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Abstract

Let K be a complete non-Archimedean valued field and let C'(X, E) be the
space of all continuous functions from a zero-dimensional Hausdorff topolog-
ical space X to a non-Archimedean Hausdorff locally convex space E. We
will denote by Cy(X, E) (resp. by Cr.(X, E)) the space of all f € C(X, E)
for which f(X) is a bounded (resp. relatively compact) subset of E. The
dual space of C,.(X, E), under the topology t, of uniform convergence, is a
space M (X, E') of finitely-additive E’-valued measures on the algebra K (X)
of all clopen , i.e. both closed and open, subsets of X. Some subspaces of
M (X, E') turn out to be the duals of C(X, E) or of Cy(X, E) under certain
locally convex topologies.

In this paper we continue with the investigation of certain subspaces of
M (X, E"). Among other results we show that, if F is a polar Fréchet space,
then :

1. The space My, (X, E’), of all m € M (X, E") for which the support of the
corresponding measure m%, on the Banaschewski compactification of X, is
contained in the 6,-repletion of X, is complete under the topology of uniform
convergence on the family £ of all equicontinuous subsets B of C(X, E) for
which B(x) is a compactoid subset of E for all z € X.

2. The space Mys(X, E’), of all the so called strongly-separable members of
M (X, E') is complete under the topology of uniform convergence on the fam-
ily of all uniformly bounded members of €.

3. The space Ms(X, E’) of all m € M (X, E’), for which ms is separable for all
s € F, is complete under the topology of uniform convergence on the family
of all B € £ for which the set B(X) is compactoid.
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1 Introduction

Let K be a complete non-Archimedean valued field and let C(X, E) be the space of
all continuous functions from a zero-dimensional Hausdorff topological space X to
a non-Archimedean Hausdorff locally convex space E. We will denote by Cy,(X, E)
(resp. by C,..(X, E)) the space of all f € C(X, E) for which f(X) is a bounded (resp.
relatively compact) subset of E. The dual space of C,..(X, F), under the topology t,
of uniform convergence, is a space M (X, E’) of finitely-additive E’-valued measures
on the algebra K(X) of all clopen , i.e. both closed and open, subsets of X. Some
subspaces of M (X, E’ turn out to be the duals of C(X, F) or of Cy(X, E) under
certain locally convex topologies.

In this paper we continue with the investigation of certain subspaces of M (X, E’).
Among other results we show that, if F is a polar Fréchet space, then :

1. The space Mg, (X, E’), of all m € M (X, E’) for which the support of the corre-
sponding measure m”, on the Banaschewski compactification of X, is contained in
the 6,-repletion of X, is complete under the topology of uniform convergence on the
family £ of all equicontinuous subsets B of C'(X, F) for which B(z) is a compactoid
subset of E for all z € X.

2. The space Ms(X, E'), of all the so called strongly-separable members of M (X, E'),
is complete under the topology of uniform convergence on the family of all uniformly
bounded members of £.

3. The space M (X, E") of all m € M(X,FE’), for which ms is separable for all
s € F, is complete under the topology of uniform convergence on the family of all
B € & for which the set B(X) is compactoid.

2 Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued field, whose
valuation is non-trivial. By a seminorm, on a vector space over K, we will mean
a non-Archimedean seminorm. Similarly, by a locally convex space we will mean a
non-Archimedean locally convex space over K (see [22]). Unless it is stated explicitly
otherwise, X will be a Hausdorff zero-dimensional topological space , E' a Hausdorff
locally convex space and cs(E) the set of all continuous seminorms on E. The
space of all K-valued linear maps on FE is denoted by E*, while E’ denotes the
topological dual of E. A seminorm p, on a vector space G over K, is called polar
if p =sup{|f]: f € G |f| <p}. A locally convex space G is called polar if its
topology is generated by a family of polar seminorms. A subset A of G is called
absolutely convex if \x 4+ py € A whenever z,y € A and A\, p € K, with |A[, |p| < 1.
We will denote by ,X the Banaschewski compactification of X (see [5]) and by
v, X the N-repletion of X, where N is the set of natural numbers. By 6,X we
denote the 6,-completion of X (see [1]). We will let C'(X, E) denote the space of
all continuous E-valued functions on X and Cy(X, F) (resp. C,.(X, E)) the space
of all f € C(X,E) for which f(X) is a bounded (resp. relatively compact) subset
of E. In case E = K, we will simply write C(X),Cy(X) and C,.(X) respectively.
For A C X, we denote by x4 the K-valued characteristic function of A. Also, for
X CY C 3,X, we denote by BY the closure of Bin Y. If f € EX, p a seminorm
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on F and A C X, we define

1fll, = supp(f(x)), | fllap=supp(f(x)).
reX TEA

For a locally convex space F', we denote by F¢ the c-dual of F', i.e the dual space
F’ equipped with the topology of uniform convergence on the compactoid subsets
of F.

Let Q = Q(X) be the family of all compact subsets of 3,X \ X. By Q, we will
denote the family of all @) € 2 with the following property: There exists a clopen
partition (A;);e; of X such that @ is disjoint from each Eﬁox. Also € is the family
of all zero set members of €2, i.e all sets in 2 of the form {z € §,X : h(z) = 0}, for
some h € C(5,X).

For H € § let Cy be the space of all h € C,.(X) for which the continuous
extension h% to all of 3,X vanishes on H. For p € cs(E), let By, be the locally
convex topology on Cy,(X, E') generated by the seminorms f — ||hf|,, h € Cy. For
H € Q, By is the locally convex topology on Cy(X, E) generated by the seminorms
f = |hfllps h € Cu,p € cs(E). The inductive limit of the topologies Sy, H € €,
is the topology (.

For d a continuous ultra-pseudometric on X , we denote by X, the corresponding
ultrametric space and by 7y : X — X the quotient map. Let

Td . Cb(Xd7 E) — Cb(X, E)

be the induced linear map. The topology S, is defined to be the finest of all locally
convex topologies 7 on Cy(X, F) for which each

Td : (Cb(XdaE)vﬁ) - (Cb(X7 E)77—>

is continuous (see [13]).

Let now K (X) be the algebra of all clopen subsets of X. We denote by M (X, E’)
the space of all finitely-additive E’-valued measures m on K (X) for which the set
m(K (X)) is an equicontinuous subset of E’. For each such m, there exists a p €
cs(E) such that |[m||, = m,(X) < oo, where, for A € K(X),

my(A) = sup{|m(B)s|/p(s) : p(s) #0, AD B e K(X)}.

The space of all m € M (X, E’) for which m,(X) < oo is denoted by M, (X, E’).
In case E = K, we denote by M(X) the space of all finitely-additive bounded K-
valued measures on K (X). An element m of M(X) is called m-additive if m(Vs) — 0
for each decreasing net (Vj) of clopen subsets of X with NVs = ). In this case we
write V5 | 0. We denote by M, (X) the space of all 7-additive members of M (X).
Analogously, we denote by M, (X) the space of all o-additive m, i.e. those m with
m(V,) — 0 when V,, | (). For an m € M(X,E’) and s € E, we denote by ms the
element of M (X) defined by (ms)(V) =m(V)s.
Next we recall the definition of the integral of an f € EX with respect to an
m € M(X, E'). For a non-empty clopen subset A of X, let D4 be the family of all
a={A,As, ..., Ap; 21,29, .., 2, }, where {A;,..., A,} is a clopen partition of A
and x; € Ar. We make D 4 into a directed set by defining oy > « iff the partition of
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Ain o is a refinement of the one in ay. Foran o = {Ay, Ay, ..., Ap; 1,29, ..., 2p} €
Dy and m € M(X, E'), we define

n

walfm) =Y m(Ay)f ().

k=1

If the limit limw, (f, m) exists in K, we will say that f is m-integrable over A and
denote this limit by [, fdm. We define the integral over the empty set to be 0.
For A = X, we write simply [ fdm. It is easy to see that if f is m-integrable over
X, then it is integrable over every clopen subset A of X and [, fdm = [ xafdm.
If 7, is the topology of uniform convergence, then every m € M (X, E’) defines
a T,~continuous linear functional ¢, on C..(X, E), én(f) = [ fdm. Also every
¢ € (Cre(X, E),7,) is given in this way by some m € M (X, E’).

For all unexplained terms on locally convex spaces, we refer to [21] and [22].

3 The Space L(X, E')

For x € X and 2’ € E', we will denote by 0,, the linear functional on C'(X, E)
defined by 0,./(f) = 2/(f(x)). Let L(X,E’) be the linear subspace of C'(X, E)*
spanned by the set {d,. : * € X,2’ € E'}. Also C,(X, E) is the subspace of
C(X, E) consisting of all f for which the set f(X) is a compactoid subset of £. We
will consider the following families of subsets of C'(X, E) :

1. &€ =E&(X, E) is the family of all equicontinuous subsets B of C'(X, F) for which
the set B(z) = {f(x) : f € B} is compactoid for each x € X.

2. & = &(X, F) is the family of all uniformly bounded members of £.

3. o = Eeo( X, E) is the family of all B € £ for which the set B(X) is compactoid.
Let e, e, €q be the locally convex topologies on L(X, E’) which are the topologies
of uniform convergence on the members of £, &, &, respectively. For B € &, the
seminorm pp on L(X, E'), defined by pp(u) = sup;cp |u(f)|, is polar. Thus each of
the topologies e, e, e, is polar.

Recall that a locally convex space F' is said to be c-complete if every closed com-
pactoid subset of F'is complete.

Theorem 3.1. Assume that E is polar and c-complete. Then, the dual spaces of
L(X,E'), under the topologies e, e, and e, coincide with the spaces C(X, E),
Co(X, E) and Coo(X, E), respectively.

Proof: 1. For f € C(X, E), theset {f}isin &. It follows from this that C(X, E)
is a subspace of the dual space of G, = (L(X, E’),e) (considering each element of
C(X, E) as a linear functional on G.). On the other hand, let ¢ € G.. There exists
a B € & such that

{ue G, :pplu) <1} C{u:|p(u)] <1}.

For x € X, we consider the linear form ¢,(2') =< ¢, >, 2’ € E'. If 2’ is in
the polar B(z)° of B(z) in E’, then d,,» € B® and so |¢,(z")] < 1. As B(z) is
compactoid, it follows that ¢, is continuous on the c-dual space E° of E. Since F
is polar and c-complete, there exists a unique element f(z) € F such that ¢,(2') =
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2'(f(z)) for all 2’ € E' ( by [18], Theorem 4.7). Thus we get a map f : X — FE.
This map is continuous. Indeed, let p be a polar continuous seminorm on F. By
the equicontinuity of B, given x € X, there exists a neighborhood Z of x such that
plg(z) —g(y)) < 1lforallge Bandally € Z. Let 2’ € E', |2/| < p. If g € B and
y € Z, then

| < 9,000 — 0y > | = |2'(g(x) — g(y))| < p(9(z) — g(y)) < 1.
Thus 0,0 — 0y € B° and so

|$/(f($) - f(y)| = | < QS) 5:v,a:’ - 5y,ac’ > | S 1.

Since p is polar, it follows that p(f(x) — f(y)) < 1 for all y € Z, which proves that
f 1s continuous at . Now, for u =3>"}_, 5%%, we have

< fous= 3 ah(fla) =< d.u >
k=1

and so ¢ = f (as linear functionals on G,). This completes the proof for e.

2. Let Gy, = (L(X, E'),ep). Since e, is coarser than e, it follows that G, C G, =
C(X,E. Let f € C(X,FE) be in G}, and let B € &, be such that | < f,u > | < 1if
u € B°. We will show that f(X) is bounded in E. Since E is polar, it suffices to
prove that f(X) is weakly bounded. Solet 2’ € E’. As B(X) is a bounded subset of
E, there exists a A € K such that |2/(s)| < |A| for all s € B(X). Now A716, .~ € B°,
for all x € X, and so sup,cx |#'(f(x) < |A]. Thus f(X) is weakly bounded and
hence f € Cy(X, E). Conversely, if f € Cy(X, E), then {f} € &, from which it
follows that f € Gj,

3. If G, = (L(X, E'),e,), then the proof of the equality G|, = C., (X, E) is anal-
ogous to the one used for e, using the fact that, if D is a compactoid subset of the
polar space E, then the bipolar B°° is also compactoid.

Let 0 = o(C(X, E), L(X, E"). If E is polar, then, on each member B of &, the
weak topology o coincides with the topology of simple convergence since, for each
x € X, B(z) is compactoid.

Theorem 3.2. Assume that E is polar and consider the dual pair
<C(X,E),L(X,E) >.

Let B C C(X,E). If B is a member of one of the families £, &, &, then the
bipolar B°° is also a member of the same family.

Proof : By [21], Proposition 4.10, we have that B = (CO(B)J)E, where D =

co(B)’ is the o-closure of the absolutely convex hull co(B) of B and D¢ is the edged
hull of D. Let z € X, ¢ > 0 and p € ¢s(FE). Since B is equicontinuous, there exists
a neighborhood Z of x such that p(f(y) — f(z)) < eforall f € Bandally € Z. Let
now f € co(B) and y € Z. There exists a net (fs) in co(B) which is o-convergent
to f. The set M = [B(y)]” is also compactoid since E is polar. The map

w:(C(X,E),o0) — (E,c(E,E),
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g — g(y), is continuous. Thus fs(y) — f(y) weakly in E. As M is weakly closed,
we have that f(y) € M. On compactoid subsets of F, the weak topology and the
original topology coincide (by [21], Theorem 5.12). Thus fs5(y) — f(y) in E. Now,
for y € Z, we have that f5(y) — fs(x) — f(y) — f(x) and hence p(f(y) — f(x)) <e.
This proves that D is equicontinuous. If x € X, then D(x) C [B(x)]°° and so D(z)
is compactoid, which proves that D € £. Finally, if |[\| > 1, then B C AD, from
which it follows that B € £. If B € &, then B(X) is bounded and hence [B(X)]*
is bounded. Since B*°(X) C [B(X)]?, it follows that B* € &,. The case of a
B € &, is analogous taking into account the fact that, if A C E is compactoid, then
A% is also compactoid.

Theorem 3.3. Assume that E is polar and let B C C(X, E). Then B is equicon-
tinuous with respect to one of the topologies e, ey, €., iff B is a member of £, &, or
Eeo, TESPECctively.

Proof : 1t follows from the preceding Theorem and from the fact that, if B is a
member of £, &, or &, then every subset of B is also a member of the same family.

4 The Space My, (X, E') as a Completion

We will denote by My, (X) the space of all u € M(X) for which the support
supp(p®), of the corresponding measure p” on (3,X is contained in 6,X. Also,
by M, (X, E') we will denote the space of all m € M (X, E') for which supp(m®) C
0,X. By Qp we will denote the family of all compact subsets of 3,X which are
disjoint from 6,X.

Theorem 4.1. For an m € M (X, E’, the following are equivalent :
1. m e M@O(X, E’).

2. If (V) is a net of clopen subsets of X with Vgﬁ"X | H € Qq,, then there exists
a 9, such that m(Vs) =0 for each § > 6,.

3. If v | H € Qy,, then there exists a 6 such that m(V') =0 for each clopen
subset V' of V.

4. If (Vy)ier is a clopen partition of X, then there exists a finite subset J of I
such that m(V') = 0 for each clopen subset V' of g, Vi.

Proof : (1) = (2). Since

supp(m®) C 6,X € B,X \ H = | JV&™",
)

there exists a d, such that supp(m®) C VfﬂOX. If now § > ¢,, then m(Vs) =
Bo P X —

m (V) = 0.

(2) = (3) . Suppose that, for each ¢, there exists a clopen subset V' of Vj with

m(V') # 0. Let now § be given and let A be a clopen subset of Vs such that m(A) # 0.

For each « in the index set, let Z, = V,NA, W, = V,\ Z,. The net (IW,) is decreasing
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and NT,”" c H. By our hypothesis (2), there exists v > & such that m(W,) = 0.

If B=AUW,, then V,, C B C V5 and m(B) = m(A) + m(W,) = m(A) # 0. Let
now JF be the family of all clopen subsets A of X with the following property: there
are v, 9, in the index set, with V,, C A C V5 and m(A) # 0. Then F is downwards

directed and ﬂFeffﬁ"X = H € Qy,. Since m(F) # 0 for each F' € F, we got a
contradiction.

(3) = (4). For each finite subset J of I, set W; = U;¢; V;i. Then W, | He Qy, .
By our hypothesis (3), there exists a finite subset J of I such that m(V) = 0 for
each clopen set V' contained in W.

(4) = (1). Let z ¢ 6,X. There exists a clopen partition (V;);e; of X such that

2 & User 74 By (4), there exists a finite subset J of I such that m(V') = 0 for

each clopen set V' contained in U,g; V;. Now supp(m?) is contained in U, Vit

and so z ¢ supp(mP). This clearly completes the proof.
Theorem 4.2. If m € My, (X, E"), then every f € C(X, E) is m-integrable.

Proof :  Let f € C(X,E) and ¢ > 0. There exists a p € ¢s(E) such that
my(X) < 1. Let (V;);er be the clopen partition of X corresponding to the equivalence
relation z ~ y iff p(f(x) — f(y)) < €. In view of the preceding Theorem, there exists
a finite subset J of I such that m(V) = 0 for each clopen set V' contained in
D = U;¢; Vi. Consider the finite clopen partition A ={V;:i € J}U{D}. If A€ A,
then for all clopen subsets V of A and all z,y € A, we have

im(V)[f(z) — fW)]l < p(f(z) — f(y)) - mp(A) < e
This proves that f is m-integrable by [14], Theorem 7.1.

Next we will assume that E is polar and c-complete and we will look at the

completion G, of the space
G. = (L(X,E"), e).

Since G, is Hausdorff and polar, its completion coincides with the space of all lin-
ear functionals ¢ on G, = C(X,E) which are ¢(C(X, E), G.)-continuous on e-
equicontinuous subsets of C(X, E), i.e. on the members of £ (by [16]). As we
remarked in section 2, on members of &£, the weak topology coincides with the
topology of simple convergence. The topology of G, coincides with the topology of
uniform convergence on the members of £.

Theorem 4.3. Let E be polar and c-complete. If m € My, (X, E'), then the map
On : C(X,E) = K, 6u(f) = [ fdm,

belongs to Ge.

Proof :  Let p € cs(E) be such that m,(X) < 1 and let B € £. Define d on
X xY by

d(x,y) = supp(f(z) — f(y)).

feB

Then d is a continuous ultrapseudometric on X. Let ¢ > 0 and let (V;);c; be the
clopen partition of X corresponding to the equivalence relation x ~ y iff d(x,y) < e.
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Let (f,) be a net in B which converges pointwise to some f € B. Since m €
Mo, (X, E'), there exists a finite subset J of I such that m (V') = 0 for each clopen
subset of W = ;¢ Vi. Consider the finite clopen partition A = {V; :i € J}{W}
of X. If g € B and if x, y are in the same A € A, then

Im(V)[g(x) — gl < plg(z) —g(y)) - mp(A) <e

If x; € Vi, v € I, we have that

Since f,(z) — f(x), for all x, there exists a 7, such that p(f,(x;) — f(z;)) < € for
all v >, and all : € J. If now v > ~,, then

<e and ‘fdm—Zm(V})f(mi) <e.

icJ

[ dm = i)

Since

> m(Va)lfy (i) = f (1))

e

it follows that [ f, dm — [ f dm, which shows that ¢,, € G..

< maxp(fy (@) = f(2:)) - mp(X) < e,

Theorem 4.4. Let E be polar and c-complete and let ¢ € ée. Then, for each s € F,
there exists a ps € My, (X) such that ¢(gs) = [ gdus for each g € C(X).

Proof : Let s € E and consider the linear functional

¢s : C(X) = K, ¢4(9) = o(gs).

Let A be an equicontinuous pointwise bounded subset of C'(X') and let (g,) be a net
in A which converges pointwise to a g € A. The set B ={gs:g € A} isin &. If
fy = gys, f = gs, then f, — f pointwise. Since ¢ € G., we have that o(fy) — o(f),
ie. ¢s(gy) — ¢s(g). In view of Theorem 8.9 in [15], there exists a p, € My, (X) such
that ¢(gs) = | gdus for each g € C(X). Hence the result follows.

Theorem 4.5. Let E be a polar Fréchet space and let ¢ € G.. Then, there exists a
p € cs(E) and an m € M(X, E') such that:

1. for each s € E, we have that ms € My, (X) and ¢(gs) = [ gd(ms) for each

g€ C(X).
2. {feCX,E): | fly <1y c{f:lo(f)l <1}
Proof : In view of the preceding Theorem, for each s € FE, there exists a

ps € My, (X) such that ¢(gs) = [ g dus for each g € C(X). Let (p,) be an increasing
sequence of continuous seminorms on E generating its topology, and let

D={feCX,E):|o(f)| <1},

We claim that, there exists an n and € > 0 such that
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{feCX,E): fllp, <€} CD.

Assume the contrary and let 0 < |A| < 1. For each n, there exists an f,, in C(X, E)
with || fu]lp, < |A|™ and |¢(f,)| > 1. Then f, — 0 uniformly. Indeed, let k be given
and let € > 0. Choose n, > k such that A|" < € for n > n,. Now, for n > n,, we
have that || fullp. < | fallp, <A™ < € and so f,, — 0 uniformly. This, together with
the fact that each f,, is continuous, implies that the set B = {fi, f,...} is in £ and
fn — f pointwise. Since ¢ € G., we should have that &(fn) — 0, a contradiction.
This proves (2). Now ¢|¢,.(x,z) is continuous with respect to the topology of uniform
convergence. Hence, there exists an m € M (X, E’) such that ¢(f) = [ f dm for all
f € Co(X, E). In particular, taking f = yys, where V € K(X) and s € E, we
have that

m(V)s = 6(f) = [ xvds = (V)
and thus ms = s € My, (X). Hence the Theorem follows.
Theorem 4.6. Let E be a polar Fréchet space. Then the map

from My, (X, E') to G., is an algebraic isomorphism. Thus G, = My, (X, E').

Proof : Let ¢ € G.. By the preceding Theorem, there exists an m € M (X, E’)

such that ms € My, (X), for all s € E, and ¢(gs) = [ gd(ms) for each g € C(X).
We will show that m € My, (X, E’). To this end, consider a clopen partition (V;);es
of X.
Claim : The set J of all i € I, for which there exists a clopen subset A of V;
with m(A) # 0, is finite. Indeed, let {ij,s,...} be an infinite sequence of distinct
elements of J. For each k, there exists a clopen set By C V;, such that m(By) # 0.
Choose s, € E with |m(By)sg] > 1. The set V. = (U2, Br) is clopen. The
function g, = Y32, X5, Sk 1s continuous. It is easy to see that B = {g1,¢2,...} € €
and g, — 0 pointwise. Since ¢ € G., we must have that é(gn) — 0. Let k, be
such that |¢(g,)] < 1if n > k,. If n > k,, then xp, s, = ¢g» — gns1 and thus
|m(Bp)sn| = |6(gn) — &(gn+1)] < 1, a contradiction. This proves that J is finite,
J = {i1,d9,...,in}. Let V. = U;g; Vi and let A be a clopen subset of V. Then
A= Ug VinA If s € E, then ms € M, (X) C M,(X) and so (ms)(A) =
Yiggm(VinA)s =0, ie. m(A)s =0 forall s € I, which means that m(A) = 0. By
Theorem 3.1, we have that m € My, (X, E'). It remains to prove that ¢(f) = [ fdm
for all f € C'(X, E). There exists a p € cs(F) such that

{f e CXE) lfll, <1} < {f = lo(f)] < 1}

If [A| > 1, then m,(X) < |A|. Let now f € C(X, E), a a non-zero element of K and
let (V;)ier be the clopen partition of X corresponding to the equivalence relation
x ~yiff p(f(z) — f(y)) < |a|. There exists a finite subset J of I such that U;c; Vi
is a support set for m. If 1 € J and x; € V;, then for each x € V; and each clopen
subset B of V;, we have |m(B)[f(z) — f(z;)]| < |A«|. Thus

fdm = m(Vi)f(z:)| < [Aal.

ieJ
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For S C I finite, let

g9s = Y xvif(zi), 9= xvf(z).

€S i€l
It is easy to see that the set
B ={gs:S C I, Sfinite} U {g}

is in £ and that gg — ¢ pointwise. Thus

¢(g) =limd(gs) =lim>_ m(Vi)f (i =D m(Vi)f(x:) = > m(Vi) f(x:).

€S el e

Since ||g — f||, < |e|, it follows that |¢(g) — &(f)| < || and so

[ = o(p)| < max{| [ dm - o9

10(9) = 61} < Pl

As a was arbitrary, we conclude that [ f dm = ¢(f) and the result follows from this
and from Theorem 3.3.

5 The Space M,,(X, E’') as a Completion

Let m € M(X, E’). For a bounded subset S of £ and V' € K(X), we define
Im|s(V) = sup{|m(A)s|: s € S,A e K(X),ACV}.

Definition 5.1. An element m of M(X, E') is said to be :

1. Strongly o-additive if, for each sequence (V,,) of clopen subsets of X which
decreases to the empty set, we have that m(V,) — 0 in the strong dual Ej of
E.

2. Strongly T-additive if m(Vs) — 0 in E; when Vs | 0.

3. Strongly separable if it is strongly o-additive and, for each continuous ultra-
pseudometric d on X and each bounded subset S of E, there exists a d-closed,
d-separable subset D of X such that m(V)s = 0 for each s € S and each
d-clopen set V' which is disjoint from D

We will denote by M (X, E’) the space of all strongly separable members of
M(X, E").

Theorem 5.2. Let m € M(X,E'). Then :

1. m is strongly T-additive iff, for each net Vs | () and each bounded subset S of
E we have that |m|s(Vs) — 0.

2. m is strongly o-additive iff |m|s(V,) — 0 for each bounded subset S of E and
each sequence Vj, | ().
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Proof : 1). It is clear that the condition is sufficient. Conversely, assume that
m is strongly 7-additive and that there exist a bounded subset S of E, an € > 0 and
anet Vs | 0, § € A such that |m|g(Vs) > e for all §. Let § € A. There exist a clopen
subset A of Vs and an s, € S such that |m(A)s,| > e. For each element v € A | let
Z,=V,NA W, =V, \Z,. Then W, | (). By our hypothesis, there exists a v > ¢
such that |[m(W,)s| < e for all s € E. Let B=AUW,. Then V, C B C Vs and
m(B) = m(A) + m(W,), which implies that |m(B)s,| = |m(A)s,| > e. Consider
now the family F of all clopen subset A of X with the following property: There
are v > § in A | with V,, C A C Vs and sup,cp |m(A)s| > e. Then F | (). Since
supscg |m(A)s| > e, for all A € F, we arrived at a contradiction.
2. Assume that m is strongly o-additive and that there exist a sequence V,, | 0, a
bounded subset S of F and an € > 0 such that |m|g(V,, > € for all n. As in the proof
of (1), we get a sequence n; < ms < ... of positive integers, a sequence (si) in S
and a sequence (Ay) of clopen sets such that V,,, ., C Ay C V;,, and |m(Ag)si| > €,
for all k, which is a contradiction. This clearly completes the proof.

Theorem 5.3. Let (X,d) be an ultrametric space and let H be a uniformly -
additive subset of the dual space M, (X) of (Cyo(X),3). Then the support of H, i.e.
the set

supp(H) = | supp(m),

meH

15 separable.

Proof : For each finite subset Y of X each € > 0, let N(Y,¢) = {z : d(z,Y) < €}.
Then N(Y,€) is clopen and the family

{X\N(Y,e): Y finite subset of X}

is downwards directed to the empty set. Since H is uniformly 7-additive, given
€1 > 0, there exists a finite subset Y of X such that sup,,cy [m|(X \ N(Y,€)) < €.
For positive integers n, k, choose a finite subset Y,, ;, of X such that

Tilé%\m](X \NYnr 1/k)) <1/n.

Let
Dy =X\ NYoi, 1/k)], M = JX\ D,, F=NM.
k n

Then X \ F' C ND,. Let now x € X \ FF and m € H. For each n, choose a k
such that © ¢ N(Y,x,1/k) and so Ny, (z) < |m|[(X \ N(Yox, 1/k)) < 1/n, which
proves that N,,(z) = 0. If B is a clopen subset of X disjoint from F', then ( by
22] ) we have |m|(B) = sup,cp Nm(z) = 0 and so supp(m) C F. It follows that
supp(H) C F. Finally, supp(H) is separable. In fact, let € > 0 and = € F. There
exists y € M such that d(x,y) < e. Let n be such that y ¢ D,,. Choose k > 1/e.
Since y € N(Yyx,1/k), there exists a 2 € Y, with d(y,z) < 1/k < ¢, and so
d(z,z) < e. The set Y = U, Yoy is countable and F' C Y. Since Y is separable,
the same is true for the subset supp(H). This completes the proof.
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Theorem 5.4. For an element m of M(X, E'), the following are equivalent :

1. ms € My(X), for each s € E, and, for each clopen partition (V;);er of X ,
each bounded subset S of E and each € > 0, there exists a finite subset J of I
such that |m|s(V;) < € for alli & J.

2. If (Vy)ier is a clopen partition of X, S a bounded subset of E and € > 0, then
there exists a finite subset J of I such that [m|s(Ue, Vi) < e.

3. If (V5) is a net of clopen subsets of X, with Vgﬁ"X | Z e Q,, and if S is a
bounded subset of E, then |m|s(Vs) — 0.

b IV L Z ey, then m(Vs) — 0 in the strong dual of E.

5. If (Vy)ier is a clopen partition of X, then m(X) = Y;c;m(V;), where the
convergence of the sum is in the strong dual of E.

6. m € My (X, F).

Proof : (1) = (2). Let J be a finite subset of I such that |m|s(V;) < eif i & J.
Let A be a clopen subset of D = U;¢; V;. Then A = U;e; ANV, If s € 5, then
ms € My(X) and so

m(A)s => m(V;N A)s
i¢J
(by [12], Theorem 6.9). But, for ¢ ¢ J, we have |m(V; N A)s| < |m|s(V;) < e. Thus
Im(A)s| < e, which proves that |m|gs(D) <e.
(2) = (3). There exists a clopen partition (V;);e; of X such that

Zcpx \Jvit

iel

Let S be a bounded subset of ¥ and € > 0. There exists a finite subset J of I such
that [m|s (Uses Vi) < e. There is a ¢ such that U;e, VN c Vfﬁox, and so

im|s(Vs) < |mls (U %) <e

idJ

(3) = (4). It is trivial.

(4) = (5). Let (V;)ier be a clopen partition of X. For each finite subset J of I,
let Wy = Uies Vi and Dy = X \ W;. Then m(X) — >;c;m(V;) = m(Dy). Since
D; | Z € Q,, our hypothesis (4) implies that m(D;) — 0 in the strong dual of E.
(5) = (1). Let (V;)ier be a clopen partition of X. Then m(X) = ¥ ,c;m(V;) in
E} and hence (ms)(X) = Y ;c;(ms)(V;), which proves that ms € M(X) (by [12],
Theorem 6.9). Let now S be a bounded subset of E. For each i, there exists a
clopen subset A; of V; and an s; € S such that |m(4;)s;| > |m|s(V;)/2. The set
A = (User B)“ is clopen. By our hypothesis (5), we have that

m(X) =m(A) + > m(4)

el
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in Ej. Given € > 0, there exists a finite subset J, of I such that

m (U Ai) s
i¢J

for each finite subset J of I containing J,. It follows from this that, for each i & J,,
we have that |[m(A;)s;)| < €/2 and hence |m|s(V;) < e.

(3) = (6). Let V,, | 0. Then ¥V,”** | Z € Q, C Q,, Hence |m|s(V,) — 0, which
proves that m is strongly o-additive. Let now d be a continuous ultrapseudometric
on X and S a bounded subset of E. If V3~ | Z € Q. then

sup <€/2

seS

sup [ms|(Vs) = |mls(Vs) — 0.

msesS
Also, if |[m||, < 1, then

sup ||ms|| < m,(X) - supp(s) < 0.
ses ses

It follows that the set ' = {ms : s € S} is a f.-equicontinuous subset of the
dual space M (X) of (Cp(X), Be) (by [12], Theorems 6.13 and 6.14). Hence the set
¢ = T;(F) is a [-equicontinuous subset of the dual space M, (X,) of (Cy(Xy, B),
which implies that the set D = supp(®) is separable, by Theorem 4.3. Now the set
A = 7;Y(D) is d-closed and d-separable. If V is a d-clopen subset of X \ A, then
7a(V') is a clopen subset of X, which is disjoint from D. If s € S, then ms € F' and
so ps = Tj(ms) € ®. Thus m(V')s = ps(ma(V')) = 0, which completes the proof of
the implication (3) — (6).

(6) = (5). Let (V;);er be a clopen partition of X. Define

d: X xX =R, dxy) ZSuy!xW(w) —xv; (y)]-
1€

Then d is a continuous ultrapseudometric on X. Let S be a bounded subset of
E and let A be a d-closed, d-separable subset of X such that m(V)s = 0 for each
s € S and each d-clopen set V disjoint from A. As A is d-separable, there exists
a sequence (i,) in I such that A ¢ B = U, V;,. Now B is d-clopen. Since m is
strongly o-additive, we have that

m(X)s =m(B)s + i m(V;,)s = i m(Vy)s =>_ m(Vi)s
k=1 k=1 iel
uniformly for s € S. Thus m(X) = Y ;,c;m(V;) in E} and the result follows.
Theorem 5.5. Let m € M,s(X, E"). Then :
1. Every f € Cy(X, E) is m-integrable.

2. If E is polar and c-complete, then the map
it Co(X,B) = K, un(f) = [ fdm

is a member of the completion Gy of the space Gy = (L(X,E"), ep).
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Proof : (1). Let p € ¢s(E) be such that m,(X) < 1 and let € > 0. Let
(V;)ier be the clopen partition of X corresponding to the equivalence relation x ~ y
iff p(f(z) — fly)) < e IfS = f(X), then there exists a finite subset J of [
such that |[m[s(D) < ¢, where D = {J;¢, Vi. Consider the finite clopen partition
F={Vi:ieJju{D}of X. If Ae F, z,y € Aand V a clopen subset of A,
then |m(V)[f(z) — f(y)]| < e. In view of [14], Theorem 7.1, it follows that f is
m-~integrable.

(2. Assume that F is polar and c-complete. Then G} = C(X, E). We need to show
that u,, € Gy. Let B € &. The set S = B(X) is bounded. Define d on X x X by

d(z,y) =supp(f(z) — f(y))

feB

and let (V;);er be the clopen partition of X corresponding to the equivalence relation
x ~ y iff d(z,y) < €, where € is a given positive number. Let (f,) be a net in B
converging pointwise to some f € B. There exists a finite subset J of I such that
Im|s(Uigs Vi) < e Let x; € Vi, i € J. As in the proof of Theorem 3.3, it follows

that
= S gt <

icJ

for all g € B. Let v, be such that p(f,(z;) — f(z;)) < efor all i € J and all v > ,.
As in the proof of Theorem 3.3, it follows that |[ f, dm — [ f dm| < e for all v > ~,.

This proves that u,, € G’b and the result follows.

Theorem 5.6. Let E be a polar Fréchet space. Then the map
M= Uy, Uy (f) = /fdm,

from Mys(X, E') to Gy, is an algebraic isomorphism. Thus the completion of Gy,
is the space Mys(X, E") equipped with the topology of uniform convergence on the
members of &.

Proof : It only remains to show that every element of G, is of the form w,, for
some m € Mys(X, E’). So, let u € G,p. If A is a uniformly bounded equicontinuous
subset of Cy(X) and s € E, then the set B = As = {gs : g € A} is a member of &.
Let

us : Cp(X) = K, us(g) = u(gs)

and let (g,) be a net in A which converges pointwise to some g € A. If f, = g,s, f =
gs, then f, — f pointwise and so us(g,) = u(fy) — u(f) = us(g). In view of [15],
Theorem 7.6, there exists a ;s € My(X) such that us(g) = [ gdus for all g € Cy(X).
Using an argument analogous to the one used in the proof of Theorem , we get that
there exists a p € es(E) such that |u(f)| < 1if ||f|l, < 1. Also there exists an
m € My(X, E') such that ms = p, for all s € E.

Claim I. If ¢ € Cy(X, E) is of he form g = > ;c; xv;$i, where (V;);er is a clopen
partition of X, then wu(g) = Y;c;m(Vi)s;. Indeed, for J C [ finite, let h; =
>ics xvisi- Then B = {h;:J finite} is in & and h; — ¢ pointwise, which implies
that

u(g) =limu(hy) = h§an(Vi)si => m(V;)s;.

ieJ i€l
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Claim II. m € My,(X, E’). In fact, let (A;);er be a clopen partition of X and let S
be a bounded subset of E. For each ¢ € I, there exist a clopen subset B; of A; and
an s; € S such that |m(B;)s;| > |m|s(A;)/2. By claim I,

u(d_ xpsi) =Y m(B;)s;.

iel el

Thus, given € > 0, there exists a finite subset J of I such that |m(B;)s;| < €/2 if
1 ¢ J. But then, for 1 ¢ J, we have that |m|s(B;) < e. This, together with the fact
that ms € My(X) for all s € E, implies that m € My,(X, E').

Claim III. If ¢ is as in claim 7, then u(g) = [ gdm. In fact, let S = g(X) and € > 0.
Since m € My (X, E') and u(g) = > ;c; m(V;)s;, there exists a finite subset J of I
such that |m|s(V¢) < e and |u(g) — > ;c;m(Vi)si| < €, where V = U;c; V. Ifz € V¢
and A a clopen subset of V¢, then |m(A)g(z)| < e. This implies that | [, gdm| < e.

‘u(g) - /gdm‘ < max{‘u(g) - /ngm

Also, [, gdm = 3;c;m(Vi)s;. Thus
; ‘/ gdm‘} <e
ve
and hence u(g) = [ gdm since € > 0 was arbitrary.
Claim IV. u(f) = [ fdm for all f € Cy(X,E). Indeed, let ¢ > 0 and choose a
A € K with [A|-m,(X) <€ 0< |\ <e Let (V;)ier be the clopen partition of X

corresponding to the equivalence relation x ~ y iff p(f(x)— f(y)) < |\|. Let z; € V;,
9 = ier xvif (xi. Then [[f —gl[, < |A| and hence [u(f — g)| < |A]. Also

a(f) = [ fam| < max{ju(s = g)l. | [(g - f)am|} <

Thus u(f) = [ f dm since € > 0 was arbitrary. This completes the proof.

6 M,(X,E') asa Completion

We denote by M, (X, E’) the space of all m € M (X, E’) for which ms € M (X) for
all s € E.

Theorem 6.1. Assume that E is polar and let m € M(X,E') be such that, for
each s € E and each g € Cy(X), the function gs is m-integrable. Then every
f € Coo(X, E) is m-integrable.

Proof :  Let p be a polar continuous seminorm on E such that ||m|, < 1 and
let feCo(X, E).
Claim : For each € > 0, there are g1, g2, ..., gn in Cp(X) and 1, S9, ..., s, in E such
that || f — hl|, < e, where h = >} grsk. In fact, the set Z = f(X) is compactoid
in E. Since E is polar, it has the approximation property. Thus, there exists a
continuous linear map ¢ : E — FE, of finite rank, such that p(s — ¢(s)) < e for
all s € Z. Let x,2,...,2,, € E" and $1,59,...,5, € E be such that ¢(s) =
Sk wh(s)sk, for all s € E. If g, = 2}, o f and h = Y}, grsk, then ||f — hll, <€,
which proves our claim.
In view of our hypothesis, h is m-integrable and so (by [14], Theorem 7.1) there exists
a clopen partition {Ay, Ay ..., Ay} of X such that, if x,y € Ay, then |m(B)[h(z) —
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h(y)]| < € for all clopen subsets B of A;. For B a clopen subset of A, and x € Ay,
we have

m(B)[f(x) = h(2)]] < my(X) - p(f(2) = h(z)) <e

Thus, for B C Ay and x,y € Ay, we have |m(B)[f(x) — f(y)]] < e. In view of [14],
Theorem 7.1, it follows that f is m-integrable.

Theorem 6.2. Assume that E is polar and c-complete and let G., = (L(X, E'), ec)-
If m € My(X, E'), then the map

v 2 Coo(X, E) = K, vn(f) :/fdm,

is a member of the completion Geo of G-

Proof : For each s € E, we have that ms € M (X) and thus every g € Cy(X)
is (ms)-integrable. In view of the preceding Theorem, every f € C.(X, E) is m-
integrable. Let B € &,. We may assume that B is absolutely convex. The set
Z = B(X) is compactoid. Let p € cs(E) be polar and such that ||m]|, < 1 and let
€ > 0. There are x},2),...,2!, € E' and sy, s9,...,s, € E such that

p(s — ki zy(s)sk) < €

for all s € Z. Let now (f,) be a net in B, which converges pointwise to the zero
function, and let hY = 2} o f,. The set Aj, = {2}, 0 g : g € B} is uniformly bounded
and equicontinuous. Moreover, hfj — 0 pointwise. Since msy € M(X), it follows
that [ h% d(ms;) — 0, by [15], Theorem 7.6. If g, = S0, h¥sy, then [ g, dm — 0.
Also

= gy dm| <1, el (360 < e

Thus, there exists 7, such that | [ f,dm| < € for all v > ~,. This proves that
Um € dco.

Theorem 6.3. Let E be polar and c-complete and let v € G.o. Then :

1. For each s € E, there exists a ps € My(X) such that v(gs) = [ gdus for all
g€ Cb(X)

2. v 1s sequentially continuous with respect to the topology of uniform convergence

on Ceo(X, E).

Proof : (1). If A is a uniformly bounded equicontinuous subset of Cy,(X), then,
for each s € E, the set As = {gs: g € A} isin &,. As in the proof of Theorem 4.4,
there exists a s € M;(X) such that v(gs) = [ gdus for all g € Cy(X).
(2) Let (f,) be a sequence in C., (X, E) which is uniformly convergent to the zero
function. If p € es(E) and V = {s € E : p(s) < 1}, then there exists a k such that
fu(X) C V for all n > k. Since the set U*_, f,(X) is compactoid, it follows that
the set U2, fn(X) is compactoid. Hence the set B = {f, : n € N} is in &,. Also
fn — 0 pointwise and hence v(f,) — 0. Thus the result follows.
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Theorem 6.4. Let E be a polar Fréchet space. Then the map m +— v,,, from
My(X,E") to Geo, is an algebraic isomorphism. Therefore the completion of Ge
is the space Ms(X, E") equipped with the topology of uniform convergence on the
members of E.,.

Proof : Let v € Gy,. Since E is metrizable, the topology of uniform convergence
on Cu(X, E) is metrizable. By the preceding Theorem, there exists a continuous
seminorm p on E such that

{f € Coo( X, B) 2 || flly < 1} CH{S = ()] < 15

Now v|¢,.(x,r) is continuous with respect to the topology of uniform convergence and
hence there exists a m € M (X, E’) such that [ fdm = v(f) for all f € C,.(X, E).
It is easy to see that ms = pug, for all s € E, and so m € M,(X, E’). As we have
seen in the proof of Theorem 5.1, the space I’ spanned by the functions gs, s € F
and g € Cy(X), is dense in C,,(X, F), with respect to the topology 7, of uniform
convergence. Since both v and v, are 7,-continuous and they coincide on F', it
follows that v = v, on Cy,(X, E). This clearly completes the proof.
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