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Abstract

Let K be a complete non-Archimedean valued field and let C(X, E) be the
space of all continuous functions from a zero-dimensional Hausdorff topolog-
ical space X to a non-Archimedean Hausdorff locally convex space E. We
will denote by Cb(X, E) (resp. by Crc(X, E)) the space of all f ∈ C(X, E)
for which f(X) is a bounded (resp. relatively compact) subset of E. The
dual space of Crc(X, E), under the topology tu of uniform convergence, is a
space M(X, E′) of finitely-additive E′-valued measures on the algebra K(X)
of all clopen , i.e. both closed and open, subsets of X. Some subspaces of
M(X, E′) turn out to be the duals of C(X, E) or of Cb(X, E) under certain
locally convex topologies.
In this paper we continue with the investigation of certain subspaces of
M(X, E′). Among other results we show that, if E is a polar Fréchet space,
then :
1. The space Mθo(X, E′), of all m ∈ M(X, E′) for which the support of the
corresponding measure mβo , on the Banaschewski compactification of X, is
contained in the θo-repletion of X, is complete under the topology of uniform
convergence on the family E of all equicontinuous subsets B of C(X, E) for
which B(x) is a compactoid subset of E for all x ∈ X.
2. The space Mbs(X, E′), of all the so called strongly-separable members of
M(X, E′) is complete under the topology of uniform convergence on the fam-
ily of all uniformly bounded members of E .
3. The space Ms(X, E′) of all m ∈ M(X, E′), for which ms is separable for all
s ∈ E, is complete under the topology of uniform convergence on the family
of all B ∈ E for which the set B(X) is compactoid.
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1 Introduction

Let K be a complete non-Archimedean valued field and let C(X, E) be the space of
all continuous functions from a zero-dimensional Hausdorff topological space X to
a non-Archimedean Hausdorff locally convex space E. We will denote by Cb(X, E)
(resp. by Crc(X, E)) the space of all f ∈ C(X, E) for which f(X) is a bounded (resp.
relatively compact) subset of E. The dual space of Crc(X, E), under the topology tu
of uniform convergence, is a space M(X, E ′) of finitely-additive E ′-valued measures
on the algebra K(X) of all clopen , i.e. both closed and open, subsets of X. Some
subspaces of M(X, E ′ turn out to be the duals of C(X,E) or of Cb(X, E) under
certain locally convex topologies.
In this paper we continue with the investigation of certain subspaces of M(X,E ′).
Among other results we show that, if E is a polar Fréchet space, then :
1. The space Mθo(X,E ′), of all m ∈ M(X, E ′) for which the support of the corre-
sponding measure mβo , on the Banaschewski compactification of X, is contained in
the θo-repletion of X, is complete under the topology of uniform convergence on the
family E of all equicontinuous subsets B of C(X, E) for which B(x) is a compactoid
subset of E for all x ∈ X.
2. The space Mbs(X, E ′), of all the so called strongly-separable members of M(X, E ′),
is complete under the topology of uniform convergence on the family of all uniformly
bounded members of E .
3. The space Ms(X, E ′) of all m ∈ M(X, E ′), for which ms is separable for all
s ∈ E, is complete under the topology of uniform convergence on the family of all
B ∈ E for which the set B(X) is compactoid.

2 Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued field, whose
valuation is non-trivial. By a seminorm, on a vector space over K, we will mean
a non-Archimedean seminorm. Similarly, by a locally convex space we will mean a
non-Archimedean locally convex space over K (see [22]). Unless it is stated explicitly
otherwise, X will be a Hausdorff zero-dimensional topological space , E a Hausdorff
locally convex space and cs(E) the set of all continuous seminorms on E. The
space of all K-valued linear maps on E is denoted by E?, while E ′ denotes the
topological dual of E. A seminorm p, on a vector space G over K, is called polar
if p = sup{|f | : f ∈ G?, |f | ≤ p}. A locally convex space G is called polar if its
topology is generated by a family of polar seminorms. A subset A of G is called
absolutely convex if λx + µy ∈ A whenever x, y ∈ A and λ, µ ∈ K, with |λ|, |µ| ≤ 1.
We will denote by βoX the Banaschewski compactification of X (see [5]) and by
υoX the N-repletion of X, where N is the set of natural numbers. By θoX we
denote the θo-completion of X (see [1]). We will let C(X, E) denote the space of
all continuous E-valued functions on X and Cb(X, E) (resp. Crc(X, E)) the space
of all f ∈ C(X, E) for which f(X) is a bounded (resp. relatively compact) subset
of E. In case E = K, we will simply write C(X), Cb(X) and Crc(X) respectively.
For A ⊂ X, we denote by χA the K-valued characteristic function of A. Also, for
X ⊂ Y ⊂ βoX, we denote by B̄Y the closure of B in Y . If f ∈ EX , p a seminorm
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on E and A ⊂ X, we define

‖f‖p = sup
x∈X

p(f(x)), ‖f‖A,p = sup
x∈A

p(f(x)).

For a locally convex space F , we denote by F c the c-dual of F , i.e the dual space
F ′ equipped with the topology of uniform convergence on the compactoid subsets
of F .

Let Ω = Ω(X) be the family of all compact subsets of βoX \X. By Ωu we will
denote the family of all Q ∈ Ω with the following property: There exists a clopen

partition (Ai)i∈I of X such that Q is disjoint from each Ai
βoX

. Also Ω1 is the family
of all zero set members of Ω, i.e all sets in Ω of the form {x ∈ βoX : h(x) = 0}, for
some h ∈ C(βoX).

For H ∈ Ω let CH be the space of all h ∈ Crc(X) for which the continuous
extension hβo to all of βoX vanishes on H. For p ∈ cs(E), let βH,p be the locally
convex topology on Cb(X, E) generated by the seminorms f 7→ ‖hf‖p, h ∈ CH . For
H ∈ Ω, βH is the locally convex topology on Cb(X, E) generated by the seminorms
f 7→ ‖hf‖p, h ∈ CH , p ∈ cs(E). The inductive limit of the topologies βH , H ∈ Ω,
is the topology β.

For d a continuous ultra-pseudometric on X , we denote by Xd the corresponding
ultrametric space and by πd : X → Xd the quotient map. Let

Td : Cb(Xd, E) → Cb(X, E)

be the induced linear map. The topology βe is defined to be the finest of all locally
convex topologies τ on Cb(X, E) for which each

Td : (Cb(Xd, E), β) → (Cb(X, E), τ)

is continuous (see [13]).
Let now K(X) be the algebra of all clopen subsets of X. We denote by M(X, E ′)

the space of all finitely-additive E ′-valued measures m on K(X) for which the set
m(K(X)) is an equicontinuous subset of E ′. For each such m, there exists a p ∈
cs(E) such that ‖m‖p = mp(X) < ∞, where, for A ∈ K(X),

mp(A) = sup{|m(B)s|/p(s) : p(s) 6= 0, A ⊃ B ∈ K(X)}.

The space of all m ∈ M(X, E ′) for which mp(X) < ∞ is denoted by Mp(X, E ′).
In case E = K, we denote by M(X) the space of all finitely-additive bounded K-
valued measures on K(X). An element m of M(X) is called τ -additive if m(Vδ) → 0
for each decreasing net (Vδ) of clopen subsets of X with

⋂
Vδ = ∅. In this case we

write Vδ ↓ ∅. We denote by Mτ (X) the space of all τ -additive members of M(X).
Analogously, we denote by Mσ(X) the space of all σ-additive m, i.e. those m with
m(Vn) → 0 when Vn ↓ ∅. For an m ∈ M(X, E ′) and s ∈ E, we denote by ms the
element of M(X) defined by (ms)(V ) = m(V )s.
Next we recall the definition of the integral of an f ∈ EX with respect to an
m ∈ M(X,E ′). For a non-empty clopen subset A of X, let DA be the family of all
α = {A1, A2, . . . , An; x1, x2, . . . , xn}, where {A1, . . . , An} is a clopen partition of A
and xk ∈ Ak. We make DA into a directed set by defining α1 ≥ α2 iff the partition of
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A in α1 is a refinement of the one in α2. For an α = {A1, A2, . . . , An; x1, x2, . . . , xn} ∈
DA and m ∈ M(X, E ′), we define

ωα(f, m) =
n∑

k=1

m(Ak)f(xk).

If the limit lim ωα(f, m) exists in K, we will say that f is m-integrable over A and
denote this limit by

∫
A f dm. We define the integral over the empty set to be 0.

For A = X, we write simply
∫

f dm. It is easy to see that if f is m-integrable over
X, then it is integrable over every clopen subset A of X and

∫
A f dm =

∫
χAf dm.

If τu is the topology of uniform convergence, then every m ∈ M(X, E ′) defines
a τu-continuous linear functional φm on Crc(X, E), φm(f) =

∫
f dm. Also every

φ ∈ (Crc(X, E), τu)
′ is given in this way by some m ∈ M(X, E ′).

For all unexplained terms on locally convex spaces, we refer to [21] and [22].

3 The Space L(X,E ′)

For x ∈ X and x′ ∈ E ′, we will denote by δx,x′ the linear functional on C(X, E)
defined by δx,x′(f) = x′(f(x)). Let L(X,E ′) be the linear subspace of C(X, E)?

spanned by the set {δx,x′ : x ∈ X, x′ ∈ E ′}. Also Cco(X, E) is the subspace of
C(X, E) consisting of all f for which the set f(X) is a compactoid subset of E. We
will consider the following families of subsets of C(X, E) :
1. E = E(X, E) is the family of all equicontinuous subsets B of C(X, E) for which
the set B(x) = {f(x) : f ∈ B} is compactoid for each x ∈ X.
2. Eb = Eb(X, E) is the family of all uniformly bounded members of E .
3. Eco = Eco(X, E) is the family of all B ∈ E for which the set B(X) is compactoid.
Let e, eb, eco be the locally convex topologies on L(X, E ′) which are the topologies
of uniform convergence on the members of E , Eb, Eco, respectively. For B ∈ E , the
seminorm pB on L(X,E ′), defined by pB(u) = supf∈B |u(f)|, is polar. Thus each of
the topologies e, eb, eco is polar.
Recall that a locally convex space F is said to be c-complete if every closed com-
pactoid subset of F is complete.

Theorem 3.1. Assume that E is polar and c-complete. Then, the dual spaces of
L(X, E ′), under the topologies e, eb and eco, coincide with the spaces C(X, E),
Cb(X, E) and Cco(X, E), respectively.

Proof: 1. For f ∈ C(X, E), the set {f} is in E . It follows from this that C(X, E)
is a subspace of the dual space of Ge = (L(X,E ′), e) (considering each element of
C(X, E) as a linear functional on Ge). On the other hand, let φ ∈ G′

e. There exists
a B ∈ E such that

{u ∈ Ge : pB(u) ≤ 1} ⊂ {u : |φ(u)| ≤ 1}.

For x ∈ X, we consider the linear form φx(x
′) =< φ, δx,x′ >, x′ ∈ E ′. If x′ is in

the polar B(x)o of B(x) in E ′, then δx,x′ ∈ Bo and so |φx(x
′)| ≤ 1. As B(x) is

compactoid, it follows that φx is continuous on the c-dual space Ec of E. Since E
is polar and c-complete, there exists a unique element f(x) ∈ E such that φx(x

′) =
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x′(f(x)) for all x′ ∈ E ′ ( by [18], Theorem 4.7). Thus we get a map f : X → E.
This map is continuous. Indeed, let p be a polar continuous seminorm on E. By
the equicontinuity of B, given x ∈ X, there exists a neighborhood Z of x such that
p(g(x)− g(y)) ≤ 1 for all g ∈ B and all y ∈ Z. Let x′ ∈ E ′, |x′| ≤ p. If g ∈ B and
y ∈ Z, then

| < g, δx,x′ − δy,x′ > | = |x′(g(x)− g(y))| ≤ p(g(x)− g(y)) ≤ 1.

Thus δx,x′ − δy,x′ ∈ Bo and so

|x′(f(x)− f(y)| = | < φ, δx,x′ − δy,x′ > | ≤ 1.

Since p is polar, it follows that p(f(x)− f(y)) ≤ 1 for all y ∈ Z, which proves that
f is continuous at x. Now, for u =

∑n
k=1 δxk,x′

k
, we have

< f, u >=
n∑

k=1

x′k(f(xk)) =< φ, u >

and so φ = f (as linear functionals on Ge). This completes the proof for e.
2. Let Gb = (L(X, E ′), eb). Since eb is coarser than e, it follows that G′

b ⊂ G′
e =

C(X, E. Let f ∈ C(X,E) be in G′
b and let B ∈ Eb be such that | < f, u > | ≤ 1 if

u ∈ Bo. We will show that f(X) is bounded in E. Since E is polar, it suffices to
prove that f(X) is weakly bounded. So let x′ ∈ E ′. As B(X) is a bounded subset of
E, there exists a λ ∈ K such that |x′(s)| ≤ |λ| for all s ∈ B(X). Now λ−1δx,x′ ∈ Bo,
for all x ∈ X, and so supx∈X |x′(f(x) ≤ |λ|. Thus f(X) is weakly bounded and
hence f ∈ Cb(X, E). Conversely, if f ∈ Cb(X, E), then {f} ∈ Eb, from which it
follows that f ∈ G′

b.
3. If Gco = (L(X, E ′), eco), then the proof of the equality G′

co
= Cco(X, E) is anal-

ogous to the one used for eb using the fact that, if D is a compactoid subset of the
polar space E, then the bipolar Boo is also compactoid.

Let σ = σ(C(X, E), L(X, E ′). If E is polar, then, on each member B of E , the
weak topology σ coincides with the topology of simple convergence since, for each
x ∈ X, B(x) is compactoid.

Theorem 3.2. Assume that E is polar and consider the dual pair

< C(X, E), L(X, E ′) > .

Let B ⊂ C(X, E). If B is a member of one of the families E, Eb, Eco, then the
bipolar Boo is also a member of the same family.

Proof : By [21], Proposition 4.10, we have that Boo =
(
co(B)

σ)e
, where D =

co(B)
σ

is the σ-closure of the absolutely convex hull co(B) of B and De is the edged
hull of D. Let x ∈ X, ε > 0 and p ∈ cs(E). Since B is equicontinuous, there exists
a neighborhood Z of x such that p(f(y)−f(x)) ≤ ε for all f ∈ B and all y ∈ Z. Let
now f ∈ co(B)

σ
and y ∈ Z. There exists a net (fδ) in co(B) which is σ-convergent

to f . The set M = [B(y)]oo is also compactoid since E is polar. The map

ω : (C(X, E), σ) → (E, σ(E, E ′),
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g 7→ g(y), is continuous. Thus fδ(y) → f(y) weakly in E. As M is weakly closed,
we have that f(y) ∈ M . On compactoid subsets of E, the weak topology and the
original topology coincide (by [21], Theorem 5.12). Thus fδ(y) → f(y) in E. Now,
for y ∈ Z, we have that fδ(y)− fδ(x) → f(y)− f(x) and hence p(f(y)− f(x)) ≤ ε.
This proves that D is equicontinuous. If x ∈ X, then D(x) ⊂ [B(x)]oo and so D(x)
is compactoid, which proves that D ∈ E . Finally, if |λ| > 1, then Boo ⊂ λD, from
which it follows that Boo ∈ E . If B ∈ Eb, then B(X) is bounded and hence [B(X)]oo

is bounded. Since Boo(X) ⊂ [B(X)]oo, it follows that Boo ∈ Eb. The case of a
B ∈ Eco is analogous taking into account the fact that, if A ⊂ E is compactoid, then
Aoo is also compactoid.

Theorem 3.3. Assume that E is polar and let B ⊂ C(X, E). Then B is equicon-
tinuous with respect to one of the topologies e, eb, eco, iff B is a member of E, Eb, or
Eco, respectively.

Proof : It follows from the preceding Theorem and from the fact that, if B is a
member of E , Eb, or Eco, then every subset of B is also a member of the same family.

4 The Space Mθo
(X, E ′) as a Completion

We will denote by Mθo(X) the space of all µ ∈ M(X) for which the support
supp(µβo), of the corresponding measure µβo on βoX is contained in θoX. Also,
by Mθo(X,E ′) we will denote the space of all m ∈ M(X, E ′) for which supp(mβo) ⊂
θoX. By Ωθo we will denote the family of all compact subsets of βoX which are
disjoint from θoX.

Theorem 4.1. For an m ∈ M(X, E ′, the following are equivalent :

1. m ∈Mθo(X, E ′).

2. If (Vδ) is a net of clopen subsets of X with Vδ
βoX ↓ H ∈ Ωθo, then there exists

a δo such that m(Vδ) = 0 for each δ ≥ δo.

3. If Vδ
βoX ↓ H ∈ Ωθo, then there exists a δ such that m(V ) = 0 for each clopen

subset V of Vδ.

4. If (Vi)i∈I is a clopen partition of X, then there exists a finite subset J of I
such that m(V ) = 0 for each clopen subset V of

⋃
i/∈J Vi.

Proof : (1) ⇒ (2). Since

supp(mβo) ⊂ θoX ⊂ βoX \H =
⋃
δ

V c
δ

βoX
,

there exists a δo such that supp(mβo) ⊂ V c
δ

βoX
. If now δ ≥ δo, then m(Vδ) =

mβo(Vδ
βoX

) = 0.
(2) ⇒ (3) . Suppose that, for each δ, there exists a clopen subset V of Vδ with
m(V ) 6= 0. Let now δ be given and let A be a clopen subset of Vδ such that m(A) 6= 0.
For each γ in the index set, let Zγ = Vγ∩A, Wγ = Vγ\Zγ. The net (Wγ) is decreasing
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and
⋂

Wγ
βoX ⊂ H. By our hypothesis (2), there exists γ ≥ δ such that m(Wγ) = 0.

If B = A ∪Wγ, then Vγ ⊂ B ⊂ Vδ and m(B) = m(A) + m(Wγ) = m(A) 6= 0. Let
now F be the family of all clopen subsets A of X with the following property: there
are γ, δ, in the index set, with Vγ ⊂ A ⊂ Vδ and m(A) 6= 0. Then F is downwards

directed and
⋂

F∈F F
βoX

= H ∈ Ωθo . Since m(F ) 6= 0 for each F ∈ F , we got a
contradiction.
(3) ⇒ (4). For each finite subset J of I, set WJ =

⋃
i/∈J Vi. Then WJ

βoX ↓ H ∈ Ωθo .
By our hypothesis (3), there exists a finite subset J of I such that m(V ) = 0 for
each clopen set V contained in WJ .
(4) ⇒ (1). Let z /∈ θoX. There exists a clopen partition (Vi)i∈I of X such that

z /∈ ⋃
i∈I Vi

βoX
. By (4), there exists a finite subset J of I such that m(V ) = 0 for

each clopen set V contained in
⋃

ı/∈J Vi. Now supp(mβo) is contained in
⋃

i∈J V i
βoX

and so z /∈ supp(mβo). This clearly completes the proof.

Theorem 4.2. If m ∈Mθo(X, E ′), then every f ∈ C(X, E) is m-integrable.

Proof : Let f ∈ C(X, E) and ε > 0. There exists a p ∈ cs(E) such that
mp(X) ≤ 1. Let (Vi)i∈I be the clopen partition of X corresponding to the equivalence
relation x ∼ y iff p(f(x)−f(y)) ≤ ε. In view of the preceding Theorem, there exists
a finite subset J of I such that m(V ) = 0 for each clopen set V contained in
D =

⋃
i/∈J Vi. Consider the finite clopen partition A = {Vi : i ∈ J}⋃{D}. If A ∈ A,

then for all clopen subsets V of A and all x, y ∈ A, we have

|m(V )[f(x)− f(y)]| ≤ p(f(x)− f(y)) ·mp(A) ≤ ε.

This proves that f is m-integrable by [14], Theorem 7.1.

Next we will assume that E is polar and c-complete and we will look at the
completion Ĝe of the space

Ge = (L(X, E ′), e).

Since Ge is Hausdorff and polar, its completion coincides with the space of all lin-
ear functionals φ on G′

e = C(X, E) which are σ(C(X, E), Ge)-continuous on e-
equicontinuous subsets of C(X, E), i.e. on the members of E (by [16]). As we
remarked in section 2, on members of E , the weak topology coincides with the
topology of simple convergence. The topology of Ĝe coincides with the topology of
uniform convergence on the members of E .

Theorem 4.3. Let E be polar and c-complete. If m ∈Mθo(X,E ′), then the map

φm : C(X, E) → K, φm(f) =
∫

f dm,

belongs to Ĝe.

Proof : Let p ∈ cs(E) be such that mp(X) ≤ 1 and let B ∈ E . Define d on
X × Y by

d(x, y) = sup
f∈B

p(f(x)− f(y)).

Then d is a continuous ultrapseudometric on X. Let ε > 0 and let (Vi)i∈I be the
clopen partition of X corresponding to the equivalence relation x ∼ y iff d(x, y) ≤ ε.
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Let (fγ) be a net in B which converges pointwise to some f ∈ B. Since m ∈
Mθo(X, E ′), there exists a finite subset J of I such that m(V ) = 0 for each clopen
subset of W =

⋃
i/∈J Vi. Consider the finite clopen partition A = {Vi : i ∈ J}⋃{W}

of X. If g ∈ B and if x, y are in the same A ∈ A, then

|m(V )[g(x)− g(y)]| ≤ p(g(x)− g(y)) ·mp(A) ≤ ε.

If xi ∈ Vi, i ∈ I, we have that∣∣∣∣∣
∫

g dm−
∑
i∈J

m(Vi)g(xi

∣∣∣∣∣ ≤ ε.

Since fγ(x) → f(x), for all x, there exists a γo such that p(fγ(xi) − f(xi)) ≤ ε for
all γ ≥ γo and all i ∈ J . If now γ ≥ γo, then∣∣∣∣∣

∫
fγ dm−

∑
i∈J

m(Vi)fγ(xi)

∣∣∣∣∣ ≤ ε and

∣∣∣∣∣f dm−
∑
i∈J

m(Vi)f(xi)

∣∣∣∣∣ ≤ ε.

Since ∣∣∣∣∣∑
i∈J

m(Vi)[fγ(xi)− f(xi)]

∣∣∣∣∣ ≤ max
i∈J

p(fγ(xi)− f(xi)) ·mp(X) ≤ ε,

it follows that
∫

fγ dm →
∫

f dm, which shows that φm ∈ Ĝe.

Theorem 4.4. Let E be polar and c-complete and let φ ∈ Ĝe. Then, for each s ∈ E,
there exists a µs ∈ Mθo(X) such that φ(gs) =

∫
g dµs for each g ∈ C(X).

Proof : Let s ∈ E and consider the linear functional

φs : C(X) → K, φs(g) = φ(gs).

Let A be an equicontinuous pointwise bounded subset of C(X) and let (gγ) be a net
in A which converges pointwise to a g ∈ A. The set B = {gs : g ∈ A} is in E . If
fγ = gγs, f = gs, then fγ → f pointwise. Since φ ∈ Ĝe, we have that φ(fγ) → φ(f),
i.e. φs(gγ) → φs(g). In view of Theorem 8.9 in [15], there exists a µs ∈ Mθo(X) such
that φ(gs) =

∫
g dµs for each g ∈ C(X). Hence the result follows.

Theorem 4.5. Let E be a polar Fréchet space and let φ ∈ Ĝe. Then, there exists a
p ∈ cs(E) and an m ∈ M(X, E ′) such that:

1. for each s ∈ E, we have that ms ∈ Mθo(X) and φ(gs) =
∫

g d(ms) for each
g ∈ C(X).

2. {f ∈ C(X, E) : ‖f‖p ≤ 1} ⊂ {f : |φ(f)| ≤ 1}.

Proof : In view of the preceding Theorem, for each s ∈ E, there exists a
µs ∈ Mθo(X) such that φ(gs) =

∫
g dµs for each g ∈ C(X). Let (pn) be an increasing

sequence of continuous seminorms on E generating its topology, and let

D = {f ∈ C(X,E) : |φ(f)| ≤ 1}.

We claim that, there exists an n and ε > 0 such that
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{f ∈ C(X, E) : ‖f‖pn ≤ ε} ⊂ D.

Assume the contrary and let 0 < |λ| < 1. For each n, there exists an fn in C(X, E)
with ‖fn‖pn ≤ |λ|n and |φ(fn)| > 1. Then fn → 0 uniformly. Indeed, let k be given
and let ε > 0. Choose no ≥ k such that λ|n < ε for n ≥ no. Now, for n ≥ no, we
have that ‖fn‖pk

≤ ‖fn‖pn ≤ |λ|n < ε and so fn → 0 uniformly. This, together with
the fact that each fn is continuous, implies that the set B = {f1, f2, . . .} is in E and
fn → f pointwise. Since φ ∈ Ĝe, we should have that φ(fn) → 0, a contradiction.
This proves (2). Now φ|Crc(X,E) is continuous with respect to the topology of uniform
convergence. Hence, there exists an m ∈ M(X, E ′) such that φ(f) =

∫
f dm for all

f ∈ Crc(X, E). In particular, taking f = χV s, where V ∈ K(X) and s ∈ E, we
have that

m(V )s = φ(f) =
∫

χV dµs = µs(V )

and thus ms = µs ∈ Mθo(X). Hence the Theorem follows.

Theorem 4.6. Let E be a polar Fréchet space. Then the map

m 7→ φm, φm(f) =
∫

f dm,

from Mθo(X, E ′) to Ĝe, is an algebraic isomorphism. Thus Ĝe = Mθo(X,E ′).

Proof : Let φ ∈ Ĝe. By the preceding Theorem, there exists an m ∈ M(X, E ′)
such that ms ∈ Mθo(X), for all s ∈ E, and φ(gs) =

∫
g d(ms) for each g ∈ C(X).

We will show that m ∈Mθo(X, E ′). To this end, consider a clopen partition (Vi)i∈I

of X.
Claim : The set J of all i ∈ I, for which there exists a clopen subset A of Vi

with m(A) 6= 0, is finite. Indeed, let {i1, i2, . . .} be an infinite sequence of distinct
elements of J . For each k, there exists a clopen set Bk ⊂ Vik such that m(Bk) 6= 0.
Choose sk ∈ E with |m(Bk)sk| > 1. The set V = (

⋃∞
k=1 Bk)

c is clopen. The
function gn =

∑∞
k=n χBk

sk is continuous. It is easy to see that B = {g1, g2, . . .} ∈ E
and gn → 0 pointwise. Since φ ∈ Ĝe, we must have that φ(gn) → 0. Let ko be
such that |φ(gn)| < 1 if n ≥ ko. If n ≥ ko, then χBnsn = gn − gn+1 and thus
|m(Bn)sn| = |φ(gn) − φ(gn+1)| < 1, a contradiction. This proves that J is finite,
J = {i1, i2, . . . , in}. Let V =

⋃
i/∈J Vi and let A be a clopen subset of V . Then

A =
⋃

i/∈J Vi ∩ A. If s ∈ E, then ms ∈ Mθo(X) ⊂ Ms(X) and so (ms)(A) =∑
i/∈J m(Vi∩A)s = 0, i.e. m(A)s = 0 for all s ∈ E, which means that m(A) = 0. By

Theorem 3.1, we have that m ∈Mθo(X, E ′). It remains to prove that φ(f) =
∫

f dm
for all f ∈ C(X, E). There exists a p ∈ cs(E) such that

{f ∈ C(X, E) : ‖f‖p ≤ 1} ⊂ {f : |φ(f)| ≤ 1}.

If |λ| > 1, then mp(X) ≤ |λ|. Let now f ∈ C(X, E), α a non-zero element of K and
let (Vi)i∈I be the clopen partition of X corresponding to the equivalence relation
x ∼ y iff p(f(x)− f(y)) ≤ |α|. There exists a finite subset J of I such that

⋃
i∈J Vi

is a support set for m. If ı ∈ J and xi ∈ Vi, then for each x ∈ Vi and each clopen
subset B of Vi, we have |m(B)[f(x)− f(xi)]| ≤ |λα|. Thus∣∣∣∣∣f dm−

∑
i∈J

m(Vi)f(xi)

∣∣∣∣∣ ≤ |λα|.
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For S ⊂ I finite, let

gS =
∑
i∈S

χVi
f(xi), g =

∑
i∈I

χVi
f(xi).

It is easy to see that the set

B = {gS : S ⊂ I, S finite} ∪ {g}

is in E and that gS → g pointwise. Thus

φ(g) = lim
S

φ(gS) = lim
S

∑
i∈S

m(Vi)f(xi =
∑
i∈I

m(Vi)f(xi) =
∑
i∈J

m(Vi)f(xi).

Since ‖g − f‖p ≤ |α|, it follows that |φ(g)− φ(f)| ≤ |α| and so∣∣∣∣∫ f dm− φ(f)
∣∣∣∣ ≤ max

{∣∣∣∣∫ f dm− φ(g)
∣∣∣∣ , |φ(g)− φ(f)|

}
≤ |λα|.

As α was arbitrary, we conclude that
∫

f dm = φ(f) and the result follows from this
and from Theorem 3.3.

5 The Space Mbs(X,E ′) as a Completion

Let m ∈ M(X, E ′). For a bounded subset S of E and V ∈ K(X), we define

|m|S(V ) = sup{|m(A)s| : s ∈ S, A ∈ K(X), A ⊂ V }.

Definition 5.1. An element m of M(X, E ′) is said to be :

1. Strongly σ-additive if, for each sequence (Vn) of clopen subsets of X which
decreases to the empty set, we have that m(Vn) → 0 in the strong dual E ′

b of
E.

2. Strongly τ -additive if m(Vδ) → 0 in E ′
b when Vδ ↓ ∅.

3. Strongly separable if it is strongly σ-additive and, for each continuous ultra-
pseudometric d on X and each bounded subset S of E, there exists a d-closed,
d-separable subset D of X such that m(V )s = 0 for each s ∈ S and each
d-clopen set V which is disjoint from D

We will denote by Mbs(X, E ′) the space of all strongly separable members of
M(X, E ′).

Theorem 5.2. Let m ∈ M(X, E ′). Then :

1. m is strongly τ -additive iff, for each net Vδ ↓ ∅ and each bounded subset S of
E we have that |m|S(Vδ) → 0.

2. m is strongly σ-additive iff |m|S(Vn) → 0 for each bounded subset S of E and
each sequence Vn ↓ ∅.
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Proof : 1). It is clear that the condition is sufficient. Conversely, assume that
m is strongly τ -additive and that there exist a bounded subset S of E, an ε > 0 and
a net Vδ ↓ ∅, δ ∈ ∆ such that |m|S(Vδ) > ε for all δ. Let δ ∈ ∆. There exist a clopen
subset A of Vδ and an so ∈ S such that |m(A)so| > ε. For each element γ ∈ ∆ , let
Zγ = Vγ ∩ A, Wγ = Vγ \ Zγ. Then Wγ ↓ ∅. By our hypothesis, there exists a γ ≥ δ
such that |m(Wγ)s| < ε for all s ∈ E. Let B = A ∪ Wγ. Then Vγ ⊂ B ⊂ Vδ and
m(B) = m(A) + m(Wγ), which implies that |m(B)so| = |m(A)so| > ε. Consider
now the family F of all clopen subset A of X with the following property: There
are γ ≥ δ in ∆ , with Vγ ⊂ A ⊂ Vδ and sups∈E |m(A)s| > ε. Then F ↓ ∅. Since
sups∈S |m(A)s| > ε, for all A ∈ F , we arrived at a contradiction.
2. Assume that m is strongly σ-additive and that there exist a sequence Vn ↓ ∅, a
bounded subset S of E and an ε > 0 such that |m|S(Vn > ε for all n. As in the proof
of (1), we get a sequence n1 < n2 < . . . of positive integers, a sequence (sk) in S
and a sequence (Ak) of clopen sets such that Vnk+1

⊂ Ak ⊂ Vnk
and |m(Ak)sk| > ε,

for all k, which is a contradiction. This clearly completes the proof.

Theorem 5.3. Let (X, d) be an ultrametric space and let H be a uniformly τ -
additive subset of the dual space Mτ (X) of (Cb(X), β). Then the support of H, i.e.
the set

supp(H) =
⋃

m∈H

supp(m),

is separable.

Proof : For each finite subset Y of X each ε > 0, let N(Y, ε) = {x : d(x, Y ) ≤ ε}.
Then N(Y, ε) is clopen and the family

{X \N(Y, ε) : Y finite subset of X}

is downwards directed to the empty set. Since H is uniformly τ -additive, given
ε1 > 0, there exists a finite subset Y of X such that supm∈H |m|(X \N(Y, ε)) < ε1.
For positive integers n, k, choose a finite subset Yn,k of X such that

sup
m∈H

|m|(X \N(Yn,k, 1/k)) < 1/n.

Let
Dn =

⋃
k

[X \N(Yn,k, 1/k)], M =
⋃
n

X \Dn, F = M.

Then X \ F ⊂ ⋂
Dn. Let now x ∈ X \ F and m ∈ H. For each n, choose a k

such that x /∈ N(Yn,k, 1/k) and so Nm(x) ≤ |m|(X \ N(Yn,k, 1/k)) < 1/n, which
proves that Nm(x) = 0. If B is a clopen subset of X disjoint from F , then ( by
[22] ) we have |m|(B) = supx∈B Nm(x) = 0 and so supp(m) ⊂ F . It follows that
supp(H) ⊂ F . Finally, supp(H) is separable. In fact, let ε > 0 and x ∈ F . There
exists y ∈ M such that d(x, y) < ε. Let n be such that y /∈ Dn. Choose k > 1/ε.
Since y ∈ N(Yn,k, 1/k), there exists a z ∈ Yn,k, with d(y, z) ≤ 1/k < ε, and so
d(x, z) < ε. The set Y =

⋃
n,k Yn,k is countable and F ⊂ Y . Since Ȳ is separable,

the same is true for the subset supp(H). This completes the proof.
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Theorem 5.4. For an element m of M(X, E ′), the following are equivalent :

1. ms ∈ Ms(X), for each s ∈ E, and, for each clopen partition (Vi)i∈I of X ,
each bounded subset S of E and each ε > 0, there exists a finite subset J of I
such that |m|S(Vi) < ε for all i /∈ J .

2. If (Vi)i∈I is a clopen partition of X, S a bounded subset of E and ε > 0, then
there exists a finite subset J of I such that |m|S(

⋃
i/∈J Vi) ≤ ε.

3. If (Vδ) is a net of clopen subsets of X, with Vδ
βoX ↓ Z ∈ Ωu, and if S is a

bounded subset of E, then |m|S(Vδ) → 0.

4. If Vδ
βoX ↓ Z ∈ Ωu, then m(Vδ) → 0 in the strong dual of E.

5. If (Vi)i∈I is a clopen partition of X, then m(X) =
∑

i∈I m(Vi), where the
convergence of the sum is in the strong dual of E.

6. m ∈ Mbs(X, E ′).

Proof : (1) ⇒ (2). Let J be a finite subset of I such that |m|S(Vi) < ε if i /∈ J .
Let A be a clopen subset of D =

⋃
i/∈J Vi. Then A =

⋃
i/∈J A ∩ Vi. If s ∈ S, then

ms ∈ Ms(X) and so

m(A)s =
∑
i/∈J

m(Vi ∩ A)s

(by [12], Theorem 6.9). But, for i /∈ J , we have |m(Vi ∩ A)s| ≤ |m|S(Vi) < ε. Thus
|m(A)s| ≤ ε, which proves that |m|S(D) ≤ ε.
(2) ⇒ (3). There exists a clopen partition (Vi)i∈I of X such that

Z ⊂ βoX \
⋃
i∈I

Vi
βoX

.

Let S be a bounded subset of E and ε > 0. There exists a finite subset J of I such
that |m|S (

⋃
i/∈J Vi) < ε. There is a δ such that

⋃
i∈J Vi

βoX ⊂ V c
δ

βoX
, and so

|m|S(Vδ) ≤ |m|S

⋃
i/∈J

Vi

 < ε.

(3) ⇒ (4). It is trivial.
(4) ⇒ (5). Let (Vi)i∈I be a clopen partition of X. For each finite subset J of I,
let WJ =

⋃
i∈J Vi and DJ = X \ WJ . Then m(X) − ∑

i∈J m(Vi) = m(DJ). Since
DJ ↓ Z ∈ Ωu, our hypothesis (4) implies that m(DJ) → 0 in the strong dual of E.
(5) ⇒ (1). Let (Vi)i∈I be a clopen partition of X. Then m(X) =

∑
i∈I m(Vi) in

E ′
b and hence (ms)(X) =

∑
i∈I(ms)(Vi), which proves that ms ∈ M(X) (by [12],

Theorem 6.9). Let now S be a bounded subset of E. For each i, there exists a
clopen subset Ai of Vi and an si ∈ S such that |m(Ai)si| ≥ |m|S(Vi)/2. The set
A = (

⋃
i∈I Bi)

c is clopen. By our hypothesis (5), we have that

m(X) = m(A) +
∑
i∈I

m(Ai)



Complete Spaces of p-adic Measures 931

in E ′
b. Given ε > 0, there exists a finite subset Jo of I such that

sup
s∈S

∣∣∣∣∣∣m
⋃

i/∈J

Ai

 s

∣∣∣∣∣∣ < ε/2

for each finite subset J of I containing Jo. It follows from this that, for each i /∈ Jo,
we have that |m(Ai)si)| < ε/2 and hence |m|S(Vi) < ε.

(3) ⇒ (6). Let Vn ↓ ∅. Then Vn
βoX ↓ Z ∈ Ω1 ⊂ Ωu, Hence |m|S(Vn) → 0, which

proves that m is strongly σ-additive. Let now d be a continuous ultrapseudometric

on X and S a bounded subset of E. If Vδ
βoX ↓ Z ∈ Ωu,then

sup
ms∈S

|ms|(Vδ) = |m|S(Vδ) → 0.

Also, if ‖m‖p ≤ 1, then

sup
s∈S

‖ms‖ ≤ mp(X) · sup
s∈S

p(s) < ∞.

It follows that the set F = {ms : s ∈ S} is a βe-equicontinuous subset of the
dual space Ms(X) of (Cb(X), βe) (by [12], Theorems 6.13 and 6.14). Hence the set
Φ = T ?

d (F ) is a β-equicontinuous subset of the dual space Mτ (Xd) of (Cb(Xd, β),
which implies that the set D = supp(Φ) is separable, by Theorem 4.3. Now the set
A = π−1

d (D) is d-closed and d-separable. If V is a d-clopen subset of X \ A, then
πd(V ) is a clopen subset of Xd which is disjoint from D. If s ∈ S, then ms ∈ F and
so µs = T ?

d (ms) ∈ Φ. Thus m(V )s = µs(πd(V )) = 0, which completes the proof of
the implication (3) → (6).
(6) ⇒ (5). Let (Vi)i∈I be a clopen partition of X. Define

d : X ×X → R, d(x, y) = sup
i∈I

|χVi
(x)− χVi

(y)|.

Then d is a continuous ultrapseudometric on X. Let S be a bounded subset of
E and let A be a d-closed, d-separable subset of X such that m(V )s = 0 for each
s ∈ S and each d-clopen set V disjoint from A. As A is d-separable, there exists
a sequence (in) in I such that A ⊂ B =

⋃
n Vin . Now B is d-clopen. Since m is

strongly σ-additive, we have that

m(X)s = m(Bc)s +
∞∑

k=1

m(Vik)s =
∞∑

k=1

m(Vik)s =
∑
i∈I

m(Vi)s

uniformly for s ∈ S. Thus m(X) =
∑

i∈I m(Vi) in E ′
b and the result follows.

Theorem 5.5. Let m ∈ Mbs(X, E ′). Then :

1. Every f ∈ Cb(X, E) is m-integrable.

2. If E is polar and c-complete, then the map

um : Cb(X, E) → K, um(f) =
∫

f dm

is a member of the completion Ĝb of the space Gb = (L(X,E ′), eb).
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Proof : (1). Let p ∈ cs(E) be such that mp(X) ≤ 1 and let ε > 0. Let
(Vi)i∈I be the clopen partition of X corresponding to the equivalence relation x ∼ y
iff p(f(x) − f(y)) ≤ ε. If S = f(X), then there exists a finite subset J of I
such that |m|S(D) ≤ ε, where D =

⋃
i/∈J Vi. Consider the finite clopen partition

F = {Vi : i ∈ J} ∪ {D} of X. If A ∈ F , x, y ∈ A and V a clopen subset of A,
then |m(V )[f(x) − f(y)]| ≤ ε. In view of [14], Theorem 7.1, it follows that f is
m-integrable.
(2. Assume that E is polar and c-complete. Then G′

b = Cb(X, E). We need to show
that um ∈ Ĝb. Let B ∈ Eb. The set S = B(X) is bounded. Define d on X ×X by

d(x, y) = sup
f∈B

p(f(x)− f(y))

and let (Vi)i∈I be the clopen partition of X corresponding to the equivalence relation
x ∼ y iff d(x, y) ≤ ε, where ε is a given positive number. Let (fγ) be a net in B
converging pointwise to some f ∈ B. There exists a finite subset J of I such that
|m|S(

⋃
ı/∈J Vi) < ε. Let xi ∈ Vi, i ∈ J . As in the proof of Theorem 3.3, it follows

that ∣∣∣∣∣
∫

g dm−
∑
i∈J

m(Vi)g(xi)

∣∣∣∣∣ ≤ ε

for all g ∈ B. Let γo be such that p(fγ(xi)− f(xi)) < ε for all i ∈ J and all γ ≥ γo.
As in the proof of Theorem 3.3, it follows that |

∫
fγ dm−

∫
f dm| ≤ ε for all γ ≥ γo.

This proves that um ∈ Ĝb and the result follows.

Theorem 5.6. Let E be a polar Fréchet space. Then the map

m 7→ um, um(f) =
∫

f dm,

from Mbs(X, E ′) to Ĝb, is an algebraic isomorphism. Thus the completion of Gb

is the space Mbs(X, E ′) equipped with the topology of uniform convergence on the
members of Eb.

Proof : It only remains to show that every element of Ĝb is of the form um for
some m ∈ Mbs(X, E ′). So, let u ∈ Ĝb. If A is a uniformly bounded equicontinuous
subset of Cb(X) and s ∈ E, then the set B = As = {gs : g ∈ A} is a member of Eb.
Let

us : Cb(X) → K, us(g) = u(gs)

and let (gγ) be a net in A which converges pointwise to some g ∈ A. If fγ = gγs, f =
gs, then fγ → f pointwise and so us(gγ) = u(fγ) → u(f) = us(g). In view of [15],
Theorem 7.6, there exists a µs ∈ Ms(X) such that us(g) =

∫
g dµs for all g ∈ Cb(X).

Using an argument analogous to the one used in the proof of Theorem , we get that
there exists a p ∈ cs(E) such that |u(f)| ≤ 1 if ‖f‖p ≤ 1. Also there exists an
m ∈ Mp(X, E ′) such that ms = µs for all s ∈ E.
Claim I. If g ∈ Cb(X, E) is of he form g =

∑
i∈I χVi

si, where (Vi)i∈I is a clopen
partition of X, then u(g) =

∑
i∈I m(Vi)si. Indeed, for J ⊂ I finite, let hJ =∑

i∈J χVi
si. Then B = {hJ : J finite} is in Eb and hJ → g pointwise, which implies

that
u(g) = lim u(hJ) = lim

J

∑
i∈J

m(Vi)si =
∑
i∈I

m(Vi)si.
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Claim II. m ∈ Mbs(X, E ′). In fact, let (Ai)i∈I be a clopen partition of X and let S
be a bounded subset of E. For each i ∈ I, there exist a clopen subset Bi of Ai and
an si ∈ S such that |m(Bi)si| ≥ |m|S(Ai)/2. By claim I,

u(
∑
i∈I

χBi
si) =

∑
i∈I

m(Bi)si.

Thus, given ε > 0, there exists a finite subset J of I such that |m(Bi)si| < ε/2 if
ı /∈ J . But then, for ı /∈ J , we have that |m|S(Bi) < ε. This, together with the fact
that ms ∈ Ms(X) for all s ∈ E, implies that m ∈ Mbs(X, E ′).
Claim III. If g is as in claim I, then u(g) =

∫
g dm. In fact, let S = g(X) and ε > 0.

Since m ∈ Mbs(X, E ′) and u(g) =
∑

i∈I m(Vi)si, there exists a finite subset J of I
such that |m|S(V c) < ε and |u(g)−∑

i∈J m(Vi)si| < ε, where V =
⋃

i∈J Vi. If x ∈ V c

and A a clopen subset of V c, then |m(A)g(x)| < ε. This implies that |
∫
V c g dm| ≤ ε.

Also,
∫
V g dm =

∑
i∈J m(Vi)si. Thus∣∣∣∣u(g)−
∫

g dm
∣∣∣∣ ≤ max

{∣∣∣∣u(g)−
∫

V
g dm

∣∣∣∣ , ∣∣∣∣∫
V c

g dm
∣∣∣∣} ≤ ε

and hence u(g) =
∫

g dm since ε > 0 was arbitrary.
Claim IV. u(f) =

∫
f dm for all f ∈ Cb(X, E). Indeed, let ε > 0 and choose a

λ ∈ K with |λ| ·mp(X) ≤ ε, 0 < |λ| < ε. Let (Vi)i∈I be the clopen partition of X
corresponding to the equivalence relation x ∼ y iff p(f(x)−f(y)) ≤ |λ|. Let xi ∈ Vi,
g =

∑
i∈I χVi

f(xi. Then ‖f − g‖p ≤ |λ| and hence |u(f − g)| ≤ |λ|. Also∣∣∣∣u(f)−
∫

f dm
∣∣∣∣ ≤ max

{
|u(f − g)|,

∣∣∣∣∫ (g − f) dm
∣∣∣∣} ≤ ε.

Thus u(f) =
∫

f dm since ε > 0 was arbitrary. This completes the proof.

6 Ms(X, E ′) as a Completion

We denote by Ms(X,E ′) the space of all m ∈ M(X, E ′) for which ms ∈ Ms(X) for
all s ∈ E.

Theorem 6.1. Assume that E is polar and let m ∈ M(X, E ′) be such that, for
each s ∈ E and each g ∈ Cb(X), the function gs is m-integrable. Then every
f ∈ Cco(X, E) is m-integrable.

Proof : Let p be a polar continuous seminorm on E such that ‖m‖p ≤ 1 and
let f ∈ Cco(X, E).
Claim : For each ε > 0, there are g1, g2, . . . , gn in Cb(X) and s1, s2, . . . , sn in E such
that ‖f − h‖p ≤ ε, where h =

∑n
k=1 gksk. In fact, the set Z = f(X) is compactoid

in E. Since E is polar, it has the approximation property. Thus, there exists a
continuous linear map φ : E → E, of finite rank, such that p(s − φ(s)) ≤ ε for
all s ∈ Z. Let x′1, x

′
2, . . . , x

′
n ∈ E ′ and s1, s2, . . . , sn ∈ E be such that φ(s) =∑n

k=1 x′k(s)sk, for all s ∈ E. If gk = x′k ◦ f and h =
∑n

k=1 gksk, then ‖f − h‖p ≤ ε,
which proves our claim.
In view of our hypothesis, h is m-integrable and so (by [14], Theorem 7.1) there exists
a clopen partition {A1, A2 . . . , AN} of X such that, if x, y ∈ Ak, then |m(B)[h(x)−
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h(y)]| ≤ ε for all clopen subsets B of Ak. For B a clopen subset of Ak and x ∈ Ak,
we have

|m(B)[f(x)− h(x)]| ≤ mp(X) · p(f(x)− h(x)) ≤ ε.

Thus, for B ⊂ Ak and x, y ∈ Ak, we have |m(B)[f(x)− f(y)]| ≤ ε. In view of [14],
Theorem 7.1, it follows that f is m-integrable.

Theorem 6.2. Assume that E is polar and c-complete and let Gco = (L(X, E ′), eco).
If m ∈ Ms(X, E ′), then the map

vm : Cco(X, E) → K, vm(f) =
∫

f dm,

is a member of the completion Ĝco of Gco.

Proof : For each s ∈ E, we have that ms ∈ Ms(X) and thus every g ∈ Cb(X)
is (ms)-integrable. In view of the preceding Theorem, every f ∈ Cco(X, E) is m-
integrable. Let B ∈ Eco. We may assume that B is absolutely convex. The set
Z = B(X) is compactoid. Let p ∈ cs(E) be polar and such that ‖m‖p ≤ 1 and let
ε > 0. There are x′1, x

′
2, . . . , x

′
n ∈ E ′ and s1, s2, . . . , sn ∈ E such that

p(s−
n∑

k=1

x′k(s)sk) < ε

for all s ∈ Z. Let now (fγ) be a net in B, which converges pointwise to the zero
function, and let hk

γ = x′k ◦ fγ. The set Ak = {x′k ◦ g : g ∈ B} is uniformly bounded
and equicontinuous. Moreover, hk

γ → 0 pointwise. Since msk ∈ Ms(X), it follows
that

∫
hk

γ d(msk) → 0, by [15], Theorem 7.6. If gγ =
∑n

k=1 hk
γsk, then

∫
gγ dm → 0.

Also ∣∣∣∣∫ (fγ − gγ) dm
∣∣∣∣ ≤ ‖fγ − hγ‖p ·mp(X) ≤ ε.

Thus, there exists γo such that |
∫

fγ dm| ≤ ε for all γ ≥ γo. This proves that

vm ∈ Ĝco.

Theorem 6.3. Let E be polar and c-complete and let v ∈ Ĝco. Then :

1. For each s ∈ E, there exists a µs ∈ Ms(X) such that v(gs) =
∫

g dµs for all
g ∈ Cb(X).

2. v is sequentially continuous with respect to the topology of uniform convergence
on Cco(X, E).

Proof : (1). If A is a uniformly bounded equicontinuous subset of Cb(X), then,
for each s ∈ E, the set As = {gs : g ∈ A} is in Eco. As in the proof of Theorem 4.4,
there exists a µs ∈ Ms(X) such that v(gs) =

∫
g dµs for all g ∈ Cb(X).

(2) Let (fn) be a sequence in Cco(X, E) which is uniformly convergent to the zero
function. If p ∈ cs(E) and V = {s ∈ E : p(s) ≤ 1}, then there exists a k such that
fn(X) ⊂ V for all n > k. Since the set

⋃k
n=1 fn(X) is compactoid, it follows that

the set
⋃∞

n=1 fn(X) is compactoid. Hence the set B = {fn : n ∈ N} is in Eco. Also
fn → 0 pointwise and hence v(fn) → 0. Thus the result follows.
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Theorem 6.4. Let E be a polar Fréchet space. Then the map m 7→ vm, from
Ms(X, E ′) to Ĝco, is an algebraic isomorphism. Therefore the completion of Gco

is the space Ms(X, E ′) equipped with the topology of uniform convergence on the
members of Eco.

Proof : Let v ∈ Ĝco. Since E is metrizable, the topology of uniform convergence
on Cco(X, E) is metrizable. By the preceding Theorem, there exists a continuous
seminorm p on E such that

{f ∈ Cco(X, E) : ‖f‖p ≤ 1} ⊂ {f : |v(f)| ≤ 1}.

Now v|Crc(X,E) is continuous with respect to the topology of uniform convergence and
hence there exists a m ∈ M(X, E ′) such that

∫
f dm = v(f) for all f ∈ Crc(X, E).

It is easy to see that ms = µs, for all s ∈ E, and so m ∈ Ms(X, E ′). As we have
seen in the proof of Theorem 5.1, the space F spanned by the functions gs, s ∈ E
and g ∈ Cb(X), is dense in Cco(X, E), with respect to the topology τu of uniform
convergence. Since both v and vm are τu-continuous and they coincide on F , it
follows that v = vm on Cco(X,E). This clearly completes the proof.
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