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Abstract

Let K be an algebraically closed field, complete for a non-trivial ultra-
metric absolute value. We denote by A the K- Banach algebra of bounded
analytic functions in the unit disk {z € K | |x| < 1}. We study some proper-
ties of ideals of A. We show that maximal ideals of infinite codimension are
not of finite type and that A is not a Bezout ring.

1 Introduction and Results

Definitions and notation: Let K be an algebraically closed field complete with
respect to a non-trivial ultrametric absolute value | . |.

Given a € K and r, s €]0,+o0o[ (r < s), we put d(a,r) ={z € K| |[x—a| <r},
dla,r")={z € K | |z —a| <r}and I'(a,r,s) ={z € K | r < |z —a| < s}.

We denote by A the K-algebra of bounded power series converging inside d(0, 17).

Given f(z) = Y a,2" and r €]0, 1], we put | f|(r) = sup |a,|r" and || f|| = | f|(1).
neN

The multiplicative norm | . || defined on A makes A a K-Banach algebra, [1, 2].

One of the main differences between p-adic and complex analytic functions con-
sists in the existence of sequences of zeroes for some elements of A. This is recalled
in Theorem A, [1] (theorem 25.5) and [7].
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Theorem A: Let (a,)nen be a sequence of d(0,17) such that |a,| < |ani1], Vn € N,
and limy, oo |an| = 1. Let (gn)nen C N and B €]1,4+o00|. There exists f € A
satisfying

1. f(0) =1,

2. sup{|f(2)| | z € d(0, |ax])} < BIIj

an

gi
2| Vn €N,
a;

3. a, is a zero of f of order s, > q,, Yn € N.

Moreover, if K is spherically complete, for every sequence (ap)nen of d(0,17)
such that lim,,_, ;o |a,| = 1 and for every sequence of positive integers (s, )nen, there
exist functions f € A admitting each a,, as a zero of order s, and having no other
zero.

If K is not spherically complete, there exist sequences (an)nen of d(0,17) such
that lim,, o |a,| = 1 and sequences of positive integers (Sp)nen such that no func-
tion f € A admits each a, as a zero of order s, and has no other zero.

Theorem B: Let (ay,)nen be a sequence of d(0,17) such that 0 < || < |apia],
Vn € N, andlim,, . |a,| = 1. Iftheideal I of the f € A such thatlim,,_. . f(a,) =
0 is not null, it is not of finite type.

Remark and definition: In a complex Banach algebra, every maximal ideal has
codimension 1, [5], [4]. This is not the same on an ultrametric field. The maximal
ideals of codimension 1 are easily characterized by the points of d(0,17) e.g. a
maximal ideal of codimension 1 of A is of the form (x — a)A, where |a|] < 1. But
there also exist maximal ideals of infinite codimension. They are called non-trivial
mazximal ideals of A, [1, 2].

Recall that a ring is called a Bezout ring if it has no divisor of zero and if any
ideal of finite type is principal.

Theorem C: Non-trivial maximal ideals of A are not of finite type.
Theorem D: A is not a Bezout ring.

Acknowledgement: The authors are grateful to the referee for pointing out many
misprints and errors of redaction.

2 The Proofs

Definitions and notation: Let D be a closed bounded subset of K. We denote by
R(D) the K-algebra of rational functions without pole in D. It is provided with the
K-algebra norm of uniform convergence on D that we denote by || . |[[p. We then
denote by H(D) the completion of R(D) for the topology of uniform convergence
on D: H(D) is a Banach K-algebra whose elements are called the analytic elements
on D, [1, 6]. It is known that if f € A then f € H(d(0,7)), Vr €]0,1[, [1] (Th. 13.3).

For a € K and r > 0, we call circular filter of center a and diameter r on K
the filter F which admits as a generating system the family of sets I'(«, 7/, ") with



On Ideals of the Algebra of p-adic Bounded Analytic Functions on a Disk 873

a € d(a,r),r <r <r” ie. F is the filter which admits for base the family of sets

q
of the form (I'(ay, 7}, 7)) with a; € d(a,r),r, <r <1} (1<i<gq, ¢€N).
i=1
We call circular filter with no center, of diameter r of canonical base (Dy,)nen a
filter admitting for base a sequence (D,,),en Where each D, is a disk d(a,,r,), such
that () d(a,,r,) = 0 and Jim 7, = [1], [2], 3]
n=1
Finally the filter of neighborhoods of a point a € K is called circular filter of
center a and diameter O or Cauchy circular filter of limit a.

A circular filter is said to be large if it has diameter different from 0. If F is a
large circular filter secant to some disk d(0, ), then for any f € H(d(0,r)), the limit
limg | f(x)| exists and is strictly positive if f # 0, [1].

A sequence (up)nen in L is said to be an increasing distances sequence (resp. a
decreasing distances sequence) if the sequence |u, 11 — u,| is strictly increasing (resp.
decreasing) and has a limit £ € R*.

The sequence (uy,)eny Will be said to be a monotonous distances sequence if it is
either an increasing distances sequence or a decreasing distances sequence.

A sequence (uy)nen in L will be said to be an equal distances sequence if
|t — Up| = |tm — uy| whenever n,m, ¢ € N such that n # m # ¢ # n.

Lemma 1: Let (ay)nen be a sequence of d(0,17) without any cluster point and let
feA f#0, such that lim, ., f(a,) =0. Then lim, ., |a,| = 1.

Proof. Suppose the lemma is false. Then there exists a disk d(0,s) C d(0,17)
containing a subsequence of (ay)neny and by Theorem 3.1, [1], we can extract a
subsequence which is either a monotonous distances sequence or an equal distances
sequence. Therefore, by Proposition 3.15, [1], there exists a unique large circular
filter F secant with d(0,s) and less thin than this subsequence. Since, by Lemma
12.5 [1] | f(2)| has a limit p£(fs) along F we then have limz f(z) = 0. On the other
hand, the restriction of f to d(0, s) belongs to H(d(0, s)). Now, by Proposition 40.1
in [1], o is an absolute value on H(d(0, s)), so limz f(z) = 0 implies f = 0.

Lemma 2 is immediate:
Lemma 2: Let f € A. Then |f(z) — f(v)| < || flllz — vl

Corollary: Let (an)nen (Bn)nen be sequences of d(0,17) such that lim,,_, o |, | =
1 and lim,, ., yoo oy — B = 0. The ideal of the f € A such that lim,,_, f(a,) =0
is equal to the ideal of the f € A such that lim,,_, . f(5,) = 0.

Lemma 3 is given in [9] as (3.1):
Lemma 3: Let fi,..., f, € A satisfying

q
iglfj(max(|f1(x)|, s | f4(@)])) > 0. Then there exist g1, ..., gg € A such that»_ g;f; = 1.
T j=1
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Proof of Theorem B. Suppose I # {0} and suppose that there exist fi,---, f, € I
such that I = 23:1 f;A

Since the zeroes of each f; are isolated, we can obviously find a sequence (3,,)nen
in d(0,17) such that |o,| = |6,] Vn € N, f;(8,) # 0Vj =1,....,¢ ¥n € N and
lim,, oo f(Bn) = 0. Then by the Corollary of Lemma 2, I is the ideal of the f € A
such that lim,, ., f(8,) = 0. Thus, without loss of generality, we may assume that
fila) #0Vj=1,...,q Vn € N.

Now, since lim,, ;o maxi<j<,(|fj(a,)|) = 0, we can extract a subsequence
(Ctr(m))men such that

max (|f;(arm)]) < max (|f;(@rm-n)l) vm € N.

Then, for at least one of the index k (among 1, ..., ¢) the equality max;< <4 (| f;(arm))|) =
| fi(tr(m)| holds for infinitely many integers m. Thus we can extract a new sequence

(aT(¢(m)))m€N such that maxlgqu(|fj(aT(¢(m)))\) = ’fk(OJTw(m))‘ VYm € N.
Set t(m) = 7(¢(m)). Thus, we have maxi<;j<q([ fj(umy)|) = | fr(aumy| ¥m € N.

For convenience, we may suppose k = 1 and set M = || f1]|. For each m € N, set
Tm = |y, let (7;)1<j<um) be the finite sequence of the zeroes of f; in d(0,7,,)
and let s; be the order of v; (1 < j < u(m).

f

Now, consider v, = Since 1, has no zero in d(0,7,,), by

W aye
H]:l ( n/]-) ’
Theorem 23.6 [1], we know that ¢, (x)| = |1 (0)] = [ f1(0)|, Yz € d(0, |7m])-

Next, since H“(m)( — 2-)* has no zeroes in I'(0,7,, 1) and has all its zeroes
in d(0,7,,), we know that ‘H“(m — %)Sj > H;%(:T)(%)sj Vo € I'(0, 7, 1), hence
[ Ul < M.

By induction, we can clearly define a sequence (A, )men in K such that /| fi(amm)| <

Am| < /I fi(cum=1))|, ¥Ym > 1 and satisfying further for each m € N | A0 (yim))| #

\Nji(oumy)| Vi # m. Since limgy, 4o [Am| = 0 and since ||4,| < M, the se-
ries h = 3,/ Amtbm converges in A. Then, since the |Ajih;(aym))| are all dis-
tinct, we have |h(ayom))| = maxjen [N (o) = [Amtbm(auem)] = [Amf1(0)]

(because |V, (x)] = |f1(0)] Vo € d(0,7,)), hence |h(oum))| > \/|fi(ouwm))| i-e.
|h(ou(my)| > maxi<j<q /| fj(um))|- Consequently
lim |h(cem))|

n—+00 MaxXi<j<q | f5(Q(m))|
But now, we notice that for each n > t(m), we have

= 400 and therefore h does not belong to I.

[h(m)] = | kawm an)| < sup [Aml[ f1 ()],

n=0

hence lim,, ..« h(a,) = 0 and hence, h belongs to I, a contradiction that finishes
the proof.

Proof of Theorem C. Let M be a non-trivial maximal ideal of A and let us suppose
that M = >9_; f;A. By Lemma 3 there exists a sequence (f)sen in d(0,17) such
that lim, . |f;(8s)| = 0, for any j = 1,..,¢ because if such a sequence does not
exist, then 1, f;A = A,
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If the sequence (f3;)sen has a cluster point a € d(0,17), then f;(a) = 0 for any
j=1,..,q, hence f(a) =0Vf € M and it follows that M is the ideal of the f € A
such that f(a) = 0. By Corollary 13.4 [1] we know that such functions factorize
in the form (z — a)g, with g € A, hence M = (z — a)A a contradiction. Hence
the sequence (fs)seny has no cluster point. Then, by Lemma 1, we can extract a
subsequence (ay,)nen, Where a, = Bym), Vn € N, such that 0 < |o,| < |opqa],
lim,, 4 |a;,| = 1. We then have lim,_. f;j(a,) = 0, for any j = 1,..,¢ and hence
lim,, . f(ay,) =0, for any f € M. But since M is maximal, M is the ideal of the
f € A such that lim,,_, f(c,) = 0 and so M is not of finite type by Theorem B.

Proof of Theorem D. Let (a,,)nen be a bounded sequence of K such that the sequence
(|ai”ﬁ|) is strictly increasing. Let f(z) = 312 a,z™, and for any n € N, set r,, =
]aZﬁ| Since the sequence (a,)nen is bounded, we know that f belongs to A. Then,
by Theorem 23.15 ([1]), we know that f admits a unique zero «,, € C(0,1,), of order
1, for any n € N and does not admit any other zero.

Let (8,) be a sequence of d(0,17) such that 3, € C(0,7,), 0 < |ay, — Bn| < 7rns
limy,—, oo (Bn — ) = 0. For any p > 0, we set D, = d(0,17) \ U, d(a,, p~). We
then know that the meromorphic product u(z) = [T}2f =2~ converges in H(D,),
for any p > 0, [1, §]. !

On the other hand, for any s €]0, p[, we know that the restriction of f to d(0, s)
belongs to H(d(0, s)), [1], (Proposition 13.3). Weset D, s = D,Nd(0, s). Let g = uf.
Then u belongs to H(D, ) and in each hole d(a,, p~) of D, s, g is meromorphic in
this hole ([1], Chap. 31) but does not admit any pole. Hence g € H(d(0, s)) for any
s < p. Moreover, we see that |f(x)| = |g(z)|, for any z € d(0,17) \ U2 d(cvn, 7))
because |u(x)| = 1 in this set. Thus, we have, limy 1 | f(2)| = lim|;—1 |g(z)|, hence
g is bounded in d(0,17); i.e. g € A.

Now, by construction, the 3, are the only zeroes of g. So, f and g have no
common zero. Let [ = fA + gA. Next, since lim,,_.. (8, — a,,) = 0 by Lemma 2
we see that lim,, . f(3,) = 0, hence lim,, ., ¢(5,) = 0, V¢ € I. Suppose that [
is a principal ideal, generated by some h € A. Obviously, lim, . h(3,) = 0. But
since f and g have no common zero, h does not admit any zero in d(0,17) because
any zero of h would be a common zero of f and g. Now, by Theorem 23.6 ([1]), any
function ¢ € A which does not admit any zero in d(0,17) satisfies |¢(z)| = |¢(0)|,
Va € d(0,17), hence |h(B,)| = |h(0)| Vn € N, a contradiction to lim,, ., h(3,) = 0.
Hence A is not a Bezout ring.

References

[1] Escassut, A.  Analytic Elements in p-adic Analysis, World Scientific Pub-
lishing Inc., Singapore (1995).

[2] Escassut, A. Ultrametric Banach Algebras, World Scientific Publishing
Inc., Singapore (2003).

[3] Garandel, G. Les semi-normes multiplicatives sur les algébres d’éléments
analytiques au sens de Krasner, Indag. Math., 37, n4, p.327-341, (1975).



876

[4]

A. Escassut — N. Mainetti

Gelfand, I.M., Raikov, D.A., Chilov, G.E. Les anneaux normés com-
mutatifs, Monographies Internationales de Mathématiques Modernes, Gauthier-
Villars, Paris, (1964).

Hoffman, K. Banach Spaces of Analytic Functions. Prentice-Hall Inc.
(1962).

Krasner, M. Prolongement analytique uniforme et multiforme dans les
corps valués complets, Les tendances géométriques en algebre et théorie des
nombres, Colloques Internationaux du CNRS, Clermont-Ferrand, 143, p. 194-
141 (1966).

Lazard, M. Les zéros des fonctions analytiques sur un corps valué complet,
THES, Publications Mathématiques n14, p.47-75 ( 1962).

Sarmant, M.-C.  Produits méromorphes, Bull. Sci. Math., t. 109, P. 155-178,
(1985).

Van Der Put, M. The Non-Archimedean Corona Problem Table Ronde
Anal. non Archimédienne, Bull. Soc. Math. Mémoire 39-40, p. 287-317 (1974).

Alain Escassut

Laboratoire de Mathématiques UMR. 6620
Université Blaise Pascal
(Clermont-Ferrand)

Les Cézeaux

63177 AUBIERE CEDEX

FRANCE
Alain.Escassut@math.univ-bpclermont.fr

Nicolas Mainetti

LAIC, EA 2146,

IUT, Campus des Cézeaux,
Université d’Auvergne

F-63170 AUBIERE

FRANCE
Nicolas.Mainetti@iut.u-clermont1.fr



