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Abstract

In this paper we generalize and extend Brosowski-Meinardus type re-
sults on invariant points from the set of best approximation to the set of
e-simultaneous approximation. As a consequence some results on e-approxi-
mation and best approximation are also deduced. The results proved extend
and generalize some of the results of R.N. Mukherjee and V. Verma [Bull.
Cal. Math. Soc. 81(1989) 191-196; Publ. de I'Inst. Math. 49(1991) 111-116],
T.D. Narang and S. Chandok [Mat. Vesnik 61(2009) 165-171; Selguk J. Appl.
Math. 10(2009) 75-80; Indian J. Math. 51(2009) 293-303], G.S. Rao and S.A.
Mariadoss [Serdica-Bulgaricae Math. Publ. 9(1983) 244-248] and of few oth-
ers.

1 Introduction and Preliminaries

The idea of applying fixed point theorems to approximation theory was initiated
by G. Meinardus [9]. Meinardus introduced the notion of invariant approxima-
tion in normed linear spaces. Generalizing the result of Meinardus, Brosowski
[2] proved the following theorem on invariant approximation using fixed point
theory:

Theorem 1.1. Let T be a linear and nonexpansive operator on a normed linear space E.
Let C be a T-invariant subset of E and x a T-invariant point. If the set Pc(x) of best

*Corresponding author
Received by the editors August 2008.
Communicated by E. Colebunders.
2000 Mathematics Subject Classification : 41A28, 41A50,47H10, 54H25.
Key words and phrases : e-simultaneous approximatively compact set, starshaped set, best ap-
proximation, best simultaneous approximation, e-simultaneous approximation, jointly continu-
ous contractive family, nonexpansive and quasi-nonexpansive mappings.

Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 821-834



822 S. Chandok — T.D. Narang

C-approximants to x is non-empty, compact and convex, then it contains a T-invariant
point.

Subsequently, various generalizations of Brosowski’s results appeared in the
literature. Singh [18] observed that the linearity of the operator T and convexity
of the set Pc(x) in Theorem 1.1 can be relaxed and proved the following:

Theorem 1.2. Let T : E — E be a nonexpansive self mapping on a normed linear space
E. Let C be a T-invariant subset of E and x a T-invariant point. If the set Pc(x) is
non-empty, compact and starshaped, then it contains a T-invariant point.

Singh [19] further showed that Theorem 1.2 remains valid if T is assumed
to be nonexpansive only on Pc(x) U {x}. Since then, many results have been
obtained in this direction (see Mukherjee and Som [10], Mukherjee and Verma
[12], Narang and Chandok ([13] [14] [15]), Rao and Mariadoss [16] and references
cited therein).

In this paper we prove some similar types of results on T-invariant points
for the set of e-simultaneous approximation to a pair of points x1, x, in a metric
space (X,d) from a set C, which is not necessarily starshaped but has a jointly
continuous contractive family. Some results on T-invariant points for the set of
e-approximation and best approximation are also deduced. The results proved in
the paper generalize and extend some of the results of [11], [12], [13], [14], [15],
[16] and of few others.

Let G be a non-empty subset of a metric space (X,d),x1,x, € X and ¢ > 0.
An element g9 € G is said to be e-simultaneous approximation(respectively,
e-simultaneous coapproximation) if d(xq,go) + d(x2,80) < r+¢ where r =
inf{d(x1,g) +d(x2,¢) : § € G} (respectively, d(go,g) +¢ < max{d(x1,8) +
d(xp,8) : § € G} for all g € G). We shall denote by P;(x1,x2,€) (respectively,
Rg(x1, xp, €)) the set of all e-simultaneous approximation (respectively, e-simulta-
neous coapproximation) to xi, x.

It can be easily seen that for ¢ = 0, the set Pg(x1,x2,¢€) (respectively,
Ri(x1,x2,€)) is the set of best simultaneous approximations (respectively, best
simultaneous coapproximations) of x1, xp in G and further if x; = xp = x, then it
reduces to the set of best approximations (respectively, best coapproximations) of
xin G.

It can be easily seen that for € > 0, the set P;(x1, x2, €) is always a non-empty
bounded set and is closed if G is closed.

A sequence < y, > in Gis called a e-minimizing sequence for x1, xo if lim;,
[d(x1,yn) +d(x2,y,)] < inf{d(x1,y) +d(x2,y) : y € G} +¢. The set G is said to
be e-simultaneous approximatively compact if for every pair x,x, € X, each
e-minimizing sequence < y, > in G has a subsequence < y,, > converging to an
element of G.

Let (X, d) be a metric space. A continuous mapping W : X x X x [0,1] = X
is said to be a convex structure on X if for all x,y € X and A € [0,1],

d(u, W(x,y,A)) < Ad(u,x) + (1 —A)d(u,y)

holds for all u € X. The metric space (X, d) together with a convex structure is
called a convex metric space [22].
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A convex metric space (X, d) is said to satisfy Property (I) [5]if forall x,y, p €
Xand A € [0,1],

d(W(x,p,A),W(y,p,A)) < Ad(x,y).

A normed linear space and each of its convex subset are simple examples
of convex metric spaces. There are many convex metric spaces which are not
normed linear spaces (see [22]). Property (I) is always satisfied in a normed linear
space.

A subset K of a convex metric space (X, d) is said to be

i) a convex set [22] if W(x,y,A) € Kforallx,y € Kand A € [0,1];

ii) p-starshaped [7] where p € K, provided W(x,p,A) € K for all x € K and
A €10,1];

iii) starshaped if it is p-starshaped for some p € K.

Clearly, each convex set is starshaped but not conversely.
A self map T on a metric space (X, d) is said to be

i) contraction if d(Tx, Ty) < kd(x,y) forall x,y € Xand 0 < k < 1;
ii) nonexpansive if d(Tx, Ty) < d(x,y) forall x,y € X;

iii) quasi-nonexpansive if the set F(T) of fixed points of T is non-empty and
d(Tx,p) <d(x,p) forallx € X and p € F(T).

A nonexpansive mapping T on X with F(T) # @ is quasi-nonexpansive, but
not conversely (see [20], p.27).

Let C be a subset of a metric space (X,d) and § = {fx : « € C} a family of
functions from [0, 1] into C, having the property fx(1) = «, for eacha € C. Such a
family § is said to be contractive if there exists a function ¢ : (0,1) — (0,1) such
that forall o, 3 € Cand forall t € (0,1),we have

d(fa(t), fp(t)) < ¢(t)d(a, B).

Such a family § is said to be jointly continuous if t — f, in [0,1] and &« — a,
in C imply fa(t) = fa. (ts) in C.

In normed linear spaces these notions were discussed by Dotson [4]. It was
observed in [4] that if C is a starshaped subset (of a normed linear space) with
star-center p then the family § = {f, : « € C} defined by fo(t) = (1 —t)p + ta
is contractive if we take ¢(tf) = t for 0 < t < 1, and is jointly continuous. The
same is true for starshaped subsets of convex metric spaces with Property (I), by
taking f,(t) = W(a, p,t) and so the class of subsets of X with the property of
contractiveness and joint continuity contains the class of starshaped sets which
in turn contains the class of convex sets.
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2 Main Results

To start with, we prove the following proposition on e-simultaneous approxima-
tion which will be used in the sequel.

Proposition 2.1. If C a non-empty e-simultaneous approximatively compact subset of a
metric space (X, d), x1,xp € X, then the set Pc(x1, X2, €) is a non-empty compact subset
of C.

Proof. Since € > 0, Pc(x1, X, €) is non-empty.

We now show that Pc(x1,xp,¢€) is compact. Let < y, > be a sequence in
Pc(x1, x2,€). Thenlim[d(x1, y,) +d(x2, yn)] < inf{d(x1,y) +d(x2,y) : y € C} +¢,
ie. < y, > is an e-minimizing sequence for the pair x1,x; in C. Since C is e-
simultaneous approximatively compact, there is a subsequence < y,, > such
that < y,, >— y € C. Consider

d(x1,y) +d(x2,y) = d(xg,limyy,,) + d(x, limyy,,)
= hm{d(xlry”i) + d(xzfy”i)}
< inf{d(x1,y) +d(x2,y) :y € C} +e&.

This implies that y € Pc(x1, x2,€). Thus we get a subsequence < y,, > of < y, >
converging to an element y € Pc(x1, x2,€). Hence Pc(x1, X2, €) is compact. u

If x; = xp = x, we have the following result on e-approximation.

Corollary 2.2. (see [13]) If C is an e-approximatively compact set in a metric space
(X, d) then Pc(x,¢€) is a non-empty compact set.

Further, if e = 0, we have the following result.

Corollary 2.3. (see, [14]) Let C be an approximatively compact subset of a metric space
(X,d), x € Xand Pc(x) = {y € C:d(x,y) = d(x,C)} is the set of best approximant
to x in C then Pc(x) is a non-empty compact subset of C.

We shall be using the following result of Hardy and Rogers [6] in proving our
first theorem.

Lemma 2.4. Let F be a mapping from a complete metric space (X, d) into itself satisfying
d(Fx,Fy) <ald(x,Fx) +d(y, Fy)] + b[d(y, Fx) +d(x, Fy)| + cd(x,y), (2.1)

forany x,y € X where a,b and c are non-negative numbers such that 2a +2b+c < 1.
Then F has a unique fixed point u in X. In fact for any x € X, the sequence {F"x}
converges to u.

Theorem 2.5. Let T be a continuous self map on a complete metric space (X, d) satis-
fying (2.1), C a T-invariant subset of X. Let Tx; = x; (i = 1,2) for some x1, x5 not in
cl(C). If Pc(x1, x2, €) is compact and has a contractive jointly continuous family §, then
it contains a T-invariant point.
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Proof. Let D = Pc(x1,xp,¢€) i.e.
D={zeC:d(xy,z)+d(x2,z) <d(x1,y)+d(x2,y) +¢ foreveryy € C}. (2.2)
Let z € D be arbitrary. Then by (2.1), we have

d(x1,Tz) +d(x2, Tz) = d(Tx1,Tz) +d(Txp, Tz)

ald(x1, Txy) +d(z,Tz)] + bld(z, Txqy) +d(x1, Tz)] +

cd(xq,z) +ald(xp, Txp) +d(z, Tz)] + bld(z, Txz) +

d(x2, Tz)| 4 cd(x2,2)

2ad(z, Tz) + (b4 ¢)[d(x1,z) +d(x2,2)] + b[d(xq1, Tz) +

d(xp, Tz)]

= ald(z,Tz) —d(x1,Tz)] +ald(z, Tz) —d(xp, Tz)] +
ald(x1, Tz) +d(x2, Tz)] + (b+¢)[d(x1,2) +d(x2,2)] +
bld(x1, Tz) +d(xp, Tz)].

IN

This gives,
(1—a—-0)[d(x1,Tz) +d(x2,Tz)] < (a+b+c)d(x1,z) +d(x2,2)].

Hence
d(xll TZ) + d(XZI TZ) < d(xl,z) + d(XZIZ) (23)

since 2a + 2b + ¢ < 1. Also, using (2.2), we get
d(xq1,Tz) +d(xp, Tz) < d(x1,y) +d(x2,y) +¢ (24)

forally € C. Hence Tz € D. Therefore T is a self map on D. Define T, : D — D
as Tyx = frx(An), x € D where < A, > is a sequence in (0, 1) such that A, — 1.
Also

d(Tux, Tuy) d(fo(/\n)rny(/\n))

< ¢(An)d(Tx, Ty)
< ¢(Au)lald(x, Tx) +d(y, Ty)] + bld(y, Tx) + d(x, Ty)] + cd(x, y)]

where ¢(A,)[2a + 2b + ¢] < 1. Therefore by Lemma 2.4, each T,, has a unique
fixed point z,, in D. Since D is compact, there is a subsequence < z,, > of < z,, >
such that z,, — z, € D. We claim that Tz, = z,. Consider z,, = Tz, =
frz,,(An;) = frz,(1) as the family § is jointly continuous and T is also continuous.
Thus z,;, — Tz, and consequently, Tz, = z, i.e. z, € D is a T-invariant point. =

Since for an e-simultaneous approximatively compact subset C of a metric
space (X, d) the set of e-simultaneous C-approximant is nonempty and compact
(Proposition 2.1), we have the following result.

Corollary 2.6. Let T be a continuous self map on a complete metric space (X, d) satis-
fying (2.1), C an e-simultaneous approximatively compact and T-invariant subset of X.
Let Tx; = x; (i = 1,2) for some x1, xp not in cl(C). If the set D = Pc(x1, x2,€) has a
contractive jointly continuous family §, then it contains a T-invariant point.



826 S. Chandok — T.D. Narang

Corollary 2.7. Let T be a continuous self map on a complete convex metric space (X, d)
with Property (I) satisfying (2.1), C an e-simultaneous approximatively compact and T-
invariant subset of X. Let Tx; = x; (i = 1,2) for some x1, xp not in cl(C). If the set
D = Pc(xy,x2,€) is p-starshaped, then it contains a T-invariant point.

Proof. Define f, : [0,1] — D as fy(t) = W(a, p,t). Then
d(fa(t), fp(t)) = d(W(w, p,t), W(B, p, 1)) < td(a,B),

$(t) =t 0 <t < 1,ie D is a contractive jointly continuous family. Taking
An = ;17 and defining T, (x) = fry(An) = W(Tx, p, An), we get the result using
Theorem 2.5. n

For ¢ = 0 in Theorem 2.5, we have the following results.

Corollary 2.8. Let T be a continuous self map on a complete metric space (X, d) satis-
fying (2.1), C a T-invariant subset of X. Let Tx; = x; (i = 1,2) for some x1, X, not
in cl(C). If Pc(x1,xp) is nonempty, compact and has a contractive jointly continuous
family §, then it contains a T-invariant point.

Corollary 2.9. Let T be a continuous self map on a complete metric space (X, d) satis-
fying (2.1), C an approximatively compact and T-invariant subset of X. Let Tx; = x;
(i = 1,2) for some x1, xp not in cl(C). If the set D = Pc(x1, X2) has a contractive jointly
continuous family §, then it contains a T-invariant point.

Corollary 2.10. Let T be a continuous self map on a complete convex metric space (X, d)
with Property (I) satisfying (2.1), C an approximatively compact and T-invariant sub-
set of X. Let Tx; = x; (i = 1,2) for some x1,x not in cl(C). If the set D of best
simultaneous C-approximants to x1, xp is p-starshaped, then it contains a T-invariant
point.

Corollary 2.11. (see [12]) Let T be a continuous self map on a Banach space X satisfying
(2.1), C an approximatively compact and T-invariant subset of X. Let Tx; = x; (i =
1,2) for some x1, xo not in cl(C). If the set of best simultaneous C-approximants to x1, xp
is starshaped, then it contains a T-invariant point.

If a = b = 0 in Corollary 2.8, the map T becomes nonexpansive, so we have
the following result.

Corollary 2.12. (see [15]) Let T be a mapping on a metric space (X,d), C a T-invariant
subset of X and x a T-invariant point. If Pc(x) is a non-empty, compact set for which
there exists a contractive jointly continuous family § of functions and T is non-expansive
on Pc(x) U {x} then Pc(x) contains a T-invariant point.

Corollary 2.13. (see [10]-Theorem 2, [17]-Theorem 3.4) Let T be nonexpansive operator
on a normed linear space X. Let C be a T-invariant subset of X and x a T-invariant
point. If Pc(x) is non-empty, compact and for which there exists a contractive jointly
continuous family § of functions, then it contains a T-invariant point.

Since for an approximatively compact subset C of a metric space (X, d) the set
Pc(x) is non-empty and compact (Corollary 2.3), we have:



e-simultaneous approximation and invariant points 827

Corollary 2.14. Let T be a mapping on a metric space (X,d), C an approximatively
compact, T-invariant subset of X and x a T-invariant point. If there exists a contractive
jointly continuous family § of functions and T is nonexpansive on Pc(x) U {x}, then
Pc(x) contains a T-invariant point.

Corollary 2.15. Let T be a mapping on a convex metric space (X, d) with Property (1), C
an approximatively compact, p-starshaped, T-invariant subset of X and x a T-invariant
point. If T is nonexpansive on Pc(x) U {x}, then Pc(x) contains a T-invariant point.

Corollary 2.16. (see [14]-Theorem 4) Let T be a quasi-nonexpansive mapping on a con-
vex metric space (X, d) with Property (I), C a T-invariant subset of X and x a T-invariant
point. If Pc(x) is nonempty, compact and starshaped, and T is nonexpansive on Pc(x),
then Pc(x) contains a T-invariant point.

Corollary 2.17. (see [14]-Theorem 5) Let T be a quasi-nonexpansive mapping on a con-
vex metric space (X,d) with Property (I), C an approximatively compact, T-invariant
subset of X and x a T-invariant point. If Pc(x) is starshaped and T is nonexpansive on
Pc(x), then Pc(x) contains a T-invariant point.

Remark2.1. 1.If a = b = 0 and x; = xp = x in Theorem 2.5, then it improves and
generalizes Theorem 1 of Narang and Chandok [13].

2. Corollary 2.8 is a generalization and extension of Theorem 1 of Rao and
Mariadoss [16] for a mapping T which maps the set D of best simultaneous
C-approximants to x1,x, € X into itself and the spaces undertaken are metric
spaces.

We shall be using the following result of Bose and Mukherjee [1] in proving
our next theorem.

Lemma 2.18. Let {F,} be a sequence of self mappings of complete metric space (X, d)
such that

d(Fix, Fy) < ad(x, Fix) +ax2d(y, Fy) + azd(y, F;x) +asd(x, Fy) +asd(x,y), (j > ;’)

(2.5
forall x,y € X where ay,ay,...,as are non-negative numbers such that 22:1 a < 1
and a3 = ay. Then the sequence {F,x} has a unique common fixed point.

Theorem 2.19. Let Ty and T, be a pair of continuous self maps on a complete metric
space (X, d) satisfying d(T1x, Toy) < d(x,y), for x,y € X (x # y). Let the set C
be Ti-invariant (i = 1,2) subset of X. Suppose that x1 and x, are two common fixed
points for the pair Ty and T, not in cI(C). If the set D = Pc(x1, X2, €) is compact and
has a contractive jointly continuous family §, then it has a point which is both Ty- and
Tr-invariant.

Proof. Since x; and x; are common fixed points of T; and T, proceeding as in
Theorem 2.5, we get that T;(D) C D and Tp(D) € D. Now we show that
there is a point z, € D such that Tizo = z, (i = 1,2). Define Ty, and Ty, as
Tinx = frix(Mn), and Topx = fr,x(A2s), x € D where < Ay, > and < Ay, >
are sequences in (0, 1) such that < Ay, >, < Ay, >— 1. Then using Lemma 2.18,
we have Ty,z;, = Toyzn = zy € D. Since D is compact, there is a subsequence



828 S. Chandok — T.D. Narang

< zy; > of < z; > such that z,, — z, € D. We claim that T1z, = z, = Thz..
Consider z, = Tip,zn; = f1yz, (AMn;) = f1y2,(1) = T1zo as the family F is jointly
continuous and Tj, is continuous. Thus z,, — Tz, and similarly, z,, — T>zo.
Hence the result. [ ]

Corollary 2.20. Let Ty and T, be a pair of continuous self maps on a complete metric
space (X,d) satisfying d(Tix, Try) < d(x,y), for x,y € X (x # y). Let C be an
e-simultaneous approximatively compact, Ti-invariant (i = 1,2) subset of X. Suppose
that xq and x are two common fixed points for the pair Ty and T, not in cI(C). If the
set D = Pc(x1,xp,€) has a contractive jointly continuous family §, then it has a point
which is both Ty- and Tr-invariant.

Corollary 2.21. Let Ty and T, be a pair of continuous self maps on a complete convex
metric space (X,d) with Property (1) satisfying d(T1x, Toy) < d(x,y), for x,y € X
(x # y). Let C be an e-simultaneous approximatively compact, Ti-invariant (i = 1,2)
subset of X. Suppose that x1 and x; are two common fixed points for the pair Ty and T,
not in cl(C). If the set D = Pc(x1, x,¢€) is starshaped, then it has a point which is both
Ty - and Tr-invariant.

For ¢ = 0, we have the following result.

Corollary 2.22. Let Ty and T, be a pair of continuous self maps on a complete metric
space (X, d) satisfying d(Tix, Toy) < d(x,y), for x,y € X (x # y). Let the set C be
Ti-invariant (i = 1,2) subset of X. Suppose that x1 and x; are two common fixed points
for the pair Ty and T, not in cl(C). If the set D = Pc(x1, x2) is nonempty, compact and
has a contractive jointly continuous family §, then it has a point which is both T1- and
Tr-invariant.

Corollary 2.23. Let Ty and T, be a pair of continuous self maps on a complete metric
space (X,d) satisfying d(Tyx, Try) < d(x,y), for x,y € X (x # y). Let C be an
approximatively compact, Ti-invariant (i = 1,2) subset of X. Suppose that x1 and x;
are two common fixed points for the pair Ty and T, not in cl(C). If the set D of best
simultaneous C-approximants to x1,x2 has a contractive jointly continuous family §,
then it has a point which is both T1- and Tr-invariant.

Corollary 2.24. Let Ty and T, be a pair of continuous self maps on a complete convex
metric space (X,d) with Property (I) satisfying d(Ty1x, Toy) < d(x,y), for x,y € X
(x # y). Let C be an approximatively compact, T;-invariant (i = 1,2) subset of X.
Suppose that x1 and x, are two common fixed points for the pair Ty and T, not in cI(C).
If the set D of best simultaneous C-approximants to x1, xp is starshaped, then it has a
point which is both T1- and T,-invariant.

Corollary 2.25. (see [12]) Let Ty and T, be a pair of continuous self maps on a Banach
space X satisfying d(Ty1x, Try) < d(x,y), for x,y € X (x # y). Let C be an approxi-
matively compact, Tj-invariant (i = 1,2) subset of X. Suppose that x1 and x, are two
common fixed points for the pair Ty and T, not in cl(C). If the set D of best simulta-
neous C-approximants to xq, X, is starshaped, then it has a point which is both Ty- and
Tr-invariant.
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Definition 2.1. A subset K of a metric space (X, d) is said to be contractive if there
exists a sequence (f,) of contraction mappings of K into itself such that f,y — y
for eachy € K.

Theorem 2.26. Let T be a self mapping on a metric space (X, d), G a T-invariant subset
of X and Tx; = x; (i = 1,2) for some x1, xp not in cl(G). If T is nonexpansive and the
set D = Pg(x1, X2, €) is compact and contractive, then D contains a T-invariant point.

Proof. Proceeding as in Theorem 2.5, we can prove that T is a self map of D. Since
D is contractive, there exists a sequence (f,) of contraction mapping of D into
itself such that f,z — z for every z € D.

Clearly, f,T is a contraction on the compact set D for each n and so by Banach
contraction principle, each f,T has a unique fixed point, say z, in D. Now the
compactness of D implies that the sequence (z,,) has a subsequence (z,,) — zo €
D. We claim that z, is a fixed point of T. Let ¢ > 0 be given. Since z,, — z, and
fuTzo — Tz, there exist a positive integer m such that for all n; > m

d(zn,70) < % and d(fy, Tzo, Tzo) < %
Again,
d(f”iTZﬂ,‘/fniTZo) < d(Zni,Zo) < %
Hence

A(fu;Tzn;, Tzo) < d(fu,Tzn, fu,Tzo) + d(fn;Tzo, T2o)
e €
272
ie. d(fn,Tzn, Tzo) < eforalln; > mandso f, Tz, — Tzo. But f, Tz, = zn, — Zo
and therefore Tz, = zo. [ ]

Using Proposition 2.1 we have the following result.

Corollary 2.27. Let T be a self mapping on a metric space (X, d), G an e- simultaneous
approximatively compact, T-invariant subset of X and Tx; = x; (i = 1,2) for some
x1, X not in cl(G). If T is nonexpansive and the set D = Pg(x1,xp,€) is contractive,
then D contains a T-invariant point.

If e = 0, we have the following results.

Corollary 2.28. Let T be a self mapping on a metric space (X, d), G a T-invariant subset
of X and Tx; = x; (i = 1,2) for some x1, x3 not in cl(G). If T is nonexpansive and the
set D = Pg(x1,x7) is nonempty compact, contractive, then D contains a T-invariant
point.

Corollary 2.29. Let T be a self mapping on a metric space (X,d), G an e- approxima-
tively compact, T-invariant subset of X and Tx; = x; (i = 1,2) for some x1, x, not in
cl(G). If T is nonexpansive and the set D = Pg(x1, x2) is contractive, then D contains
a T-invariant point.
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Remark 2.2. Theorem 2.26 improves and generalizes the corresponding results of
Brosowski [2], Mukherjee and Verma [11] [12], Narang and Chandok [13], Rao
and Mariadoss [16], Singh [18] and of Subrahmanyam [21].

Definition 2.2. For each bounded subset G of a metric space (X, d), the Kura-
towski’s measure of noncompactness of G, a[G] is defined as,

a[G] = inf{e > 0: G is covered by a finite number of closed
balls centered at points of X of radius < €}.

A mapping T : X — X is called condensing if for all bounded sets G C X,
«[T(G)] < a[G].

Lemma 2.30. [3] Let X be a complete contractive metric space with contractions { f, }.
Let C be a closed bounded subsets of X and f, : C — C is nonexpansive and condensing,
then T has a fixed point in C.

Theorem 2.31. Let (X, d) be a complete, contractive metric space with contractions f.
Let G be a closed and bounded subset of X. If T is a nonexpansive and condensing self map
on X such that Tx; = x1 and Txy = x, for some x1,x, € X, then D = Pg(x1,x7,¢€)
has a T-invariant point.

Proof. As G is closed and bounded, D is nonempty, closed and bounded. Using
Theorem 2.5, we can prove that T is a self map of D. Now a direct application of
Lemma 2.30, gives a T-invariant point in D. u

Corollary 2.32. ([12]-Theorem 3.1) Let X be a complete, contractive metric space with
contractions f,. Let G be a closed and bounded subset of X. If T is a nonexpansive and
condensing self map on X such that Txy = xq and Tx, = x, for some x1,xy € X, and
D = Pg(x1, x2) is nonempty, then it has a T-invariant point.

Corollary 2.33. ([16]-Theorem 4) Let X be a complete, contractive metric space with
contractions f,. Let G be a closed and bounded subset of X. If T is a nonexpansive and
condensing self map on X such that Tx = x for some x € X, and Pg(x) is nonempty,
then it has a T-invariant point.

Definition 2.3. A mapping T on a metric space (X, d) is called Kannan[8] if there
exists & € (0, ) such that

d(Tx, Ty) < afd(x, Tx) +d(y, Ty)] (2.6)
forall x,y € X.

Kannan [8] proved that if X is complete, then every Kannan mapping has a
unique fixed point.

Theorem 2.34. Let G be an e-simultaneous approximatively compact subset of a com-
plete metric space (X,d). Let T be a self map on X with Tx; = x1 and Txy = x for
some x1,xp € X\G and let T™ satisfies

d(T™y, T"z) < ald(y, T"y) +d(z, T"z)], (2.7)

for some positive integer m, y,z € Gand 0 < a < 3. Then D = Pg(x1,x2,€) has a
unique fixed point of T.
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Proof. As Tx; = x1, and Txp = xp, T"x1 = x1 and T"xp = x; for all positive
integer n. Let yg € D. Then, for 0 < a < %,

d(x1, T™yo) + d(x2, T™yo)

d(Tx1, T"yo) +d(Tx2, T"yo)

acfd(x1, T"x1) + d(yo, T"yo)] + afd(x2, T"x2) + d(yo, T"yo)]

2ad(yo, T"yo)

a[d(yo, x1) +d(x1, T"yo)] + a[d(yo, x2) + d(x2, T"yo)],

IN

IN

which implies that

x [
d(x, T"o) +d(x2, T"y0) < 7——d(yo,x1) + 7——d(yo, x2)-

Further, for all y € G, we have

o
d(x1, T"0) +d(x2, T"y0) < 7—ld(y,x1) +d(y, x2) +¢l.
Therefore, T"yy € D, T™(D) C D. Since T™ satisfies the conditions of Kannan
map, T™ has a unique fixed point xg in D. Now, T"(Txg) = T(T™xy) = Txo,
implies that Tx is a fixed point of T™. But the fixed point of T is unique and
equals xg. Therefore Txy = xp and hence x( is a unique fixed pointof Tin D. =

Remarks 2.1. i) If ¢ = 0, Theorem 2.34 extends Theorem 3.2 of Mukherjee and
Verma [12] and further if x; = x, = x, then it extends Theorem 5 of Rao and
Mariadoss [16].

ii)It is interesting to note that Theorem 2.34 gives a unique fixed point in the
set Pg(x1, x2,€) and it also extends Brosowski's result to a generalized form (2.7)
of Kannan map (2.6).

We now prove a result for T-invariant points from the set of e-simultaneous
coapproximations.

A mapping T : X — X satisfies condition (A) (see [11]) if d(Tx,y) < d(x,y)
forallx,y € X.

Theorem 2.35. Let T be a self map satisfying condition (A) and inequality (2.1) on a
convex metric space (X, d) satisfying Property (1), G a subset of X such that Rg(x1, X2, €)
is compact and starshaped, then Rg(x1, X2, €) contains a T-invariant point.

Proof. Let go € Rg(x1,x2,¢€). Consider

d(Tgo,8) +e <d(go,8) +& < max{d(x1,g),d(x2,8)},

forall g € Gandso Tg, € Rg(x1,xp,€) i.e. T : Rg(x1, x2,€) — Rg(x1, xp,¢€). Since
Rg(x1,x2,€) is starshaped, there exists p € Rg(x1,xp,€) such that W(z,p,A) €
Rg(x1,x2,€) for all z € Rg(x1,x2,¢), A € [0,1]. Let < k, >, 0 < k, < 1
, be a sequence of real numbers such that k, — 1 asn — oo. Define T) as
Tu(z) = W(Tz,p,kn), z € Rg(x1,x2,€). Since T is a self map on Rg(x1,x2,€)
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and Rg(x1, X2, €) is starshaped, each T, is a well defined and maps Rg(x1, x2, €)
into Rg(x1, x2,€). Moreover,

d(Tuy, Taz) = d(W(Ty,p,kn), W(Tz, p,kn))
knd(Ty, Tz)
knlald(y, Ty) +4d(z,Tz)] + bd(z, Ty) +d(y, Tz)] + cd(y, z)],

IN A

where k,[2a +2b + c] < 1. So by Lemma 2.4 each T, has a unique fixed point
xn € Rg(x1,x2,¢€) i.e. Tyx, = xy for each n. Since Rg(x1, X2, €) is compact, (x;)
has a subsequence x,, — x € Rg(x1, x2,€). We claim that Tx = x. Consider,

d(xy, Tx) = d(Tyxn, Tx)
d(W(Txy,, p, kn;), Tx)

<k d(Txp, Tx) + (1 — ky,)d(p, Tx)
< ky,[ald(xn,, Txp,) +d(x, Tx)] + b[d(x, Txp,) + d(xp,;, Tx)] +
Cd(x”i/ x)] + (1 B kni)d(p/ Tx)
< k”i [a[d(x”i’ x”’i) + d(x, x)] + b[d(x, x”’i) + d(x”i’ x)] + Cd(x”i’ x)]
+(1 =k, )d(p, x)
— 0,
and so x,, — Tx. Therefore Tx = x i.e. x is T-invariant. Hence the result. [ ]

If ¢ = 0 in the above theorem we have the following result.

Corollary 2.36. Let T be a self map satisfying condition (A) and inequality (2.1) on a
convex metric space (X, d) satisfying Property (I), G a subset of X such that Rg(x1, x7)
is nonempty compact and starshaped, then Rg(x1,x2) contains a T-invariant point.

Remarks 2.2. i) Taking x; = xo = x and a = b = 0, we see that Theorem 2.35
improves and generalizes Theorem 4 of Narang and Chandok [13].

ii) Taking x; = xp = x, 4 = b = 0 and ¢ = 0, we see that Theorem 2.35
improves and generalizes Theorem 4.1 of Mukherjee and Verma [11].

Acknowledgements. The authors are thankful to the learned referee for the valu-
able suggestions.

References

[1] R.K. Bose and R.N. Mukherjee, Stability of fixed point sets and common
fixed points of families of mappings, Indian J. Pure Appl. Math. 11(1980),
1130-1138.

[2] B. Brosowski, Fixpunktsidtze in der Approximationstheorie, Mathematica
(Cluj) 11 (1969), 195-220.

[3] E. Chandler and G. Faulkner, A fixed point theorem for nonexpansive con-
densing maps, J. Aus. Math. Soc. 29(1980), 393-398.



e-simultaneous approximation and invariant points 833

[4] W.G. Dotson, On fixed points of nonexpansive mappings in nonconvex sets,
Proc. Amer. Math. Soc. 38(1973), 155-156.

[5] M.D. Guay, K.L. Singh and J.H.M. Whitfield, Fixed point theorems for non-
expansive mappings in convex metric spaces, Proc. Conference on nonlinear
analysis (Ed. S.P. Singh and J.H. Bury) Marcel Dekker 80(1982), 179-189.

[6] G.E. Hardy and T.D. Rogers, A generalization of a fixed point theorem of
Reich, Canad. Math. Bull. 16(1973), 201-206.

[7] S.Itoh, Some fixed point theorems in metric spaces, Fundamenta Mathemat-
icae 52(1979), 109-117.

[8] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76(1969),
405-408.

[9] G. Meinardus, Invarianz bei linearen approximationen, Arch. Rational
Mech. Anal. 14 (1963), 301-303.

[10] R.N. Mukherjee and T. Som, A note on application of a fixed point theorem
in approximation theory, Indian J. Pure Appl. Math. 16(1985), 243-244.

[11] R.N. Mukherjee and V. Verma, Best approximations and fixed points of non-
expansive maps, Bull. Cal. Math. Soc. 81(1989), 191-196.

[12] R.N. Mukherjee and V. Verma, Some fixed point theorems and their appli-
cations to best simultaneous approximations, Publ. de 1'Inst. Math. 49(1991),
111-116.

[13] T. D. Narang and Sumit Chandok, On e-approximation and fixed points of
nonexpansive mappings in metric spaces, Mat. Vesnik 61(2009), 165-171.

[14] T. D. Narang and Sumit Chandok, Fixed points of quasi-nonexpansive map-
pings and best approximation, Selguk J. Appl. Math. 10(2009), 75-80.

[15] T. D. Narang and Sumit Chandok, Fixed points and best approximation in
metric spaces, Indian J. Math. 51(2009), 293-303.

[16] G.S. Rao and S.A. Mariadoss, Applications of fixed point theorems to best
approximations, Serdica-Bulgaricae Math. Publ. 9(1983), 244-248.

[17] S.A. Sahab and M.S. Khan, Some results on best approximation, Review of
Research 17(1987), 143-152.

[18] S.P.Singh, An application of a fixed-point theorem to approximation theory,
J. Approx. Theory 25 (1979), 89-90.

[19] S. P. Singh, Application of fixed point theorems in approximation theory,
Appl. Nonlinear Anal.(Ed. V. Lakshmikantham), Academic Press, New York
(1979), 389-397.



834 S. Chandok — T.D. Narang

[20] Sankatha Singh, Bruce Watson and Pramila Srivastava, Fixed Point Theory
and Best Approximation: The KKM-map Principle, Kluwer Academic Pub-
lishers. Dordrecht (1997).

[21] P.V. Subrahmanyam, An application of a fixed point theorem to best approx-
imation, J. Approx. Theory 20(1977), 165-172.

[22] W. Takahashi, A convexity in metric space and nonexpansive mappings I,
Kodai Math. Sem. Rep. 22(1970), 142-149.

Department of Mathematics, Guru Nanak Dev University,
Amritsar-143005, India.
email:chansok.s@gmail.com ;tdnarang1948@yahoo.co.in



