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Abstract

In this paper we deal with non−smooth vector fields on the plane. We
prove that the analysis of their local behavior around certain typical singu-
larities can be treated via singular perturbation theory. In fact, after a reg-
ularization of a such system and a blow−up we are able to bring out some
results that bridge the space between non−smooth dynamical systems pre-
senting typical singularities and singularly perturbed smooth systems.

1 Introduction

This work fits within the geometric study of Singular Perturbation Problems ex-
pressed by vector fields on R

2. We study the phase portraits of certain non−
smooth planar vector fields having a curve Σ as the discontinuity set. We present
some results in the framework developed by Sotomayor and Teixeira in [13] (and
extended in [11]) and establish a bridge between those systems and the funda-
mental role played by the Geometric Singular Perturbation Theory. This transi-
tion was introduced in papers like [2] and [9], in dimensions 2 and 3 respectively.
Results in this context can be found in [10]. We deal with non−smooth vector
fields presenting structurally unstable configurations and we prove that these
structurally unstable configurations are carried over the Geometric Singular Per-
turbation Problem associated. Some good surveys about Geometric Singular Per-
turbation Theory are [3] and [4], among others.
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Let U ⊆ R
2 be an open set and Σ ⊆ U given by Σ = f−1(0), where

f : U −→ R is a smooth function having 0 ∈ R as a regular value (i.e. ∇ f (p) 6=
0, for any p ∈ f−1(0)). Clearly Σ is the separating boundary of the regions
Σ+ = {q ∈ U| f (q) ≥ 0} and Σ− = {q ∈ U| f (q) ≤ 0}. We can assume that
Σ is represented, locally around a point q = (x, y), by the function f (x, y) = x.

Designate by X
r the space of Cr−vector fields on a compact set K ⊂ U en-

dowed with the Cr−topology with r ≥ 1. Call Ω̃r = Ω̃r(K, f ) the space of vector
fields Z : K \ Σ → R

2 such that

Z(x, y) =

{
X(x, y), for (x, y) ∈ Σ+,
Y(x, y), for (x, y) ∈ Σ−,

(1)

where X = (h1, g1), Y = (h2, g2) are in X
r. The trajectories of Z are solutions of

q̇ = Z(q), which has, in general, discontinuous right−hand side.

In what follows we will use the notation

X.∇ f (p) = 〈∇ f (p), X(p)〉 and Y.∇ f (p) = 〈∇ f (p), Y(p)〉 .

We distinguish the following regions on the discontinuity set Σ :

◮ Σ1 ⊆ Σ is the sewing region if (X.∇ f )(Y.∇ f ) > 0 on Σ1 .

◮ Σ2 ⊆ Σ is the escaping region if (X.∇ f ) > 0 and (Y.∇ f ) < 0 on Σ2.

◮ Σ3 ⊆ Σ is the sliding region if (X.∇ f ) < 0 and (Y.∇ f ) > 0 on Σ3.

Definition 1. The sliding vector field associated to Z ∈ Ω̃r is the vector field Zs tangent
to Σ3 and defined at q ∈ Σ3 by Zs(q) = m − q with m being the point of the segment
joining q + X(q) and q + Y(q) such that m − q is tangent to Σ3 (see Figure 1).

q

q + Y(q)

q + X(q)

ZΣ(q)

Σ2

Figure 1: Filippov’s convention.

Observe that if q ∈ Σ2 for Z ∈ Ω̃r then q ∈ Σ3 for −Z. Therefore we can
define the escaping vector field on Σ2 associated to Z by Ze = −(−Z)s . The sewing
vector field associated to Z is the vector field Zw defined in q ∈ Σ1 as an arbitrary
convex combination of X(q) and Y(q), i.e., Zw(q) = λX(q) + (1 − λ)Y(q) where
λ ∈ [0, 1]. In what follows we use the notation ZΣ for all these cases.
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Let Ω
r = Ω

r(K, f ) be the space of vector fields Z : K → R
2 such that Z ∈ Ω̃

r

and Z(q) = ZΣ(q) for all q ∈ Σ. We write Z = (X, Y), which we will accept to
be multivalued in points of Σ. The basic results of differential equations, in this
context, were stated by Filippov in [5]. Related theories can be found in [7, 13, 15].

An approximation of the non−smooth vector field Z = (X, Y) by a 1−parame-
ter family Zǫ of smooth vector fields is called an ǫ−regularization of Z. We give
the details about this process in Section 3. A transition function is used to aver-
age X and Y in order to get a family of smooth vector fields that approximates
Z. The main goal of this process is to deduce certain dynamical properties of the
non−smooth dynamical system from the regularized system. The regularization
process developed by Sotomayor and Teixeira produces a singular problem for
which the discontinuous set is a center manifold. Via a blow up we establish
a bridge between non−smooth dynamical systems and the geometric singular
perturbation theory. This paper deals almost exclusively with the critical (or sin-
gular) dynamics, namely the limit r = 0 in a singular perturbation of the form
rẋ = a(x, y, r), ẏ = b(x, y, r), except for giving regularized vector fields in a form
that allows them to be analyzed in the nonsingular limit.

Roughly speaking, the main results of this paper are the following:

Theorem 1. Consider Z(x, y) = Zλ(x, y) = (X(x, y), Yλ(x, y)) ∈ Ωr a non−smooth
planar vector field, where λ ∈ (−1, 1) ⊂ R, and Σ identified with the y−axis. Let the
trajectories of X be transverse to Σ and Z0 presenting either a hyperbolic saddle of Y0 or
a hyperbolic focus of Y0 or a Σ−cusp point of Y0 at q ∈ Σ. Then there exists a singular
perturbation problem

θ′ = α(r, θ, y, λ) , y′ = rβ(r, θ, y, λ) , (2)

with r ≥ 0, θ ∈ (π/4, 3π/4), y ∈ Σ and α and β of class Cr such that the unfold-
ing of (2) produces the same topological behaviors as the unfolding of the corresponding
topological normal forms of Zλ presented in Subsection 5.1.

Theorem 2. Consider Z(x, y) = Zµ(x, y) = (Xµ(x, y), Yµ(x, y)) ∈ Ωr a non−smooth

planar vector field, where either µ = λ ∈ R or µ = (λ, ε) ∈ R
2, and Σ identified with

the y−axis. Consider that q = (xq, yq) ∈ Σ is a Σ−fold point of both Xµ and Yµ when
µ = 0 or µ = (0, 0). Then there exists a singular perturbation problem

θ′ = α(r, θ, y, µ) , y′ = rβ(r, θ, y, µ) , (3)

with r ≥ 0, θ ∈ (π/4, 3π/4), y ∈ Σ, α and β of class Cr such that the following
statements holds:

(a) For all small neighborhood U of q in Σ the region (Σ2 ∪Σ3)∩ (U −{yq}) is home-
omorphic to the slow critical manifold α(0, θ, y, µ) = 0 of (3) where
y ∈ (U − {yq}).

(b) The vector field ZΣ, on (Σ2 ∪ Σ3) ∩ (U − {yq}), and the reduced problem of (3),
with y ∈ (U − {yq}), are topologically equivalent.
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(c) The slow critical manifold α(0, θ, y, 0) = 0 of (3), where y = yq, has just an
horizontal component, i.e., α(0, θ, yq, 0) = 0 can be identified with {(θ, y) | θ ∈
(π/4, 3π/4) , y = yq}. Moreover, this configuration is structurally unstable.

The unfolding of (3) produces the same topological behaviors as the unfolding of the
corresponding normal forms of Zλ presented in Table 1 and in Equation (20).

For a precise definition of Σ−cusp and Σ−fold points see Section 2. For a
precise definition of slow critical manifold see Section 4.

Observe that Theorem 2 generalizes Theorem 1.1 of [10], because here we
allow that X.∇ f (q) = Y.∇ f (q) = 0. In fact, if for any q ∈ Σ we have that
X.∇ f (q) 6= 0 or Y.∇ f (q) 6= 0 then Theorem 1.1 of [10] says that there exists a
singular perturbation problem such that the sliding region is homeomorphic to
the slow critical manifold and the sliding vector field is topologically equivalent
to the reduced problem.

Remark 1. In [2] the blow up parameter θ belongs to the interval (0, π), however the
transition function ϕ (see Section 3) is constant when θ ∈ (0, π/4) ∪ (3π/4, π). So the
restriction of ϕ to the interval (π/4, 3π/4) is enough to describe the dynamic.

The paper is organized as follows: in Section 2 we give the basic theory about
Non−Smooth Vector Fields on the plane, in Section 3 we give the theory about
the regularization process, in Section 4 we present a few relevant methods of
Geometric Singular Perturbation Theory, in Section 5 we present the singularities
treated in Theorem 1, give its topological normal forms and prove Theorem 1, in
Section 6 we present the singularities treated in Theorem 2, give its topological
normal forms and prove Theorem 2.

2 Preliminaries

We say that q ∈ Σ is a Σ−regular point if

(i) X.∇ f (q)Y.∇ f (q) > 0 or

(ii) X.∇ f (q)Y.∇ f (q) < 0 and ZΣ(q) 6= 0 (that is q ∈ Σ2 ∪ Σ3 and it is not a
singular point of ZΣ).

The points of Σ which are not Σ−regular are called Σ−singular. We distin-
guish two subsets in the set of Σ−singular points: Σt and Σp. Any q ∈ Σp

is called a pseudo equilibrium of Z and it is characterized by ZΣ(q) = 0. Any
q ∈ Σ

t is called a tangential singularity and is characterized by ZΣ(q) 6= 0 and
X.∇ f (q)Y.∇ f (q) = 0 (q is a contact point of ZΣ).

A tangential singularity q ∈ Σt is a Σ−fold point of X if X.∇ f (q) = 0 but
X2.∇ f (q) = X.∇(X.∇ f )(q) 6= 0. Moreover, q ∈ Σ is a visible (resp. invisible)
Σ−fold point of X if X.∇ f (q) = 0 and X2.∇ f (q) > 0 (resp. X2.∇ f (q) < 0).
We say that q ∈ Σt is a Σ−cusp point of X if X.∇ f (q) = X2.∇ f (q) = 0 but
X3.∇ f (q) 6= 0. Moreover, q ∈ Σ is a natural (resp. inverse) Σ−cusp point of X if
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X.∇ f (q) = X2.∇ f (q) = 0 and X3.∇ f (q) > 0 (resp. X3.∇ f (q) < 0).

A pseudo equilibrium q ∈ Σp is a Σ−saddle provided one of the following
condition is satisfied: (i) q ∈ Σ2 and q is an attractor for ZΣ or (ii) q ∈ Σ3 and q is
a repeller for ZΣ. A pseudo equilibrium q ∈ Σp is a Σ−repeller (resp. Σ−attractor)
provided q ∈ Σ2 (resp. q ∈ Σ3) and q is a repeller (resp. attractor) equilibrium
point for ZΣ.

3 Regularization

In this section we present the concept of ǫ−regularization of non−smooth vector
fields. It was introduced by Sotomayor and Teixeira in [13]. The regularization
gives the mathematical tool to study the stability of these systems, according with
the program introduced by Peixoto in [12]. The method consists in the analysis of
the regularized vector field which is a smooth approximation of the non−smooth
vector field. Using this process we get a 1−parameter family of vector fields
Zǫ ∈ X

r such that for each ǫ0 > 0 fixed it satisfies that:

(i) Zǫ0 is equal to X in all points of Σ+ whose distance to Σ is bigger than ǫ0;

(ii) Zǫ0 is equal to Y in all points of Σ− whose distance to Σ is bigger than ǫ0.

Definition 2. A C∞−function ϕ : R −→ R is a transition function if ϕ(x) = −1 for
x 6 −1, ϕ(x) = 1 for x > 1 and ϕ′(x) > 0 if x ∈ (−1, 1). The ǫ−regularization of
Z = (X, Y) is the 1−parameter family Zǫ ∈ X

r given by

Zǫ(q) =

(
1

2
+

ϕǫ( f (q))

2

)
X(q) +

(
1

2
− ϕǫ( f (q))

2

)
Y(q). (4)

with ϕǫ(x) = ϕ(x/ǫ), for ǫ > 0.

4 Singular Perturbations

Definition 3. Let U ⊆ R
2 be an open subset and take ǫ > 0. A singular perturbation

problem in U (SP−Problem) is a differential system which can be written like

x′ = dx/dτ = l(x, y, ǫ), y′ = dy/dτ = ǫm(x, y, ǫ) (5)

or equivalently, after the time re−scaling t = ǫτ

ǫẋ = ǫdx/dt = l(x, y, ǫ), ẏ = dy/dt = m(x, y, ǫ), (6)

with (x, y) ∈ U and l, m smooth in all variables.

The understanding of the phase portrait of the vector field associated to a
SP−problem is the main goal of the geometric singular perturbation theory. The
techniques of this theory can be used to obtain information on the dynamics of
(5) for small values of ǫ > 0, mainly in searching limit cycles. System (5) is called
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the fast system, and (6) the slow system of SP−problem. Observe that for ǫ > 0 the
phase portraits of the fast and the slow systems coincide. For ǫ = 0, let S be the
set

S = {(x, y) : l(x, y, 0) = 0}
of all singular points of (5). We call S the slow critical manifold of the singular
perturbation problem and it is important to notice that equation (6) defines a
dynamical system, on S , called the reduced problem:

l(x, y, 0) = 0, ẏ = m(x, y, 0).

Combining results on the dynamics of these two limiting problems, with ǫ = 0,
one obtains information on the dynamics of Zǫ for small values of ǫ. We refer to
[4] for an introduction to the general theory of singular perturbations. Related
problems can be seen in [1], [3] and [14].

5 Boundary Bifurcations

Consider Z = (X, Y) ∈ Ωr. In this section we assume that the trajectories of the
smooth vector field X is transversal to Σ and that Y has either a hyperbolic saddle
or a hyperbolic focus or a Σ−cusp point in Σ. This configuration is clearly struc-
turally unstable. We present here its topological normal forms and unfoldings.

We emphasize that the content of this section proves Theorem 1.

5.1 Codimension One Normal Forms

Take Σ as the y−axis, i.e., f (x, y) = x and consider the parameter λ ∈ (−1, 1).
The specific topological normal forms presented below can be found in [6] or [8].

• Regular−saddle: Assume that the trajectories of X are transverse to Σ and
that Y has a hyperbolic saddle in Σ with the eigenspaces transverse to Σ.
The following topological normal form generically unfolds this configura-
tion.

Z(x, y) = Zλ(x, y) =






X(x, y) =

(
1
1

)
, for (x, y) ∈ Σ+,

Yλ(x, y) =

(
−y

−x − λ

)
, for (x, y) ∈ Σ−.

• Regular−focus: Assume that the trajectories of X are transverse to Σ and
that Y has a hyperbolic focus in Σ. The following topological normal form
generically unfolds this configuration.

Z(x, y) = Zλ(x, y) =





X(x, y) =

(
1
1

)
, for (x, y) ∈ Σ+,

Yλ(x, y) =

(
x + y + λ
−x + y − λ

)
, for (x, y) ∈ Σ−.
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• Regular−cusp: Assume that the trajectories of X are transverse to Σ and that
Y has a Σ−cusp point. The following topological normal form generically
unfolds this configuration.

Z(x, y) = Zλ(x, y) =





X(x, y) =

(
1
1

)
, for (x, y) ∈ Σ+,

Yλ(x, y) =

(
−y2 + λ

1

)
, for (x, y) ∈ Σ−.

5.2 Regular−saddle Bifurcation

Consider the regular−saddle topological normal form given in the previous sub-
section. The regularized vector field becomes

ẋ =
1 − y

2
+ ϕ

(
x
ǫ

) 1 + y

2
,

ẏ =
1 − x − λ

2
+ ϕ

(
x
ǫ

) 1 + x + λ

2
,

where ϕ(x/ǫ) is the transition function. Making the polar blow up

x = r cos θ and ǫ = r sin θ, (7)

we obtain

rθ̇ = − sin θ

(
1 − y

2
+ ϕ(cot θ)

1 + y

2

)
,

ẏ =
1 − r cos θ − λ

2
+ ϕ(cot θ)

1 + r cos θ + λ

2
.

In the blowing up locus r = 0 the fast dynamics is determined by the system

θ′ = − sin θ

(
1 − y

2
+ ϕ(cot θ)

1 + y

2

)
, y′ = 0 ;

and the slow dynamics on the slow critical manifold is determined by the reduced
system

−1 + y

2
+ ϕ(cot θ)

−1 − y

2
= 0 , ẏ =

1 − λ

2
+ ϕ(cot θ)

1 + λ

2
.

We remark that the slow critical manifold is given by the explicit form

y(θ) =
1 + ϕ(cot(θ))

1 − ϕ(cot(θ))
(8)

which do not depends on the parameter λ (see Figure 2). Moreover, the slow
critical manifold y(θ) is such that

lim
θ−→ π

4

y(θ) = +∞ and lim
θ−→ 3π

4

y(θ) = 0.
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X

Y

y

π
4 π

2

3π
4

x

C

X Y
y

π
4 π

2

P

3π
4

x

C

Figure 2: This figure is related to Subsection 5.2. Here it is pictured the slow critical
manifold to the left and the case λ < 0 at the right. In both we consider θ ∈ (π/4, 3π/4).

X Y
y

π
4 π

2

3π
4

x

C

X Y
y

π
4 π

2

3π
4

x

C

Figure 3: This figure is related to Subsection 5.2. Here it is pictured the case λ = 0 to the
left and the case λ > 0 at the right. In both we consider θ ∈ (π/4, 3π/4).

The dynamics on the slow critical manifold depends on λ. In fact, if either
λ > 0 or if λ = 0 then ẏ 6= 0 (see Figure 3) and if λ > 0 so ẏ has a unique
repeller critical point P (see Figure 2) given implicitly by the equation ϕ(cot θ) =
(−1 + λ)/(1 + λ).

In Figure 2 and in the next ones, double arrow over a curve means that it is
a trajectory of the fast dynamical system, and simple arrow means that it is a
trajectory of the one dimensional slow dynamical system. Moreover, we empha-
size that after the polar blowing up it appears the half cylinder C = {(θ, y) ; θ ∈
(π/4, 3π/4), y ∈ R}.

5.3 Regular−focus Bifurcation

Consider the regular−focus topological normal form given in Subsection 5.1. The
regularized vector field becomes

ẋ =
1 + λ + x + y

2
+ ϕ

(
x
ǫ

) 1 − λ − x − y

2
,

ẏ =
1 − λ − x + y

2
+ ϕ

(
x
ǫ

) 1 + λ + x − y

2
.

Similarly to the previous case, considering the polar blow−up given in (7),
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we get

rθ̇ = − sin θ

(
1 + λ + y + r cos θ

2
+ ϕ(cot θ)

1 − λ − y − r cos θ

2

)
,

ẏ =
1 + λ + y − r cos θ

2
+ ϕ(cot θ)

1 − λ − y + r cos θ

2
.

Putting r = 0, the fast dynamics is determined by the system

θ′ = sin θ

(−1 − λ − y

2
+ ϕ(cot θ)

−1 + λ + y

2

)
, y′ = 0 ;

and the slow dynamics on the slow critical manifold is determined by the reduced
system

−1 − λ − y

2
+ ϕ(cot θ)

−1 + λ + y

2
= 0 , ẏ =

1 − λ + y

2
+ ϕ(cot θ)

1 + λ − y

2
.

In this case, the slow critical manifold (see Figure 4) depends on the parameter
λ. In fact, we get the explicit expression for the slow critical manifold

y(θ) = 1 − λ +
2

−1 + ϕ(cot(θ))
. (9)

The slow critical manifold y(θ), given in the previous equation, satisfies

lim
θ−→ π

4

y(θ) = −∞ and lim
θ−→ 3π

4

y(θ) = −λ.

X

Y

y

−λ

π
4 π

2

3π
4

x

C

X

Y

y

π
4

−λ

π
2

3π
4

x

C

Figure 4: This figure is related to Subsection 5.3. Here it is pictured the slow critical
manifold to the left and the case λ < 0 at the right. In both we consider θ ∈ (π/4, 3π/4).

We give now the dynamics on the slow critical manifold. If λ < 0 so ẏ 6= 0
(see Figure 4), if λ > 0 so ẏ has an unique critical point P, given implicitly as the
solution of ϕ(cot θ) = (−1+ λ + y)/(1 + λ − y), which is an attractor (see Figure
5) and if λ = 0 so ẏ 6= 0 (see Figure 5).
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X
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2

3π
4

x

C

X

Y

y
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π
4

−λ

π
2

3π
4

x

C

Figure 5: This figure is related to Subsection 5.3. Here it is pictured the case λ = 0 to the
left and the case λ > 0 at the right. In both we consider θ ∈ (π/4, 3π/4).

5.4 Regular−Cusp Bifurcation

Consider the regular−cusp topological normal form given in Subsection 5.1. The
regularized vector field becomes

ẋ =
1 + λ − y2

2
+ ϕ

(x

ǫ

) 1 − λ + y2

2
,

ẏ = ϕ
(x

ǫ

)
.

Making the polar blow−up given in (7), we get

rθ̇ =
sin θ

2

(
ϕ(cot θ)(−1 + λ − y2)− 1 − λ + y2

)
,

ẏ = ϕ(cot θ).

Putting r = 0 the fast dynamics is determined by the system

θ′ =
sin θ

2
(ϕ(cot θ)(−1 + λ − y2)− 1 − λ + y2) , y′ = 0 ;

and the slow dynamics on the slow critical manifold is determined by the reduced
system

ϕ(cot θ)(−1 + λ − y2)− 1 − λ + y2 = 0 , ẏ = ϕ(cot θ).

Observe that the slow critical manifold depends on the parameter λ. We can
obtain the explicit form. In fact, the slow critical manifold is composed by two
branches (see Figure 6):

yλ
±(θ) = ±

√
λ(1 − ϕ(cot θ)) + 1 + ϕ(cot θ)

1 − ϕ(cot θ)
. (10)

The slow critical manifold satisfies the properties:

(i) lim
θ→ π

4

yλ
±(θ) = ±∞;
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4
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Figure 6: This figure is related to Subsection 5.4. Here it appears the Regular−cusp
bifurcation Diagram.

(ii) If λ < 0 there exists θ∗ ∈ (π/4, 3π/4) such that yλ
±(θ

∗) = 0 and the slow
critical manifold is not defined for θ ∈ (θ∗, 3π/4). For θ ∈ (π/4, θ∗) there
exist homeomorphisms ξ± between each branch of the slow critical mani-
fold and R\{0}. That is, for each z ∈ R\{0} there exists θ(z) ∈ (π/4, θ∗)
such that yλ

±(θ(z)) = z;

(iii) If λ ≥ 0 there exist homeomorphisms ξ± between each branch of the slow
critical manifold and R\{0}. That is, for each z ∈ R\{0} there exists θ(z) ∈
(π/4, 3π/4) such that yλ

±(θ(z)) = z. Moreover, lim
θ→ 3π

4

yλ
±(θ) = ±

√
λ and the

two branches of the slow critical manifold are not connected when λ 6= 0.
This peculiar fact is result of the arising of the two Σ−fold points of Y.

In fact, the item (i) is a straightforward calculus. In order to prove the item
(ii) observe Expression (10). Let θ∗ be such that ϕ(cot θ∗) = (1 + λ)(λ − 1). We
have, yλ

±(θ
∗) = 0 and the radical in (10) is negative for θ ∈ (θ∗, π).

We define the maps:

ξ± : R\{0} → (π/4, θ∗)

z 7→ θ(z) = cot−1

(
ϕ−1

(
z2 − λ − 1

1 − λ + z2

))
.

(11)

Given z ∈ R\{0} if we put ξ(z) = θ(z) in (11) we get yλ
±(θ(z)) = z. Note that

ξ± are homeomorphisms.
The proof of the item (iii) is analogous.
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The dynamics in the slow critical manifold is given by ẏ = ϕ(cot θ). So there
exists a unique critical point P given implicitly as the solution of ϕ(cot θp) = 0.
Note that this critical point is a repeller because ϕ(cot θ) < 0 for θ < θp and
ϕ(cot θ) > 0 for θ > θp. See Figure 6.

5.5 Proof of Theorem 1

The proof follows directly in face of the previous discussion and Theorem 1.1 of
[10]. Moreover, as we give the topological behavior of the cases λ < 0, λ = 0 and
λ > 0 it is easy to construct the bifurcation diagram of (2).

6 Fold−fold Bifurcations

In this section we analyze the dynamics of a non−smooth dynamical system
around a point q which is a Σ−fold point of both X and Y. We say that q is a
Fold−Fold singularity of Z ∈ Ωr.

We emphasize that the content of this section proves Theorem 2.

We divide the fold−fold singularities in types according with the sign of
X2.∇ f (q) and Y2.∇ f (q):

(a) Elliptic case: X2.∇ f (q) > 0 and Y2.∇ f (q) < 0. See Figure 7 (a).

(b) Hyperbolic case: X2.∇ f (q) < 0, Y2.∇ f (q) > 0. See Figure 7 (b).

(c.1) Parabolic case − Kind 1: X2.∇ f (q) > 0, Y2.∇ f (q) > 0. See Figure 7 (c.1).

(c.2) Parabolic case − Kind 2: X2.∇ f (q) < 0, Y2.∇ f (q) < 0. See Figure 7 (c.2).

X
XXXY YYY

xxxx

yyyy

(a) (b) (c.1) (c.2)

Figure 7: Fold−fold singularities.

Note that, we can define a first return map ψZ only in the elliptic case. Take Σ

as the y−axis, i.e., f (x, y) = x and consider the parameter λ ∈ (−1, 1). Specific
topological normal forms of the hyperbolic and parabolic fold−fold singularities
are given in Table 1 . A specific topological normal form of the elliptic fold−fold
singularity is given in Subsection 6.4. In both cases, related topological normal
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forms can be found in [6] or [8]. In this section we consider just the cases de-
scribed above, with the particular choice of orientations of the trajectories of X
and Y. In the other cases a similar approach can be done.

Hyperbolic Parabolic − Kind 1 Parabolic − Kind 2

Xλ(x, y) = (y − λ,−1) Xλ(x, y) = (y − λ, 2) Xλ(x, y) = (y − λ,−2)
Y(x, y) = (−y,−1) Y(x, y) = (−y,−1) Y(x, y) = (y,−1)

Table 1:

In the next three subsections we study the dynamics of the hyperbolic and
parabolic fold−fold singularities via geometric singular perturbations.

6.1 Hyperbolic Case

Consider the topological normal form of the hyperbolic fold−fold singularity
given in Table 1. The regularized vector field is given by

ẋ = −λ

2
+ ϕ

(x

ǫ

)(−λ + 2y

2

)
,

ẏ = −1.

By the polar blow up we get

rθ̇ = sin θ

(
λ

2
+ ϕ(cot θ)

λ − 2y

2

)
,

ẏ = −1.

Putting r = 0 the fast dynamics is determined by the system

θ′ = sin θ

(
λ

2
+ ϕ(cot θ)

(
λ − 2y

2

))
, y′ = 0 ;

and the slow dynamics on the slow critical manifold is determined by the reduced
system

λ

2
+ ϕ(cot θ)

(
λ − 2y

2

)
= 0 , ẏ = −1.

In this case we obtain the explicit expression for the slow manifold:

y(θ) =
λ(1 + ϕ(cot θ))

2ϕ(cot θ)
. (12)

Observe that, the slow critical manifold y(θ) is not defined for θ0 such that
ϕ(cot θ0) = 0. So, for λ 6= 0, y(θ) has two branches and satisfies:

(a) lim
θ−→θ−0

y(θ) = −∞ for λ < 0 and lim
θ−→θ−0

y(θ) = +∞ for λ > 0;
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(b) lim
θ−→θ+0

y(θ) = +∞ for λ < 0 and lim
θ−→θ+0

y(θ) = −∞ for λ > 0.

(c) For λ = 0 the slow critical manifold is given implicitly by yϕ(cot θ) = 0,
that is, {(θ, y) | θ = θ0} ∪ {(θ, y) | y = 0} is the slow manifold.
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Figure 8: Slow manifold depending on the parameter λ.

The dynamics on the slow critical manifold is given by ẏ = −1. Therefore,
there are not critical points. See Figure 8.

6.2 Parabolic case − Kind 1

Consider the topological normal form of the parabolic−Kind 1 fold−fold singu-
larity given in Table 1. The regularized vector field is

ẋ = −λ

2
+ ϕ

(x

ǫ

)(−λ + 2y

2

)
,

ẏ =
1

2
+

3

2
ϕ
(x

ǫ

)
.

By the polar blow up we get

rθ̇ = sin θ

(
λ

2
+ ϕ(cot θ)

(
λ − 2y

2

))
,

ẏ =
1

2
+

3

2
ϕ(cot θ).
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Putting r = 0 the fast dynamics is determined by the system

θ′ = sin θ

(
λ

2
+ ϕ(cot θ)

(
λ − 2y

2

))
, y′ = 0 ;

and the slow dynamics on the slow critical manifold is determined by the reduced
system

λ + ϕ(cot θ)(λ − 2y) = 0 , ẏ =
1

2
+

3

2
ϕ(cot θ).

The analysis is similar to the hyperbolic case. In the present case the dynamics
on the slow critical manifold is given by ẏ = 1/2 + 3ϕ(cot θ)/2. For λ < 0
(respectively λ > 0) it presents a repeller critical point (respectively an attractor
critical point). For λ = 0 the slow critical manifold is composed by two branches.
See Figure 9.
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Figure 9: Bifurcation Diagram of the Parabolic−Kind 1 Fold−Fold Singularity.
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6.3 Parabolic case − Kind 2

For this case, we get a distinct topological kind of bifurcation. Consider the topo-
logical normal form of the parabolic−Kind 2 fold−fold singularity given in Ta-
ble 1. The regularized vector field is

ẋ = −λ

2
ϕ
(x

ǫ

)
+

−λ + 2y

2
,

ẏ = −1

2

(
3 + ϕ

(x

ǫ

))
.

By the polar blow up we get

rθ̇ =
sin θ

2
(λϕ(cot θ) + λ − 2y) ,

ẏ = −1

2

(
3 + ϕ

(x

ǫ

))
.

Putting r = 0 the fast dynamics is determined by the system

θ′ =
sin θ

2
(λϕ(cot θ) + λ − 2y) , y′ = 0 ;

and the slow dynamics on the slow critical manifold is determined by the reduced
system

sin θ

(
λ

2
ϕ(cot θ) +

(
λ − 2y

2

))
= 0 , ẏ = −1

2

(
3 + ϕ

(x

ǫ

))
.

We have the explicit expression for the slow critical manifold in this case:

y(θ) =
λ

2
(1 + ϕ(cot θ)). (13)

The analysis is similar to the previous cases and the bifurcation diagram is
expressed in Figure 10.

6.4 Elliptic case

In this case, associated with the non−smooth vector fields, there exist the first
return map ψZ(p). Therefore, we need to analyze the structural stability of this
one dimensional diffeomorphism (details about the function ψZ can be found in
[16]).

Consider Z presenting an elliptic fold−fold singularity, f (x, y) = x and

Zλ(x, y) =

{
Xλ(x, y) = (y − λ, 1), for (x, y) ∈ Σ+,
Y(x, y) = (y,−1), for (x, y) ∈ Σ−.

(14)
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Figure 10: Bifurcation Diagram of the Parabolic−Kind 2 Fold−Fold Singularity.

The regularized vector field is

ẋ = −ϕ
(x

ǫ

) λ

2
+

2y − λ

2
,

ẏ = ϕ
(x

ǫ

)
.

By the polar blow up we get

rθ̇ = sin θ

(
λϕ(cot θ)

2
+

(
λ − 2y

2

))
,

ẏ = ϕ(cot θ)

Putting r = 0 the fast dynamics is determined by the system

θ′ = sin θ

(
λϕ(cot θ)

2
+

(
λ − 2y

2

))
, y′ = 0 ;

and the slow dynamics on the slow critical manifold is determined by the reduced
system

λϕ(cot θ)

2
+

(
λ − 2y

2

)
= 0 , ẏ = ϕ(cot θ).

In this case, for λ = 0, holds that Σ2 ∪ Σ3 = ∅. The explicit expression for the
slow critical manifold is

y(θ) =
λ(1 + ϕ(cot θ))

2
(15)
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and there exist an attractor critical point if λ < 0 and a repeller if λ > 0. See
Figure 11.
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Figure 11: Bifurcation Diagram of the 1−parameter Elliptic Fold−Fold Singularity.

Distinctly of the hyperbolic and parabolic cases, the unfolding (14) does not
give the generic unfolding of a non−smooth vector field presenting a elliptic
fold−fold singularity.

Assume Zλ = (Xλ, Y) like in (14). The expression of its first return map is

ψZλ
(y) = γY ◦ γXλ

(y) = y − 2λ, (16)

where γXλ
(p) (respectively γY(p)) is the first return to Σ of the trajectory of Xλ

(respectively Y) that passes through p. Observe that we can change the order of
γY and γXλ

and consequently we get another expression of ψZλ
. However both

expressions produce the same results and we fix the first one.
Therefore, we conclude that all points on Σ are fixed point of ψZλ

. This config-
uration is clearly structurally unstable. In order to obtain the generic unfolding of
this case we need to unfold the first return map. So, the unfolding of the elliptic
fold−fold singularity depends on two parameters. The first, λ, is responsible by
the displacement of one fold along the y−axis and another one, ε, for the unfold-
ing of ψZλ

.
So, the flows of Xλ and Yε are:

φt
Xλ
(x0, y0) = (x0 + (y0 − λ)t + t2/2, y0 + t),

φt
Yε
(x0, y0) =

(
x0 +

∫ t
0 hε

2(s) ds, y0 +
∫ t

0 gε
2(s) ds

)
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where
Yε(x(t), y(t)) = (hε

2(t), gε
2(t)). (17)

Let t∗ ∈ R\{0} and t1 = 2(λ − y0) such that

∫ t∗

0
hε

2(s) ds = 0 (18)

and φ
t1
Xλ
(0, y0) = (0,−y0 + 2λ) ∈ Σ.

Observe that there exist t∗ as in Equation (18) because 0 is an invisible fold
singularity of Y. We suppose that hε

2(.) and gε
2(.) satisfies:

(a) h2, g2 are Cr−functions;

(b) Yε.∇ f (0, 0) = hε
2(0) = 0;

(c) Y2
ε .∇ f (0, 0) = hε

2(0)
d

dx
hε

2(0) + gε
2(0)

d

dy
hε

2(0) 6= 0;

(d)
∫ t∗

0 gε
2(s) ds = (2 + ε)y + O(y2).

The hypotheses expressed in (18) and in the item (d) above give us sufficient
conditions to get the unfolding of the first return map ψZλ

. In fact, as we said
before, all points on Σ are fixed points of the first return map expressed in (16).
This holds because the derivative of ψZλ

(y) in (16) is equal to 1. However, with
the previous hypothesis the smooth vector fields Xλ and Yε exhibited in (14) and
(17), respectively, supply the unfolding of ψZ given by

ψZλ,ε
(y) = φt∗

Yε
◦ φ

t1
Xλ
(0, y) = (1 + ε)y + 2λ + O(y2), (19)

whose derivative is equal to (1 + ε).
Therefore, the generic unfolding for the non−smooth vector field Z present-

ing an elliptic fold−fold singularity at the origin is Zλ,ε = (Xλ, Yε) where

Zλ,ε(x, y) =

{
Xλ(x, y) = (y − λ, 1), if (x, y) ∈ Σ+,
Yε(x, y) = (hε

2(x, y), gε
2(x, y)), if (x, y) ∈ Σ−

(20)

and the smooth function hε
2 and gε

2 satisfies the conditions (a), (b), (c) and (d)
given previously.

6.5 Proof of Theorem 2

In this theorem we extend Theorem 1.1 of [10] considering that can exists a point
q such that X.∇ f (q) = Y.∇ f (q) = 0, X2.∇ f (q) 6= 0 and Y2.∇ f (q) 6= 0. In this
way, q is a Σ−fold point of both X and Y.

Consider a non−smooth dynamical system Zλ = (Xλ, Y) where λ ∈ R is
a parameter. If with the variation of λ ∈ (−ε, ε), the following behaviors are
observable then we consider that Zλ presents a bifurcation, where ε > 0 and
small. Consider λ+ ∈ (0, ε) and λ− ∈ (−ε, 0). The behaviors are:
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(i) A change of stability on Σ, i.e., where Zλ+ has a sliding region Σ3 the non−
smooth vector field Zλ− has an escaping region Σ2.

(ii) A change of stability on ẏλ, i.e., there are components of Σ such that the
induced flow on the slow manifold is such that ẏλ+ > 0 and ẏλ− < 0.

(iii) A change of stability of the Σ−singularity, i.e., Zλ+ presents a Σ−attractor
and Zλ− presents a Σ−repeller.

(iv) A change of orientation on Σ1 (the sewer region), i.e., Zλ+ and Zλ− presents
distinct orientations on Σ1.

In face of these previous observations, Theorem 2 follows straightforward
from Section 6.

Note that, as we give the topological behavior of the cases λ < 0, λ = 0 and
λ > 0 it is easy to construct the bifurcation diagram of (3) when λ ∈ R.

The case µ = (λ, ε) ∈ R
2 is used in Subsection 6.4 with analogous results.
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