · , p}.

3 Characterization for subordination

In this section, using the decomposition of harmonic mappings and the relation
of regions for subordinate harmonic mappings, we give a characterization of sub-
ordination for p-harmonic mappings.

In [12], authors considered the decomposition of harmonic mappings and the
main tool in the proofs was the theory about the existence and uniqueness of
solutions to Beltrami equation with a given dilatation. In the theory of quasicon-
formal mappings, it is known that for any measurable function µ with ‖µ‖∞ < 1,
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the Beltrami equation fz̄ = µ fz admits a homeomorphic solution F, and every so-
lution has the form f = ψ ◦ F for some analytic function ψ (cf. [16]). A complex-
valued harmonic mapping with positive Jacobian in D is known to satisfy the

Beltrami equation of second kind fz̄ = a fz, where a is an analytic function with
the property |a(z)| < 1 in D. On the other hand, every solution of such an equa-
tion is harmonic. Moreover, if ‖a‖∞ < 1, then the equation admits homeomorphic
solutions (cf. [15]).

We assume that all harmonic mappings mentioned in this section are sense-
preserving, i.e. have a positive Jacobian.

In [12], authors proved

Theorem B. Let f be a complex-valued nonconstant harmonic mapping defined on a
domain D ⊂ C and let a be its dilatation function. Then in order that f have a de-
composition f = F ◦ ϕ for some function ϕ analytic in D and some univalent harmonic
mapping F defined on ϕ(D), it is necessary and sufficient that |a(z)| 6= 1 on D and
a(z1) = a(z2) wherever f (z1) = f (z2). Under these conditions the representation is
unique up to conformal mappings; any other representation f = F̃ ◦ ϕ̃ has the form
F̃ = F ◦ ψ−1 and ϕ̃ = ψ ◦ ϕ for some conformal mapping ψ defined on ϕ(D).

Using Theorem B, we obtain the following lemma.

Lemma 3.1. Let f and g be two harmonic mappings of D, where f (0) = g(0) and g
is univalent. Then f ≺ g if and only if f (D) ⊂ g(D), |a f (z)| 6= 1, a f (z1) = a f (z2)

wherever f (z1) = f (z2) and (g−1)w̄ = µ(g−1)w, where a f is the dilatation of f and

µ = −a f ◦ f−1.

Proof. Assume f ≺ g. Then there is some Schwarz function ϕ such that f = g ◦ ϕ.
The necessity follows from Theorem B.

Now, we come to prove the sufficiency. By the assumptions and Theorem B,
we see that there is an univalent harmonic mapping f1 and an analytic function
ϕ1 such that f = f1 ◦ ϕ1. Since (g−1)w̄ = µ(g−1)w, by the uniqueness of qua-
siconformal mappings with a prescribed complex dilatation, we conclude that
f1 = g ◦ ψ for some conformal mapping ψ (cf. [16]). Thus

f = f1 ◦ ϕ1 = (g ◦ ψ) ◦ ϕ1 = g ◦ ϕ,

where ϕ = ψ ◦ ϕ1. From f (D) ⊂ g(D), we deduce that ϕ is a Schwarz function
and then f ≺ g.

Now, we are ready to state our main result of this section.

Theorem 3.1. Let

f (z) =
p

∑
k=1

|z|2(k−1)gp−k+1(z)

and

F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z)

be two p-harmonic mappings with gp−k+1(0) = Gp−k+1(0) for k ∈ {1, · · · , p}. If all
Gp−k+1 (k ∈ {1, · · · , p}) are univalent harmonic mappings, then f ≺ F if and only if
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for each k ∈ {1, · · · , p}, gp−k+1(D) ⊂ Gp−k+1(D), |ap−k+1(z)| 6= 1, ap−k+1(z1) =

ap−k+1(z2) wherever gp−k+1(z1) = gp−k+1(z2), (G
−1
p−k+1)w̄ = µp−k+1(G

−1
p−k+1)w,

where ap−k+1 is the dilatation of gp−k+1, µp−k+1 = −ap−k+1 ◦ g−1
p−k+1 and G−1

1 ◦ g1 =

· · · = G−1
p ◦ gp.

The proof easily follows from Lemmas 2.3 and 3.1.

4 Integral means

In [21], Schaubroeck studied the relation of the integral means for subordinate
harmonic mappings. By using a different method, we generalize one of the main
results in [21], i.e., Theorem A, to the case of p-harmonic mappings. Our result is
as follows.

Theorem 4.1. Let

f (z) =
p

∑
k=1

|z|2(k−1)gp−k+1(z) and F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z)

be two p-harmonic mappings of D. Suppose f ≺ F. Then for any s ≥ 1 and 0 ≤ r <

1, Ms(r, f ) ≤ Ms(r, F), where Ms(r, f ) is the integral mean
(

1
2π

∫ 2π
0 | f (reiθ)|sdθ

)
1
s .

Equality occurs for 0 < r < 1 only when Gp−k+1 is constant for each k ∈ {1, · · · , p} or

when ϕ is a rotation ϕ(z) = eiθz for some θ ∈ [0, 2π].

Proof. Since f ≺ F, it follows that f (0) = F(0), and then | f (0)|s = |F(0)|s .
Fix r ∈ (0, 1) and let

fr(z) =
p

∑
k=1

r2(k−1)gp−k+1(z) and Fr(z) =
p

∑
k=1

r2(k−1)Gp−k+1(z).

It is obvious that fr and Fr are harmonic mappings. Since f ≺ F, Lemma 2.3 im-
plies that there exists some Schwarz function ϕ such that gp−k+1(z) = Gp−k+1(ϕ(z))
for each k ∈ {1, · · · , p}. It follows that fr ≺ Fr . By Theorem A, we have
Ms(r1, fr) ≤ Ms(r1, Fr) for any r1 ∈ (0, 1). Hence

∫ 2π

0
| fr(r1eiθ)|sdθ =

∫ 2π

0
|

p

∑
k=1

r2(k−1)gp−k+1(r1eiθ)|sdθ

≤
∫ 2π

0
|Fr(r1eiθ)|sdθ

=
∫ 2π

0
|

p

∑
k=1

r2(k−1)Gp−k+1(r1eiθ)|sdθ.

Let r1 = r. Then
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∫ 2π

0
|

p

∑
k=1

r2(k−1)gp−k+1(reiθ)|sdθ ≤
∫ 2π

0
|

p

∑
k=1

r2(k−1)Gp−k+1(reiθ)|sdθ,

so

Ms(r, f ) ≤ Ms(r, F).

Assume that

Ms(r, f ) = Ms(r, F),

that is,
Ms(r, fr) = Ms(r, Fr).

A similar argument as in the proof of Theorem A shows that Fr is constant or ϕ is
a rotation ϕ(z) = eiθz for some θ ∈ [0, 2π]. It is easy to show that Fr ≡ cr for each
r ∈ (0, 1) if and only if Gp−k+1 = cp−k+1 for k ∈ {1, · · · , p}, where cr and cp−k+1

are constants depending only on r and k, respectively. The proof is complete.

In [19], Nunokawa, Saitoh, Owa and Takahashi discussed the relation of sub-
ordination and integral means of real harmonic mappings. Their main result is
[19, Theorem 1]. In the following, we find an analogue of [19, Theorem 1] for
p-harmonic mappings.

Theorem 4.2. Suppose that

f (z) =
p

∑
k=1

|z|2(k−1)gp−k+1(z) and F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z)

are two p-harmonic mappings of D. If f ≺ F, then for any r with 0 ≤ r < 1 and any s
with s ≥ 1,

∫ 2π

0
|Re f (reiθ)|sdθ ≤

∫ 2π

0
|ReF(reiθ)|sdθ. (4.1)

Proof. It follows from f ≺ F that Re f (0) = ReF(0), and then |Re f (0)|s = |ReF(0)|s .
Fix r ∈ (0, 1) and let

fr(z) =
p

∑
k=1

r2(k−1)gp−k+1(z) and Fr(z) =
p

∑
k=1

r2(k−1)Gp−k+1(z).

Then both fr and Fr are harmonic mappings. By Lemma 2.3, fr ≺ Fr and then
fr(0) = Fr(0).

Let ur(z) = Re fr(z) and Ur(z) = ReFr(z). Since fr ≺ Fr, we know ur(z) =
Ur(ϕ(z)) for some Schwarz function ϕ. Let qr, Qr be analytic functions whose
real parts are ur and Ur, respectively, and qr(0) = Qr(0). Then

ur(z) =
qr(z) + qr(z)

2
and Ur(z) =

Qr(z) + Qr(z)

2
.
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Obviously, ur(z) = Ur(ϕ(z)) if and only if qr(z) + qr(z) = Qr(ϕ(z)) + Qr(ϕ(z)).
Thus qr(z) = Qr(ϕ(z)) which implies that qr ≺ Qr. By [19, Theorem 1], for any
r1 ∈ (0, 1) and s ≥ 1,

∫ 2π

0
|Reqr(r1eiθ)|sdθ ≤

∫ 2π

0
|ReQr(r1eiθ)|sdθ.

That is,

∫ 2π

0
|Re fr(r1eiθ)|sdθ ≤

∫ 2π

0
|ReFr(r1eiθ)|sdθ

and, thus for r1 = r and s ≥ 1,

∫ 2π

0
|Re

p

∑
k=1

r2(k−1)gp−k+1(reiθ)|sdθ ≤
∫ 2π

0
|Re

p

∑
k=1

r2(k−1)Gp−k+1(reiθ)|sdθ.

The proof is complete.

We remark that the inequality (4.1) does not hold in general for p-harmonic
mappings f and F when 0 < s < 1. This can be seen from the following result.

Theorem 4.3. Let f (z) = |z|2(p−1)g(z) and F(z) = |z|2(p−1)G(z), where g and G are
analytic functions such that Re G(z) > 0 for any z ∈ D. Suppose f ≺ F. Then for any
r with 0 ≤ r < 1 and any s with 0 < s < 1,

∫ 2π

0
|Re f (reiθ)|sdθ ≥

∫ 2π

0
|ReF(reiθ)|sdθ.

Proof. It follows from f (0) = F(0) = 0 that |Re f (0)|s = |ReF(0)|s .

Since Re G(z) > 0 and f ≺ F, for any r1 and r with 0 < r1 < r < 1, we have
for some Schwarz function ϕ,

Re f (r1eiθ) = |Re f (r1eiθ)|

= r
2(p−1)
1 Re G(ϕ(r1eiθ))

=
r

2(p−1)
1

2π

∫ 2π

0
Re G(reiν)Re

reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)
dν

=
r

2(p−1)
1

2πr2(p−1)

∫ 2π

0
|ReF(reiν)|Re

reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)
dν.

By Hölder’s inequality, we obtain for any s with 0 < s < 1,
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1

2π

∫ 2π

0
|Re F(reiν)|sRe

reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)
dν

=
1

2π

∫ 2π

0
|Re F(reiν)|s

(

Re
reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)

)s(

Re
reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)

)1−s
dν

≤
( 1

2π

∫ 2π

0
|Re F(reiν)|Re

reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)
dν

)s
×

( 1

2π

∫ 2π

0
Re

reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)
dν

)1−s

=
( 1

2π

∫ 2π

0
|ReF(reiν)|Re

reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)
dν

)s
,

and then

∫ 2π

0
|Re f (r1eiθ)|sdθ =

r
2s(p−1)
1

r2s(p−1)

∫ 2π

0

( 1

2π

∫ 2π

0
|ReF(reiν)|Re

reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)
dν

)s
dθ

≥
r

2s(p−1)
1

r2s(p−1)

∫ 2π

0

( 1

2π

∫ 2π

0
|ReF(reiν)|sRe

reiν + ϕ(r1eiθ)

reiν − ϕ(r1eiθ)
dθ

)

dν

=
r

2s(p−1)
1

r2s(p−1)

∫ 2π

0
|ReF(reiν)|sdν.

Letting r1 → r implies

∫ 2π

0
|Re f (reiθ)|sdθ ≥

∫ 2π

0
|ReF(reiν)|sdν =

∫ 2π

0
|ReF(reiθ)|sdθ.

Remark 4.1. Let f (z) = |z|2(p−1)(1 − z) and F(z) = |z|2(p−1)(1 − zn) for large
enough n in Theorem 4.3. Then both f and F are p-harmonic and

∫ 2π

0
|Re f (reiθ)|sdθ >

∫ 2π

0
|ReF(reiθ)|sdθ

for 0 < s < 1, which shows that the requirement “s ≥ 1” in Theorem 4.2 is
necessary.

5 Extreme points of closed convex hulls of subordination fami-

lies

Before the statement of the main results, we first introduce the following concept.

Definition 5.1. Let X be a topological vector space over the field of complex num-
bers and D a set of X. A point x ∈ D is called an extreme point of D if it has no
representation of the form x = ty + (1 − t)z (0 < t < 1) as a proper convex
combination of two distinct points y and z in D.
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We denote by ED the set of all extreme points of D and by HD the closed convex
hull of D, that is, the smallest closed convex set containing D (cf. [10, P281]).

In [14], the authors proved two results on the extreme points of the family of
functions subordinate to a fixed analytic function. The main aim of this section is
to generalize these results to the case of p-harmonic mappings.

Theorem 5.1. Let F(z) = ∑
p
k=1 |z|

2(k−1)Gp−k+1(z) be p-harmonic in D with

Gp−k+1(z) = G
(1)
p−k+1(z) + G

(2)
p−k+1(z)

such that G
(1)
p−k+1(0) = 0 and G

(2)
p−k+1(0) = 0, and s(F) be the family of p-harmonic

mappings subordinate to F. Then each mapping f (z) = F(xz) with |x| = 1 belongs to
EHs(F).

Proof. Suppose, on the contrary, that f (z) = F(xz) doesn’t belong to EHs(F) for
some x with |x| = 1. Then there exist f1 and f2 ∈ Hs(F) such that f1 6= f2 and

f (z) = F(xz) = t f1(z) + (1 − t) f2(z),

where 0 < t < 1,

f1(z) =
p

∑
k=1

|z|2(k−1)G1,p−k+1(z) =
p

∑
k=1

|z|2(k−1)
(

G
(1)
1,p−k+1(z) + G

(2)
1,p−k+1(z)

)

and

f2(z) =
p

∑
k=1

|z|2(k−1)G2,p−k+1(z) =
p

∑
k=1

|z|2(k−1)
(

G
(1)
2,p−k+1(z) + G

(2)
2,p−k+1(z)

)

.

Obviously, G
(1)
1,p−k+1(0) = G

(2)
1,p−k+1(0) = G

(1)
2,p−k+1(0) = G

(2)
2,p−k+1(0) = 0 for each

k ∈ {1, · · · , p}.
By Lemma 2.2, we get

Gp−k+1(xz) = tG1,p−k+1(z) + (1 − t)G2,p−k+1(z)

for each k ∈ {1, · · ·, p}. And then, using G
(1)
1,p−k+1(0) = G

(2)
1,p−k+1(0) =

G
(1)
2,p−k+1(0) = G

(2)
2,p−k+1(0) = 0, we have

G
(1)
p−k+1(xz) = tG

(1)
1,p−k+1(z) + (1 − t)G

(1)
2,p−k+1(z)

and
G
(2)
p−k+1(xz) = tG

(2)
1,p−k+1(z) + (1 − t)G

(2)
2,p−k+1(z)

for each k ∈ {1, · · · , p}. Hence either G
(1)
p−k+1(xz) does not belong to EHs(G

(1)
p−k+1)

or G
(2)
p−k+1(xz) does not belong to EHs(G

(2)
p−k+1) for each 1 ≤ k ≤ p, which contra-

dicts [14, Theorem 6]. Hence each f (z) = F(xz) (|x| = 1) belongs to EHs(F).
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Denotes by Hs (0 < s ≤ ∞) the class of p-harmonic mappings in D subject to
the condition:

Ms(r, F) =
( 1

2π

∫ 2π

0
|F(reiθ)|sdθ

)
1
s

remains bounded as r = |z| → 1. The norm is defined as

‖F‖s = lim
r→1

Ms(r, F).

It is evident that Hs1 ⊃ Hs2 if 0 < s1 < s2 ≤ ∞. Obviously, if

F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z) =
p

∑
k=1

|z|2(k−1)
(

G
(1)
p−k+1(z) + G

(2)
p−k+1(z)

)

,

then

‖F‖2
2 = ‖

p

∑
k=1

G
(1)
p−k+1‖

2
2 + ‖

p

∑
k=1

G
(2)
p−k+1‖

2
2,

that is, ∑
p
k=1 G

(1)
p−k+1 and ∑

p
k=1 G

(2)
p−k+1 belong to the space H2 for analytic func-

tions, see [9].
In order to state the next result, we introduce a concept.

Definition 5.2. An inner function is an analytic function ϕ in D with |ϕ(z)| ≤ 1
and |ϕ(eiθ)| = 1 for almost all θ (cf. [9]).

Theorem 5.2. Let

F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z)

be p-harmonic in D and s(F) be the family of mappings subordinate to F. Suppose
that F ∈ Hs, where 2 ≤ s < ∞. If ϕ is an inner function with ϕ(0) = 0, then

f (z) = ∑
p
k=1 |z|

2(k−1)Gp−k+1(ϕ(z)) ∈ EHs(F).

Proof. The proof of Theorem 5.2 easily follows from the similar reasoning as in
the proof of [14, Theorem 7] and the following lemma.

Lemma 5.1. Let f (z) = ∑
p
k=1 |z|

2(k−1)gp−k+1(z) and F(z) = ∑
p
k=1 |z|

2(k−1)Gp−k+1(z)

be two p-harmonic mappings. Suppose f ≺ F and F ∈ H2. Then ‖ f‖2 = ‖F‖2 if and
only if there is some inner function ϕ with ϕ(0) = 0 such that

p

∑
k=1

|z|2(k−1)gp−k+1(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(ϕ(z)).

Proof. Suppose

f (z) =
p

∑
k=1

|z|2(k−1)gp−k+1(z) =
p

∑
k=1

|z|2(k−1)
(

g
(1)
p−k+1(z) + g

(2)
p−k+1(z)

)
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and

F(z) =
p

∑
k=1

|z|2(k−1)Gp−k+1(z) =
p

∑
k=1

|z|2(k−1)
(

G
(1)
p−k+1(z) + G

(2)
p−k+1(z)

)

.

Since

‖ f‖2
2 = ‖

p

∑
k=1

g
(1)
p−k+1‖

2
2 + ‖

p

∑
k=1

g
(2)
p−k+1‖

2
2

and

‖F‖2
2 = ‖

p

∑
k=1

G
(1)
p−k+1‖

2
2 + ‖

p

∑
k=1

G
(2)
p−k+1‖

2
2,

we know that ‖ f‖2 = ‖F‖2 if and only if

‖
p

∑
k=1

g
(1)
p−k+1‖

2
2 + ‖

p

∑
k=1

g
(2)
p−k+1‖

2
2 = ‖

p

∑
k=1

G
(1)
p−k+1‖

2
2 + ‖

p

∑
k=1

G
(2)
p−k+1‖

2
2.

It follows from f ≺ F and Lemma 2.3 that ∑
p
k=1 g

(1)
p−k+1 ≺ ∑

p
k=1 G

(1)
p−k+1 and

∑
p
k=1 g

(2)
p−k+1 ≺ ∑

p
k=1 G

(2)
p−k+1. By [10, Theorem 6.3], we have

‖
p

∑
k=1

g
(1)
p−k+1‖2 ≤ ‖

p

∑
k=1

G
(1)
p−k+1‖2

and

‖
p

∑
k=1

g
(2)
p−k+1‖2 ≤ ‖

p

∑
k=1

G
(2)
p−k+1‖2.

Hence

‖
p

∑
k=1

g
(1)
p−k+1‖2 = ‖

p

∑
k=1

G
(1)
p−k+1‖2

and

‖
p

∑
k=1

g
(2)
p−k+1‖2 = ‖

p

∑
k=1

G
(2)
p−k+1‖2.

From [20, Theorem 3] the proof follows.
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