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Abstract

We study an eigenvalue problem involving a degenerate and singular
elliptic operator on the whole space R

N . We prove the existence of an un-
bounded and increasing sequence of eigenvalues. Our study generalizes to
the case of degenerate and singular operators a result of A. Szulkin and M.
Willem.

1 Introduction and main result

The goal of this paper is to study the eigenvalue problem

−div(|x|α∇u(x)) = λg(x)u(x), ∀ x ∈ R
N , (1.1)

where N ≥ 3, α ∈ (0, 2), λ > 0 and g : R
N → R is a function that can change sign

on R
N satisfying the following basic assumption

(G) g ∈ L1
loc(R

N), g+ = g1 + g2 6= 0, g1 ∈ L
N

2−α (RN) and limx→y |x− y|2−αg2(x) =

0, for all y ∈ R
N and lim|x|→∞ |x|2−αg2(x) = 0.

Remark. Note that there exists functions h : R
N → R such that h 6∈ L

N
2−α (RN) but

h satisfies limx→y |x − y|2−αh(x) = 0, for all y ∈ R
N and lim|x|→∞ |x|2−αh(x) =

0. Indeed, simple computations show that we can take h(x) = |x|α−2[log(2 +

|x|2−α)](α−2)/N , if x 6= 0 and h(0) = 1.
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In the case when α = 0 problem (1.1) becomes

−∆u(x) = λg(x)u(x), ∀ x ∈ R
N . (1.2)

For this problem A. Szulkin & M. Willem proved in [8] the existence of an un-
bounded and increasing sequence of eigenvalues. Motivated by this result on
problem (1.2) we consider in this paper the natural generalization of problem
(1.2) given by problem (1.1), obtained in the case of the presence of the degener-
ate and singular potential |x|α in the divergence operator. This potential leads to
a differential operator

div(|x|α∇u(x))

which is degenerate and singular in the sense that lim|x|→0 |x|α = 0 and

lim|x|→∞ |x|α = ∞, provided that α ∈ (0, 2). Consequently, we will analyze equa-

tion (1.1) in the case when the operator div(|x|α∇u(x)) is not strictly elliptic in
the sense pointed out in D. Gilbarg & N. S. Trudinger [6] (see, page 31 in [6] for
the definition of strictly elliptic operators). It follows that some of the techniques
that can be applied in solving equations involving strictly elliptic operators fail
in this new context. For instance some concentration phenomena may occur in
the degenerate and singular case which lead to a lack of compactness. This is in
keeping, on the one hand, with the action of the non-compact group of dilations
in R

N and, on the other hand, with the fact that we are looking for entire solutions
for problem (1.1), that means solutions defined on the whole space.

Regarding the real-world applications of problems of type (1.1) we remember
that degenerate differential operators like the one which appears in (1.1) are used
in the study of many physical phenomena related to equilibrium of anisotropic
continuous media (see [5]). In an appropriate context we also note that prob-
lems of type (1.1) come also from considerations of standing waves in anisotropic
Schrödinger equations (see, e.g. [7]).

A powerful tool that can be useful when we deal with equations of type (1.1)
is the Caffarelli-Kohn-Nirenberg inequality. More exactly, in 1984, L. Caffarelli,
R. Kohn & L. Nirenberg proved in [1] (see also [2] and [3]), in the context of
some more general inequalities, the following result: given p ∈ (1, N), for all
u ∈ C∞

0 (RN), there exists a positive constant Ca,b such that

(

∫

RN
|x|−bq|u|q dx

)p/q

≤ Ca,b

∫

RN
|x|−ap|∇u|p dx , (1.3)

where

−∞ < a <
N − p

p
, a ≤ b ≤ a + 1, q =

Np

N − p(1 + a − b)
.

The constant Ca,b in inequality (1.3) is never achieved (see the paper of F. Catrina
and Z.-Q. Wang [4] for details).

Note that the Caffarelli-Kohn-Nirenberg inequality (1.3) reduces to the clas-
sical Sobolev inequality (if a = b = 0) and to the Hardy inequality (if a = 0
and b = 1). Furthermore, its utility is even more important since it implies some
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Sobolev and Hardy type inequalities in the context of degenerate differential op-
erators. More exactly, in the case when N ≥ 3, α ∈ (0, 2), p = q = 2, a = −α/2
and b = (2 − α)/2 then inequality (1.3) reads

∫

RN

u2

|x|2−α
dx ≤ C−α

2 , 2−α
2

∫

RN
|x|α|∇u|2 dx, ∀ u ∈ C∞

0 (RN) . (1.4)

Inequality (1.4) is a Hardy type inequality. The constant C−α
2 , 2−α

2
can be chosen

(

2
N−2+α

)2
(see, M. Willem [9, Théorème 20.7]). On the other hand, taking N ≥ 3,

α ∈ (0, 2), p = 2, q = 2N
N−2+α , a = −α/2, b = 0 in (1.3) we find that there exists a

positive constant Cα := C−α
2 ,0 > 0 such that the following Sobolev type inequality

holds true

(

∫

RN
|u|2⋆α dx

)2/2⋆α

≤ Cα

∫

RN
|x|α|∇u|2 dx, ∀ u ∈ C∞

0 (RN) , (1.5)

where 2⋆α = 2N
N−2+α plays the role of the critical Sobolev exponent in the classical

Sobolev inequality.
Turning back to equation (1.1) and taking into account the above discussion

we notice that the natural functional space where we can analyze equation (1.1)
is the closure of C∞

0 (RN) under the norm

‖u‖2
α =

∫

RN
|x|α|∇u|2 dx .

Let us denote this space by W1,2
α (RN). It is easy to see that W1,2

α (RN) is a Hilbert
space with respect to the scalar product

〈u, v〉α =
∫

RN
|x|α∇u∇v dx ,

for all u, v ∈ W1,2
α (RN). Furthermore, according to [4] we have

W1,2
α (RN) = C∞

0 (RN \ {0})‖·‖α
.

On the other hand, we also point out that by construction inequalities (1.4) and

(1.5) hold for all u ∈ W1,2
α (RN).

We say that λ > 0 is an eigenvalue of problem (1.1) if there exists uλ ∈
W1,2

α (RN) \ {0} such that

∫

RN
|x|α∇uλ∇ϕ dx = λ

∫

RN
g(x)uλ ϕ dx ,

for all ϕ ∈ W1,2
α (RN). For each eigenvalue λ > 0 we will call uλ in the above

definition an eigenvector corresponding to λ.
The main result of our paper is given by the following theorem:

Theorem 1. Assume that condition (G) is fulfilled. Then problem (1.1) has an un-
bounded, increasing sequence of positive eigenvalues.
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2 Proof of the main result

The conclusion of Theorem 1 will follow from the results of Lemmas 2 and 3
below.

We start by proving the following auxiliary result:

Lemma 1. Assume that condition (G) is fulfilled. Then the functional Λ : W1,2
α (RN) →

R,

Λ(u) =
∫

RN
g+(x)u2 dx ,

is weakly continuous.

Proof. • First, we show that W1,2
α (RN) ∋ u −→

∫

RN g1(x)u
2 dx is weakly

continuous.
Indeed, let {un} ⊂ W1,2

α (RN) be a sequence converging weakly to u ∈ W1,2
α (RN)

in W1,2
α (RN). By (1.5) we deduce that W1,2

α (RN) is continuously embedded in
L2⋆α(RN) and consequently {un} converges weakly to u in L2⋆α(RN). It follows

that {u2
n} converges weakly to u2 in L

N
N−2+α (RN).

Define the operator T : L
N

N−2+α (RN) → R,

T(ϕ) =
∫

RN
g1(x)ϕ dx ,

for all ϕ ∈ L
N

N−2+α (RN). Undoubtedly, T is linear. Since by (G) we have

g1 ∈ L
N

2−α (RN) we infer that T is also continuous. Combining that fact with
the remarks considered at the beginning of the proof we find that

lim
n→∞

T(un) = T(u) ,

in other words, W1,2
α (RN) ∋ u −→

∫

RN g1(x)u
2 dx is weakly continuous.

• Next, we verify that W1,2
α (RN) ∋ u −→

∫

RN g2(x)u
2 dx is weakly continu-

ous. Assume again that {un} ⊂ W1,2
α (RN) is a sequence converging weakly to

u ∈ W1,2
α (RN) in W1,2

α (RN) and ǫ > 0 is arbitrary but fixed.
By assumption (G) we deduce that there exists R > 0 such that

|x|2−αg2(x) ≤ ǫ, ∀ x ∈ Bc
R(0) ,

where Bc
R(0) := R

N \ BR(0) and BR(0) ⊂ R
N represents the open ball centered at

the origin of radius R.

Since {un} converges weakly to u in W1,2
α (RN) we deduce that it is bounded

and consequently we can define the positive constant

c :=
2

N − 2 + α
sup

n
‖un‖α .

Inequality (1.4) implies that for each n we have

∫

Bc
R(0)

g2(x)u
2
n dx ≤ ǫ

∫

Bc
R(0)

u2
n

|x|2−α
dx ≤ ǫc2 , (2.1)
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and
∫

Bc
R(0)

g2(x)u
2 dx ≤ ǫc2 . (2.2)

Recalling again condition (G) and using a compactness argument we find that
there exists a finite covering of BR(0) by closed balls Br1

(x1),..., Brk
(xk) such that

for each j ∈ {1, ..., k} we have

|x − xj|2−αg2(x) ≤ ǫ, ∀ x ∈ Brj
(xj) . (2.3)

It is easy to see that there exists r > 0 such that for each j ∈ {1, ..., k} it holds

|x − xj|2−αg2(x) ≤
ǫ

k
, ∀ x ∈ Br(xj) .

Defining

Ω := ∪k
i=1Br(xj)

we have by inequality (1.4) that
∫

Ω
g2(x)u

2
n dx ≤ ǫc2 and

∫

Ω
g2(x)u

2 dx ≤ ǫc2 . (2.4)

Relation (2.3) implies g2 ∈ L∞(BR(0) \ Ω). Since BR(0) \ Ω is bounded we find

g2 ∈ L
N

2−α (BR(0) \Ω) and with the same arguments as in the first part of the proof
we get

lim
n→∞

∫

BR(0)\Ω
g2(x)u

2
n dx =

∫

BR(0)\Ω
g2(x)u

2 dx . (2.5)

Relations (2.1), (2.2), (2.4) and (2.5) show that W1,2
α (RN) ∋ u −→

∫

RN g2(x)u
2 dx

is weakly continuous.
The proof of Lemma 1 is complete.

In order to go further we consider the following minimization problem:

(P1) minimize
u∈W1,2

α (RN)

∫

RN |x|α|∇u|2 dx, under restriction
∫

RN g(x)u2 dx = 1.

Lemma 2. Assume that condition (G) is fulfilled. Then problem (P1) has a solution
e1 ≥ 0. Moreover, e1 is an eigenfunction of problem (1.1) corresponding to the eigenvalue
λ1 :=

∫

RN |x|α|∇e1|2 dx.

Proof. Consider {un} ⊂ W1,2
α (RN) is a minimizing sequence for (P1), i.e.

∫

RN
|x|α|∇un|2 dx → inf (P1) ,

and
∫

RN
g(x)u2

n dx = 1 ,

for all n. It follows that {un} is bounded in W1,2
α (RN) and consequently there

exists u ∈ W1,2
α (RN) such that {un} converges weakly to u in W1,2

α (RN). By the
weakly lower semi-continuity of the norm we deduce

∫

RN
|x|α|∇u|2 dx ≤ lim inf

n→∞

∫

RN
|x|α|∇un|2 dx = inf (P1) .
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On the other hand, it is clear that
∫

RN
g−(x)u2

n dx =
∫

RN
g+(x)u2

n dx − 1 ,

for each n. Lemma 1 and Fatou’s lemma yield

∫

RN
g−(x)u2 dx ≤

∫

RN
g+(x)u2 dx − 1 ,

or

1 ≤
∫

RN
g(x)u2 dx .

Define, now, e1 = u
(
∫

RN g(x)u2 dx)1/2 . It is easy to see that
∫

RN g(x)e2
1 dx = 1 and

∫

RN
|x|α|∇e1|2 dx =

∫

RN |x|α|∇u|2 dx
∫

RN g(x)u2 dx
≤

∫

RN
|x|α|∇u|2 dx ≤ inf (P1) .

This shows that e1 is a solution of (P1). Moreover, it is easy to see that |e1| is also
a solution of (P1) and consequently we can assume that e1 ≥ 0.

Next, for each ϕ ∈ W1,2
α (RN) arbitrary but fixed we define f : R → R by

f (ǫ) =

∫

RN |x|α|∇(e1 + ǫϕ)|2 dx
∫

RN g(x)(e1 + ǫϕ)2 dx
.

Clearly, f is of class C1 and f (0) ≤ f (ǫ) for all ǫ ∈ R. Consequently, 0 is a
minimum point of f and thus,

f
′
(0) = 0 ,

or
∫

RN
|x|α∇e1∇ϕ dx

∫

RN
g(x)e2

1 dx =
∫

RN
|x|α|∇e1|2 dx

∫

RN
g(x)e1 ϕ dx .

Since ϕ ∈ W1,2
α (RN) has been chosen arbitrary we deduce that the above equality

holds true for each ϕ ∈ W1,2
α (RN). Taking into account that

∫

RN g(x)e2
1 dx = 1

it follows that λ1 :=
∫

RN |x|α|∇e1|2 dx is an eigenvalue of problem (1.1) with the
corresponding eigenvector e1.

The proof of Lemma 2 is complete.

In order to find other eigenvalues of problem (1.1) we solve the minimization
problems

(Pn) minimize
u∈W1,2

α (RN)

∫

RN |x|α|∇u|2 dx, under restrictions
∫

RN |x|α∇u∇e1 dx = ... =
∫

RN |x|α∇u∇en−1 dx = 0 and
∫

RN g(x)u2 dx = 1,

where ej represents the solution of problem (Pj), for j ∈ {1, ..., n − 1}.

Lemma 3. Assume that condition (G) is fulfilled. Then, for every n ≥ 2 problem (Pn)
has a solution en. Moreover, en is an eigenfunction of problem (1.1) corresponding to the
eigenvalue λn :=

∫

RN |x|α|∇en|2 dx. Furthermore, limn→∞ λn = ∞.
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Proof. The existence of en can be obtained in the same manner as in the proof

of Lemma 2, but replacing W1,2
α (RN) with the closed linear subspace

Xn :=

{

u ∈ W1,2
α (RN);

∫

RN
|x|α∇u∇e1 dx = ... =

∫

RN
|x|α∇u∇en−1 dx = 0

}

.

Then, as in Lemma 2 there exists en ∈ Xn which verifies
∫

RN
|x|α∇en∇ϕ dx = λn

∫

RN
g(x)en ϕ dx, ∀ ϕ ∈ Xn , (2.6)

where λn :=
∫

RN |x|α|∇en|2 dx and
∫

RN g(x)e2
n dx = 1.

Next, we note that for each u ∈ Xn we have
∫

RN
g(x)uej dx = 0, ∀ j ∈ {1, ..., n − 1} ,

and
∫

RN
g(x)ejek dx = δj, k, ∀ j, k ∈ {1, ..., n − 1} .

Consequently, for each v ∈ W1,2
α (RN) it holds true

∫

RN
g(x)

[

v −
n−1

∑
j=1

(

∫

RN
g(x)vej dx

)

ej

]

ek dx = 0, k ∈ {1, ..., n − 1} ,

or

∫

RN
|x|α∇

[

v −
n−1

∑
j=1

(

∫

RN
g(x)vej dx

)

ej

]

∇ek dx = 0, k ∈ {1, ..., n − 1} .

That means

v −
n−1

∑
j=1

(

∫

RN
g(x)vej dx

)

ej ∈ Xn .

Thus, for each v ∈ W1,2
α (RN) relation (2.6) holds true with ϕ = v−∑

n−1
j=1 (

∫

RN g(x)

vej dx)ej. On the other hand,

0 =
∫

RN
|x|α∇en∇ej dx = λj

∫

RN
g(x)enej dx = λn

∫

RN
g(x)enej dx ,

for all j ∈ {1, ..., n − 1}. The above pieces of information yield

∫

RN
|x|α∇en∇v dx = λn

∫

RN
g(x)env dx, ∀ v ∈ W1,2

α (RN) ,

i.e. λn :=
∫

RN |x|α|∇en|2 dx is an eigenvalue of problem (1.1) with the corre-
sponding eigenvector e1.

Next, we point out that by construction {en} is an orthonormal sequence in

W1,2
α (RN) and {λn} is an increasing sequence of positive real numbers. We show

that limn→∞ λn = ∞.
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Indeed, let us define the sequence fn := en/
√

λn. Then { fn} is an orthonormal

sequence in W1,2
α (RN) and

‖ fn‖2
α =

1

λn

∫

RN
|x|α|∇en|2 dx = 1 , ∀ n .

It means that { fn} is bounded in W1,2
α (RN) and consequently there exists

f ∈ W1,2
α (RN) such that { fn} converges weakly to f in W1,2

α (RN).
Let m an arbitrary but fixed positive integer. For each n > m we have

〈 fn, fm〉α = 0 .

Passing to the limit as n → ∞ we find

〈 f , fm〉α = 0 .

But, the above relation holds for each m positive integer. Consequently, we can
pass to the limit as m → ∞ and we find that

‖ f‖α = 0 .

This fact implies that f = 0 and thus, { fn} converges weakly to 0 in W1,2
α (RN).

Then, by Lemma 1 we conclude

lim
n→∞

∫

RN
g+(x) f 2

n dx = 0 .

On the other hand, for each positive integer n we have the estimates

1

λn
=

1

λn

∫

RN
|x|α|∇ fn|2 dx =

∫

RN
g(x) f 2

n dx ≤
∫

RN
g+(x) f 2

n dx .

Passing to the limit as n → ∞ we find that limn→∞ λn = ∞.
The proof of Lemma 3 is complete.
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