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Abstract

We consider locally symmetric almost Kenmotsu manifolds showing that
such a manifold is a Kenmotsu manifold if and only if the Lie derivative of
the structure, with respect to the Reeb vector field &, vanishes. Further-
more, assuming that for a (2n + 1)-dimensional locally symmetric almost
Kenmotsu manifold such Lie derivative does not vanish and the curvature
satisfies Rxy& = 0 for any X,Y orthogonal to £, we prove that the manifold
is locally isometric to the Riemannian product of an (n+ 1)-dimensional man-
ifold of constant curvature —4 and a flat n-dimensional manifold. We give an
example of such a manifold.

Introduction

An almost contact structure on a differentiable manifold M?"*! is given by a tensor
field ¢ of type (1, 1), a vector field £ and a 1-form 7 satisfying p?> = — I +1n®¢ and
n(&) = 1, which imply that ¢(§) = 0 and no ¢ = 0.

Furthermore, on the product manifold M?"*! x R one can define an almost
complex structure J by J (X, f%) = (ng — f¢, n(X)%), where X is a vector field
tangent to M?" ! ¢ is the coordinate of R and f is a C* function on M?"*! x R.
If J is integrable, the almost contact structure is said to be normal and it is known
that this is equivalent to the vanishing of the tensor field N = [p, p]+2dn®¢&, where
[, ] is the Nijenhuis torsion of ¢ ([3]).

An almost contact metric structure (p,&,1n,g) is given by an almost contact
structure and a Riemannian metric g satisfying g(¢X, ¢Y) = g(X,Y) — n(X)n(Y)
for any vector fields X and Y. Then, the fundamental 2-form & is defined by
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O(X,Y) = g(X,¢Y) for any vector fields X and Y. For more details, we refer to
Blair’s books [3], [5].

A contact metric structure (¢, €, n,¢g) is an almost contact metric structure such
that ® = dn and if the structure is normal, then it is a Sasakian structure. In
[14], Z. Olszak proved that in dimension 2n 4+ 1 > 5 any contact metric manifold
of constant sectional curvature has sectional curvature equal to 1 and is a Sasakian
manifold. In [4], D.E. Blair proved that if the Riemannian curvature of a contact
metric manifold M?"+! satisfies Rxy ¢ = 0 for all vector fields X and Y, then M2+
is locally the product of a flat (n 4 1)-dimensional manifold and an n-dimensional
manifold of constant curvature 4. In particular, the tangent sphere bundle of a flat
Riemannian manifold admits such a structure. More recently, in [6] E. Boeckx and
J.'T. Cho proved that a locally symmetric contact metric space is either Sasakian of
constant curvature 1 or locally isometric to R™ ™ x S™(4).

In this paper, we consider the class of almost contact metric manifolds called
almost Kenmotsu manifolds. In [15], Olszak proved that if such a manifold has
constant sectional curvature K and dimension 2n + 1 > 5, then it is a Kenmotsu
manifold and K = —1. We give another proof of the same result without restric-
tions on the dimension. We also study locally symmetric almost Kenmotsu manifolds
M?"+1 showing that such a manifold is a Kenmotsu manifold if and only if the ope-
rator h = %Egp vanishes, where £ denotes the Lie differentiation. Furthermore,
assuming h # 0 and Rxy& = 0 for all vector fields X and Y orthogonal to &, we
prove that the spectrum of h is {0,1, —1}, with 0 as simple eigenvalue, and M2+
is locally the product of an (n + 1)-dimensional manifold of constant curvature —4
and an n-dimensional flat manifold. We provide an example of such a manifold.
Comparing with the contact case, one can state the following question: is a locally
symmetric almost Kenmotsu manifold either Kenmotsu of constant curvature —1 or
locally isometric to the product H"™(—4) x R™?

As usual, the manifolds involved are assumed to be connected. Furthermore, we
denote by X (M?"1) the space of the C™®-sections of T M2+,

As regards Kenmotsu manifolds, we recall here the basic data related to them.
An almost contact metric manifold M?"*! with structure (¢, &,n, g), is said to be
a Kenmotsu manifold if it is normal, the 1-form 7 is closed and d® = 2n A ®. It is
well known that Kenmotsu manifolds can be characterized by

(Vxo)(Y) = g(X,Y)E = n(Y)p(X),

for any X,Y,Z € X(M?***!), which implies that Vep = 0. We denote by D the
distribution orthogonal to &, that is D = Im(p) = Ker(n). It can be seen that
VeX € D and V& € D for any vector field X € D. Moreover, one has V& = —p?
and Vn = g —n ®n. Since 7 is closed, D is an integrable distribution. It is known
that its leaves are 2n-dimensional totally umbilical Kéhler manifolds with mean
curvature vector field H = —¢. Kenmotsu manifolds appear for the first time in [9],
where they have been locally classified.

Theorem 1. ([9]) Let (M*"™' o, & 1, g) be a Kenmotsu manifold. Then, M*" 1 is
locally a warped product M’ X ;2 N*™ where N*" is a Kdhler manifold, M' is an open
interval with coordinate t, and f? = ce? for some positive constant c.
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As proved in [9], a Kenmotsu manifold is locally symmetric if and only if it is a
space of constant sectional curvature K = —1.

1 Almost Kenmotsu manifolds

An almost contact metric manifold M?"*! with structure (¢, &,n, g), is said to be
an almost Kenmotsu manifold if the 1-form 7 is closed and d® = 2n A ®. Obviously,
a normal almost Kenmotsu manifold is a Kenmotsu manifold.

Let M*"*1 be an almost Kenmotsu manifold with structure (o, £, 7, g). Since the
1-form 7 is closed, we have Len = 0 and [X, ] € D for any X € D. The Levi-Civita
connection satisfies V£ = 0 and Vep = 0 ([10]), which implies that and VX € D
for any X € D.

Now, we set A = —V¢ and h = %[,5()0. Obviously, A(¢) = 0 and h(§) = 0.
Moreover, the tensor fields A and h are symmetric operators and satisfy the following
relations

Aop+poAd=-2p, hop+poh=0
Vng _902X_90hX7 XEX(M2n+1)> (1)
Vn=g-n®n+go(pxh), on=-—2n

Hence, M?"*! cannot be compact. We also remark that
h=0& V= —¢>. (2)
From Lemma 2.2 in [10] we have
(Vxp)Y + (Vox@)(0Y) = = n(Y)pX —29(X,0Y)E —n(Y)R(X)  (3)
for any X,Y € X(M?"™!). The following result is also proved in [10].

Proposition 1. Let (M*"* ¢ £ n,9) be an almost Kenmotsu manifold. The in-
tegral manifolds of D are almost Kdhler manifolds with mean curvature vector field
H = —£. They are totally umbilical submanifolds of M+ if and only if h vanishes.

Example 1. Let (N?",J,3), n > 2, be a strictly almost Kéhler manifold and
consider R x N?", with coordinate t on R. We put £ = %, 1n = dt and define the
tensor field ¢ on R x N?" such that X = JX, if X is a vector field on N?", and
pX = 0if X is tangent to R. Furthermore, we consider the metric g = gy + ce?g,
where gy denotes the Euclidean metric on R and ¢ € RY.. Then, the warped product
R X2 N?" f2 = ce?, with the structure (¢,&,7,9), is a strictly almost Kenmotsu
manifold. Namely, it is easy to verify that the 1-form 7 is closed and dual of £ with
respect to g, * = —I + 7 ® £ and g is a compatible metric. Computing ® and d®,
we get ® = ce?p3(€Q), where p, is the projection on N2 and Q is the fundamental
form of N2". Then, since dQ = 0, d® = 2dt A ® = 2n A ®. Finally, since the torsion
N does not vanish, N?" being strictly almost Kihler, we obtain that the structure
is not normal.

Remark 1. In [13], Oguro and Sekigawa describe a strictly almost Kéhler structure
on the Riemannian product H? x R. Thus, we obtain a 5-dimensional strictly almost
Kenmotsu manifold on the warped product R X 2 (H?* x R), f? = ce®.
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Theorem 2. Let (M*" ¢ £ n,g) be an almost Kenmotsu manifold and assume
that h = 0. Then, M*" ! is locally a warped product M' X ;2 N*", where N*" is an
almost Kdihler manifold, M’ is an open interval with coordinate t, and f? = ce? for
some positive constant c.

Proof. The vector field £ is geodesic and the orthogonal distribution D is inte-
grable with totally umbilical almost Kahler leaves. Thus, as a manifold, M?***! is
locally a product M’ x N?" with TM’ = [£] and TN?" = D. We can choose a neigh-
borhood with coordinates (¢, 2!, ..., 2*") such that m,(£) = &,  denoting the projec-
tion onto M’. Then 7 : M’ x N?* — M’ is a C*-submersion with vertical distribution
Y = TM' and horizontal distribution H = T'N*". The splitting V @& H is orthogo-
nal with respect to g and for any p € M** ™! we have g,(£,&) = 1 = grp) (m:&, TE);
hence, 7 is a Riemannian submersion. Since the horizontal distribution is integrable,
the O’Neill tensor A vanishes. Moreover, the vector field N = 2nH = —2n¢ is basic.
Now, computing the free-trace part 7° of the O’Neill tensor T, for any U, V vertical
vector fields, we get:

THV =TV — 39U, VIN = a(U,V) + (U, V)E =0,
TpE = Tuyé + 5,9(N,OU = Vy€ —U = 0.

Thus 7° = 0 and M?"*! is locally a warped product of (M’, gy) and (N?",g) by a
positive function f2 on M’, where g, is the flat metric and § is an almost Kahler
metric. The vector field N = —2n¢ is m-related to —%"gradgof ([1],9.104). It follows
that grad,,f = f<, which implies that f = ke’ and f? = ce*, with ¢ a positive
constant. Hence, the warped metric is given by dt ® dt + ce?g.

Proposition 2. Let (M*"*! p,£,n,9) be an almost Kenmotsu manifold such that
the integral manifolds of D are Kdihler. Then, M*"*! is a Kenmotsu manifold if and

only if V&€ = —2.

Proof. An easy computation shows that N(X,¢&) = —2h(¢X) for any vector
field X. Hence, assuming that the structure is normal, then A(Y) = 0 for any
Y € D. Being h(§) = 0, we get h = 0 and (2) implies that V& = —¢?. Vice versa,
if V€ = —¢? then h = 0 by (2), and thus N(X,£) = 0 for any vector field X.
Moreover, for X,Y € D we have N(X,Y) = N;(X,Y) = 0, the leaves of D being
Kéhler manifolds.

Proposition 3. An almost Kenmotsu manifold M3 such that V& = —? is a Ken-
motsu manifold.

Proof. In this case the integral manifolds of the distribution D are almost Kéhler
of dimension 2 and thus they are Kahler. The result follows from the previous
proposition.
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2 Curvature properties and local symmetry

A simple computation gives:

Proposition 4. Let (M*"*! ¢, £, n,g) be an almost Kenmotsu manifold. Then, for
any X,Y € X(M**1),

Ry = n(X)(Y — ohY) —n(Y)(X — phX) + (Vyph)X — (Vxph)Y . (4)

Proposition 5. Let (M*"™ p,£,n,9) be an almost Kenmotsu manifold. For any
X € X(M* ) we have:

Rex€ = — ¢*X — 2phX + h*X — o(Veh)(X), (5)
(Veh)X = — X —2hX — ph*X — p(Rx¢€), (6)
S (Rext — pRepxt) = — @ X 412X 7)

Proof. (5) follows by direct computation, using Vep = 0 and (1). Applying ¢ to
(5) and remarking that g((Veh)X, &) = 0, we get (6). Finally, we write (5) for ¢ X
obtaining
Repxé = X 4+ 20°h X + oh*X — o(Veh) (0 X).

Then, we get
Rex€ — pRepx€ = =20°X + 212X — o(Veh)(X) + ¢*(Veh) (0 X)
which reduces to (7), since (V¢h) oo = —po (Veh).

Proposition 6. Let M?"*! be a locally symmetric almost Kenmotsu manifold.
Then, Ve¢h = 0.

Proof. We notice that (7) can be written as

1
5 (Real — 0Repa) = — >+ h?

and since the operator Re.¢ is parallel with respect to &, £ being a geodesic vector
field, we get V¢h? = 0. Now, writing (6) as Veh = — ¢ — 2h — ph? — @(Ref)
and applying V¢, we obtain V¢(Ve¢h) = —2Veh. Moreover, Veh? = 0 implies
(Veh) o h 4+ h o Veh = 0, and applying V¢ to this equality, we get (V¢h)? = 0.
Hence, V¢h = 0, since one easily verifies that V¢h is a symmetric operator.

Theorem 3. Let (M** p, €, n,9) be a locally symmetric almost Kenmotsu mani-
fold. Then, the following conditions are equivalent:

a) M? s a Kenmotsu manifold;
b) h=0.

Moreover, if any of the above conditions holds, M*"! has constant sectional curva-
ture K = —1.
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Proof. Assuming that M?"*! is a Kenmotsu manifold, we have V& = —p? and,
by (2), h = 0. Now, supposing h = 0, it follows that V& = —¢? Vn =g —-—n®n
and, by (4), Rxy& = —n(Y)X +n(X)Y. Then, we get

(VZR)(X> Y> 6) = g(Z> X)Y - g(Za Y)X - RXYZ-

Since VR = 0, M?"*! has constant sectional curvature K = —1. Now, each integral
manifold M’ of D is an almost Kéhler, totally umbilical submanifold and then
it has constant sectional curvature ([7]). Computing its sectional curvature for
orthonormal vectors X,Y we get:

EX,Y)=kX,Y)+ |¢P=k(X,Y)+1=0

and thus M’ is Kéhler and flat. By Proposition 2, M?"*! is a Kenmotsu manifold.
Hence, a) and b) are equivalent and each of them implies the value K = —1 for the
curvature.

Theorem 4. An almost Kenmotsu manifold of constant curvature K is a Kenmotsu
manifold and K = —1.

Proof. Clearly, M*" ! is locally symmetric, so V¢h = 0. Comparing (4) and
Rxyé=K(n(Y)X —n(X)Y), we obtain

(K + D)(n(Y)X = n(X)Y) = n(¥)ghX +n(X)phY — (Vyeh)X + (Vxeh)Y = 0.

Choosing X = £ and Y € D, we get —(K + 1)Y + 2phY — k%Y = 0. Now, if YV is
an eigenvector of i with eigenvalue ), then —(K + 1)Y + 2\¢Y — A\?Y = 0, which
implies A = 0 and K = —1, since Y and ¢Y are linearly independent. Hence h = 0,
K = —1 and we apply the previous theorem.

Now, we consider the rank of the locally symmetric almost Kenmotsu manifold
M2+ If the rank is equal to one, then M?"*! has constant curvature K, being
of odd dimension, it is Kenmotsu, K = —1 and h = 0. If M?*™! does not have
constant curvature then, its rank must be greater than one and h # 0.

Proposition 7. Let (M* ¢ & n,q) be a locally symmetric almost Kenmotsu
manifold. If M?"*' has rank greater than one, then £1 are eigenvalues of h.

Proof. The hypothesis on the rank implies that there exists a vector X ortho-
gonal to & such that Ry = 0 and by (6) we get ©X + 2hX + ph?X = 0. Let

(&, e1,...,en,p€1,...,p0e,) be alocal frame of eigenvectors of h with corresponding
eigenvalues (0, A1, ..., A\p, = A1, ..., —A,). Writing X = 37 (X' + X'pe;), we
obtain

(X7 = 2XN + XD + (— X'+ 2X°N — X'\)e;) = 0,
=1
which implies B
(1+ X)X —2)0,X =0
2MXT— (14 X)X =0
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foreach i € {1,...,n}. Since X # 0, there exists j € {1,...,n} such that the corre-
sponding system admits a non trivial solution and this implies — (1+ )\?)2 + 4)\? =0
and then \; = £1.

Let us consider the operator h' = h o ¢. This operator is symmetric and, if
Y is an eigenvector with eigenvalue p, then Y is an eigenvector with eigenvalue
—p. Moreover, if X is an eigenvector of h with eigenvalue A, then X + ¢ X is an
eigenvector of h' with eigenvalue —\, while X — ¢ X is an eigenvector of h' with
eigenvalue \. It follows that A and h' admit the same eigenvalues. Denoting by
[A] and [A]" respectively the eigenspaces of h and h’ with eigenvalue A\, we have
Al @ [=A] = [A]' @ [-)). Furthermore, Vep = 0 implies that V¢h' = 0 if and only
if Veh = 0.

The operators h and A" are related to the curvature by the following proposition.

Proposition 8. Let (M** ¢ & n,g) be a locally symmetric almost Kenmotsu
manifold. Then,

1) k(X,€) = — (1+ \?) for any unit h-eigenvector X with eigenvalue X,
2) k(X,&) = — (1+ p)? for any unit I -eigenvector X with eigenvalue p.
Furthermore, Ric(€,€) < 0.

Proof. Since V¢h = 0, from (5), we have Rye{ = — X + 2 pX — A\2X, and
k(X,€) = g(Rxe€, X) = — 1 — \? which proves 1).
Analogously, since V¢h' = 0, applying (5), we have Ry = —X — 2h/(X) — h"*(X)
for any X € D, and k(X,€) = — (1 + p)?, for any unit eigenvector X of h' with
eigenvalue p.

Proposition 9. Let (M* ¢ & n,9) be a locally symmetric almost Kenmotsu
manifold. Then, for any X,Y € X(M*1), the curvature tensor satisfies:

Ryxg + Rh/yxg + Rgxy + Rgxhly = —g(X, Y + h,Y)g — T](X)(Y + h,Y)
+2n(Y)(X + 20’ X + h*X) (8)
+2(Vyh)X + (Vyh'?)X.

Proof. Since M?**! is locally symmetric, then Vi = 0. Being h? = h'*, from
(5), we have
Rex€ = X —n(X)E+ 20X + h*X (9)

for any X € X(M?***1). Derivating with respect to Y € X (M?***1) since VR = 0,
we get

Ryyex€+ Revy x§ + RexVyE = Vy X =Y (n(X))§ —n(X)VyE (10)
+2Vy (W' X) + Vy (K X).

Now, applying (9), Rev, x& = Vy X — n(Vy X)E + 20/ (Vy X) + h'*(Vy X). More-

over, from (1), Vy& = Y —n(Y){ + A'Y and thus, Y(n(X)) = Y(9(X,§)) =

g(Vy X, &)+ g(X,Y —n(Y)¢ + R'Y). Substituting in (10), and using again (9),

by a simple computation we obtain (8).
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In the following, we denote by [u] the distribution of the eigenvectors of A’ with
eigenvalue p. We remark that the condition Ryy¢ = 0 for any X, Y € X (M?"1),
which gives the local decomposition R"*! x S*(4) in the context of locally symmetric
contact metric manifolds, in our case has to be relaxed to X,Y € D, otherwise we
get a contradiction with Proposition 8.

Proposition 10. Let (M*"* ¢, & n,g) be a locally symmetric almost Kenmotsu
manifold and suppose h' # 0. Then,

1) Vy€=0and [£,Y]e[-1] for any Y € [—1], while Vy& =2Y and [, Y]€[+1]
for any Y € [+1],

2) the distribution [—1] is integrable with totally geodesic leaves or, equivalently,
for any X,Y € [—-1], Rxy& = 0.

Proof. If Y € D then we have Vy£ =Y +A'Y and this implies that Vy & = 0 for
any eigenvector Y of b’ with eigenvalue —1, Vy £ = 2Y for any eigenvector Y with
eigenvalue +1. Furthermore, V¢h' = 0 implies V¢[—1] C [-1], V¢[+1] C [+1] and
1) holds. From (8) and (4), if X and Y are orthogonal to £, we have, respectively,

Ry swvix€ + Rex(Y + B'Y) = —g(X, Y + W'Y)E + 2(Vyh) X + (Vy'?)X, (11)

Rxy&= (Vxh)Y — (Vyh)X. (12)
Supposing X,Y € [—1], (11) gives

Vy X + 20 (VyX) + K (VyX) = 0. (13)

Let {0, 41, —1,\;, =\;} be the spectrum of h', where A\; > 0, \; # +1. Now, Vy X
decomposes as Vy X = Ag+ A1 + A1+ >, Ay, + > A_y,. Hence,

h’(VyX) = Al - A_l + Zz )\ZA)\Z - Zz )\iA—)\i
W2 (VyX)= A+ A1+ 3, \2A, + 3,024,

Applying (13), we get Ag = A; = 0 and, for any 4, (14+X;)?4,, =0, (1-X;)?A_,, =0
which imply A, = A_,, = 0. Thus VyX € [-1]. Being also VxY e [-1],
we deduce that [X,Y] € [—1] and the distribution [—1] is integrable with totally
geodesic leaves. From (12), it follows that the integrability of the distribution [—1]
is equivalent to Rxy& = 0 for any X,Y € [—1].

Theorem 5. Let (M*"* ¢ & n,9) be a locally symmetric almost Kenmotsu man-
ifold such that b’ # 0 and Rxy& = 0 for any X,Y € D. Then, the spectrum of
R s {0,+1, =1}, with 0 as simple eigenvalue. Moreover, choosing Y € [—1]| and
X € [+1] one has Vy X € [+1], VxY € [—1] and the distribution [+1] B[] is totally
geodesic.

Proof. We know that 0, +1, —1 are eigenvalues of h’. First we prove that for any
unit eigenvector X € [A], with A # —1, and for any unit Y € D, orthogonal to X,
we have

K(X,Y) = k(E,Y). (14)
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Namely, since Rxy& = 0, covariantly derivating with respect to X, we get

0 =RvuyxvE+ Rxvyvé+ RxyVxé
=g(VxX,§)RevE+ g(VxY,§)Rx £+ (1 + M) Rxy X
= —(1 + )\)ngg + (1 + A)RXYX-

Hence Rey¢ = Rxy X and, taking the scalar product with Y, we get (14). Now,
we suppose that there exists a unit eigenvector X € [A] with A\ # +1 and applying
(14) to X and X we get k(X, pX) = k(&,pX) = —(1 — \)2. Again, applying (14)
to X € [—)] and choosing Y = X, we have k(pX, X) = k(£, X) = —(1 + N2 Tt
follows that (1 — A\)? = (1 + A)? so that A = 0 and Sp(h’) = {0,+1,—1}. Finally,
let us suppose that dim[0] > 1 and let X be a unit eigenvector orthogonal to
¢ such that A'(X) = 0. Applying (14) to X and to a unit Y € [+1], we get
E(X,Y)=Fk(&Y)=—4and k(Y,X) = k(&, X) = —1, which is a contradiction.
Now, let be Y € [—1] and X € [+1]. Since [—1] is totally geodesic, then Vy X € [+1].
Applying (12) it follows that 0 = Rxy¢& = —VxY — h/(VxY) so that VxY € [—1]
and [+1] @ [£] is totally geodesic.

Theorem 6. Let (M*" o £ n,q) be a locally symmetric almost Kenmotsu man-
ifold such that b’ # 0 and Rxy& = 0 for any X, Y € D. Then, M*"*! is locally
isometric to the Riemannian product of an (n+ 1)-dimensional manifold of constant
curvature —4 and a flat n-dimensional manifold.

Proof. As proved in Proposition 10 and Theorem 5, the distributions [¢] & [+1],
[—1] are integrable and totally geodesic. It follows that M?" ! is locally isometric to
the Riemannian product of an integral manifold M" ! of [¢] @ [+1] and an integral
manifold M™ of [—1]. Therefore, we can choose coordinates (u’; ..., u*") such that
o/ou’ € [£], 9/out,...,0/ou™ € [+1] and 9/Ou™tt ... 3/0u* € [—1]. Now, we
set X; = 0/0u’ for any i € {1,...,n}, so that the distribution [—1] is spanned
by the vector fields ¢Xi,...,¢X,. We notice that [X;, pX;] € [—1] for any 4, j in
{1,...,n}. Taking the scalar product with any Z € [+1], since Vx,pX; € [—1], we
get g(Vyox,; X, Z) = 0 and then V,x, X; = 0. Applying (3), we have (Vx,¢)X; —
©(Vyux,0X;) = 0, which implies

VSOXiQOXj =0, (VXiQO)X]’ =0,

since the two addenda belong to [—1] and [+1], respectively. The first condition
implies that M"™ is flat. We compute the curvature of M"*!. Applying ¢ to
(Vx,0)X; =0, we have

VxiXj +o(Vx,pXj) = =29(X;, X5)€.
Derivating with respect to X}, we obtain:
Vi, Vi, Xj+(Vx, 0) (Vx, 0 X5) +0(Vx, Vx, 0 Xj) = =2X5(9(Xi, X;))E—49(Xs, X;) X
and, by scalar product with X,

9(Vx, Vx.X;, X)) = 9(Vx, Vx,0X;, 0X)) = —49(X;, X;)9(Xy, X3),
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since g((Vx,0)(Vx,9X;), Xi) = —9(Vx,0X;, (Vx,0) Xi) = 0.
Now, we interchange i and k, subtract and, being [X;, X;] = 0, obtain

9(Rx,x,Xj, Xi) —9(Rx, x,0X;, 0 X1) = —49(Xs, X;)9( Xy, Xi) +49(Xe, X;)9(X;, X7).

Since VinXj = 0 = [(,OXZ',QOX]'], then g(RXkXi(pXj,(le) = g(RjoleXk,Xi) = 0,
and thus

9(Rx, x, X, X1) = —4(9(X;, X;)9( Xy, Xi) — 9( Xk, X;)9(X;, Xp)).

Moreover, we recall that g(Rx,x,&, Xi) = 0 and, by (5), g(Rx,e§, X;) = —49(X;, X;).
We conclude that M™*! is a space of constant curvature —4.

Now, we provide an example of an almost Kenmotsu manifold which is locally
isometric to the Riemannian product H" ! (—4) x R".
Let {&, Xy, ..., X,,} be the standard basis of R*™! and let us denote by b the Lie

algebra obtained by defining:

for any 4,5 € {1,...,n}. Let {Y1,...,Y,} be the standard basis of R"; we consider
on R” the structure of abelian Lie algebra, denoted by €. On the Lie algebra g = he
define the endomorphism ¢ : g — g such that

p(€) =0, o(Xy) =Y oYi)=-X;

for any i € {1,...,n}. Let n: g — R be the 1-form defined by

n&) =1, nX;)=ni) =0,

for any i € {1,...,n}. We denote by g the inner product on g such that the basis
{£, X;,Y;} is orthonormal.

Let G, H and K be connected Lie groups with Lie algebras g, h and € respectively.
Being g = h @& ¢, we have G = H x K. The vectors £, X;, Y; determine left-invariant
vector fields on (G, which we denote in the same manner. Analogously, we denote by
v, n and g the left-invariant tensor fields determined by the corresponding tensors.
It can be easily seen that (¢, £, n, g) is an almost contact metric structure on G. We
prove that it is an almost Kenmotsu structure.

Indeed, for any X,Y € g, n(X) and n(Y) are constant, [X, Y] is orthogonal to
¢ and then dn(X,Y) = 0 follows. It remains to prove that d® = 2n A ®. Since
®(X,Y) is constant for any X, Y € g, it follows that for any X, Y, Z € g,

dd(X,Y,7Z) = —% {O([X,Y],2)+ (Y, Z], X))+ ®([Z, X],Y)}. (15)
On the other hand,
2N )XY, Z) = % {n(X)2(Y,2) +n(Y)2(Z, X) +n(2)2(X,Y)}.  (16)

Now, if X|Y and Z are orthogonal to &, then n(X)

= n(Y) = n(Z) = 0 and
[X,Y] = [Z,X] = [X,Y] = 0. Hence, d®(X,Y,Z) = 2(n A ®

)(X,Y,Z) = 0. Let
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us suppose that X = ¢ and Y, Z orthogonal to £. Using (15) and (16), we have to
verify that
— (¢, Y], 2) - o([Z,¢,Y) =20(Y, Z).

If Y,Z € & then [£,Y] = [Z,£] = 0; moreover, Z € b and thus ®(Y,7) =
g(Y,pZ) = 0. Let us suppose that Y, Z € h. Then, [{,Y] = —2Y and [Z,¢{] = 27
imply —®([¢, Y], Z) —®([Z,£],Y) = 4(Y, Z) and, since pZ € ¢, we have ®(Y, Z) =
g(Y,pZ) = 0. Finally, we suppose Y € h and Z € £ Since [£,Y] = —2Y and
(Z,€] = 0, we have — ®([¢,Y], Z) — ®([Z.€],Y) = 20(Y, Z).

Furthermore, it can be easily verified that, for any X,Y € b, we have [X,Y] =
I(X)Y — (Y)X, where [ : h — R is the linear mapping such that [({) = —2 and
I(X;) =0 for any i € {1,...,n}. It follows that H is a space of constant sectional
curvature k = —||l||> = —4 (see Example 1.7 in [12]). Hence, H is locally isometric
to the hyperbolic space of dimension n + 1 and curvature —4, which implies that GG
is locally isometric to the Riemannian product H"*(—4) x R".
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