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Abstract

We consider locally symmetric almost Kenmotsu manifolds showing that
such a manifold is a Kenmotsu manifold if and only if the Lie derivative of
the structure, with respect to the Reeb vector field ξ, vanishes. Further-
more, assuming that for a (2n + 1)-dimensional locally symmetric almost
Kenmotsu manifold such Lie derivative does not vanish and the curvature
satisfies RXY ξ = 0 for any X,Y orthogonal to ξ, we prove that the manifold
is locally isometric to the Riemannian product of an (n+1)-dimensional man-
ifold of constant curvature −4 and a flat n-dimensional manifold. We give an
example of such a manifold.

Introduction

An almost contact structure on a differentiable manifold M2n+1 is given by a tensor
field ϕ of type (1, 1), a vector field ξ and a 1-form η satisfying ϕ2 = − I + η⊗ ξ and
η(ξ) = 1, which imply that ϕ(ξ) = 0 and η ◦ ϕ = 0.

Furthermore, on the product manifold M2n+1 × R one can define an almost
complex structure J by J

(

X, f d
dt

)

=
(

ϕX − fξ, η(X) d
dt

)

, where X is a vector field

tangent to M2n+1, t is the coordinate of R and f is a C∞ function on M2n+1 × R.
If J is integrable, the almost contact structure is said to be normal and it is known
that this is equivalent to the vanishing of the tensor field N = [ϕ, ϕ]+2dη⊗ξ, where
[ϕ, ϕ] is the Nijenhuis torsion of ϕ ([3]).

An almost contact metric structure (ϕ, ξ, η, g) is given by an almost contact
structure and a Riemannian metric g satisfying g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y )
for any vector fields X and Y . Then, the fundamental 2-form Φ is defined by
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Φ(X, Y ) = g(X, ϕY ) for any vector fields X and Y . For more details, we refer to
Blair’s books [3], [5].

A contact metric structure (ϕ, ξ, η, g) is an almost contact metric structure such
that Φ = dη and if the structure is normal, then it is a Sasakian structure. In
[14], Z. Olszak proved that in dimension 2n + 1 ≥ 5 any contact metric manifold
of constant sectional curvature has sectional curvature equal to 1 and is a Sasakian
manifold. In [4], D.E. Blair proved that if the Riemannian curvature of a contact
metric manifold M2n+1 satisfies RXY ξ = 0 for all vector fields X and Y , then M2n+1

is locally the product of a flat (n + 1)-dimensional manifold and an n-dimensional
manifold of constant curvature 4. In particular, the tangent sphere bundle of a flat
Riemannian manifold admits such a structure. More recently, in [6] E. Boeckx and
J.T. Cho proved that a locally symmetric contact metric space is either Sasakian of
constant curvature 1 or locally isometric to R

n+1 × Sn(4).
In this paper, we consider the class of almost contact metric manifolds called

almost Kenmotsu manifolds. In [15], Olszak proved that if such a manifold has
constant sectional curvature K and dimension 2n + 1 ≥ 5, then it is a Kenmotsu
manifold and K = −1. We give another proof of the same result without restric-
tions on the dimension. We also study locally symmetric almost Kenmotsu manifolds
M2n+1 showing that such a manifold is a Kenmotsu manifold if and only if the ope-
rator h = 1

2
Lξϕ vanishes, where L denotes the Lie differentiation. Furthermore,

assuming h 6= 0 and RXY ξ = 0 for all vector fields X and Y orthogonal to ξ, we
prove that the spectrum of h is {0, 1,−1}, with 0 as simple eigenvalue, and M2n+1

is locally the product of an (n + 1)-dimensional manifold of constant curvature −4
and an n-dimensional flat manifold. We provide an example of such a manifold.
Comparing with the contact case, one can state the following question: is a locally
symmetric almost Kenmotsu manifold either Kenmotsu of constant curvature −1 or
locally isometric to the product H

n+1(−4) × R
n?

As usual, the manifolds involved are assumed to be connected. Furthermore, we
denote by X (M2n+1) the space of the C∞-sections of TM2n+1.

As regards Kenmotsu manifolds, we recall here the basic data related to them.
An almost contact metric manifold M2n+1, with structure (ϕ, ξ, η, g), is said to be
a Kenmotsu manifold if it is normal, the 1-form η is closed and dΦ = 2η ∧ Φ. It is
well known that Kenmotsu manifolds can be characterized by

(∇Xϕ)(Y ) = g(ϕX, Y )ξ − η(Y )ϕ(X),

for any X, Y, Z ∈ X (M2n+1), which implies that ∇ξϕ = 0. We denote by D the
distribution orthogonal to ξ, that is D = Im(ϕ) = Ker(η). It can be seen that
∇ξX ∈ D and ∇Xξ ∈ D for any vector field X ∈ D. Moreover, one has ∇ξ = −ϕ2

and ∇η = g − η ⊗ η. Since η is closed, D is an integrable distribution. It is known
that its leaves are 2n-dimensional totally umbilical Kähler manifolds with mean
curvature vector field H = −ξ. Kenmotsu manifolds appear for the first time in [9],
where they have been locally classified.

Theorem 1. ([9]) Let (M2n+1, ϕ, ξ, η, g) be a Kenmotsu manifold. Then, M2n+1 is

locally a warped product M ′×f2 N2n where N2n is a Kähler manifold, M ′ is an open

interval with coordinate t, and f 2 = ce2t for some positive constant c.
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As proved in [9], a Kenmotsu manifold is locally symmetric if and only if it is a
space of constant sectional curvature K = −1.

1 Almost Kenmotsu manifolds

An almost contact metric manifold M2n+1, with structure (ϕ, ξ, η, g), is said to be
an almost Kenmotsu manifold if the 1-form η is closed and dΦ = 2η∧Φ. Obviously,
a normal almost Kenmotsu manifold is a Kenmotsu manifold.

Let M2n+1 be an almost Kenmotsu manifold with structure (ϕ, ξ, η, g). Since the
1-form η is closed, we have Lξη = 0 and [X, ξ] ∈ D for any X ∈ D. The Levi-Civita
connection satisfies ∇ξξ = 0 and ∇ξϕ = 0 ([10]), which implies that and ∇ξX ∈ D
for any X ∈ D.

Now, we set A = −∇ξ and h = 1
2
Lξϕ. Obviously, A(ξ) = 0 and h(ξ) = 0.

Moreover, the tensor fields A and h are symmetric operators and satisfy the following
relations

A ◦ ϕ + ϕ ◦ A = −2ϕ , h ◦ ϕ + ϕ ◦ h = 0
∇Xξ = − ϕ2X − ϕhX, X ∈ X (M2n+1) ,
∇η = g − η ⊗ η + g ◦ (ϕ × h), δη = −2n.

(1)

Hence, M2n+1 cannot be compact. We also remark that

h = 0 ⇔ ∇ξ = −ϕ2 . (2)

From Lemma 2.2 in [10] we have

(∇Xϕ)Y + (∇ϕXϕ)(ϕY ) = − η(Y )ϕX − 2g(X, ϕY )ξ − η(Y )h(X) (3)

for any X, Y ∈ X (M2n+1). The following result is also proved in [10].

Proposition 1. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold. The in-

tegral manifolds of D are almost Kähler manifolds with mean curvature vector field

H = −ξ. They are totally umbilical submanifolds of M2n+1 if and only if h vanishes.

Example 1. Let (N2n, J, g̃), n ≥ 2, be a strictly almost Kähler manifold and
consider R × N2n, with coordinate t on R. We put ξ = ∂

∂t
, η = dt and define the

tensor field ϕ on R × N2n such that ϕX = JX, if X is a vector field on N2n, and
ϕX = 0 if X is tangent to R. Furthermore, we consider the metric g = g0 + c e2tg̃,
where g0 denotes the Euclidean metric on R and c ∈ R

∗

+. Then, the warped product
R ×f2 N2n, f 2 = ce2t, with the structure (ϕ, ξ, η, g), is a strictly almost Kenmotsu
manifold. Namely, it is easy to verify that the 1-form η is closed and dual of ξ with
respect to g, ϕ2 = −I + η ⊗ ξ and g is a compatible metric. Computing Φ and dΦ,
we get Φ = ce2tp∗2(Ω̃), where p2 is the projection on N2n and Ω̃ is the fundamental
form of N2n. Then, since dΩ̃ = 0, dΦ = 2dt∧Φ = 2η ∧Φ. Finally, since the torsion
NJ does not vanish, N2n being strictly almost Kähler, we obtain that the structure
is not normal.

Remark 1. In [13], Oguro and Sekigawa describe a strictly almost Kähler structure
on the Riemannian product H

3×R. Thus, we obtain a 5-dimensional strictly almost
Kenmotsu manifold on the warped product R ×f2 (H3 × R), f 2 = ce2t.
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Theorem 2. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold and assume

that h = 0. Then, M2n+1 is locally a warped product M ′ ×f2 N2n, where N2n is an

almost Kähler manifold, M ′ is an open interval with coordinate t, and f 2 = ce2t for

some positive constant c.

Proof. The vector field ξ is geodesic and the orthogonal distribution D is inte-
grable with totally umbilical almost Kähler leaves. Thus, as a manifold, M2n+1 is
locally a product M ′×N2n with TM ′ = [ξ] and TN2n = D. We can choose a neigh-
borhood with coordinates (t, x1, . . . , x2n) such that π∗(ξ) = ∂

∂t
, π denoting the projec-

tion onto M ′. Then π : M ′×N2n → M ′ is a C∞-submersion with vertical distribution
V = TM ′ and horizontal distribution H = TN2n. The splitting V ⊕ H is orthogo-
nal with respect to g and for any p ∈ M2n+1 we have gp(ξ, ξ) = 1 = gπ(p)(π∗ξ, π∗ξ);
hence, π is a Riemannian submersion. Since the horizontal distribution is integrable,
the O’Neill tensor A vanishes. Moreover, the vector field N = 2nH = −2nξ is basic.
Now, computing the free-trace part T 0 of the O’Neill tensor T , for any U , V vertical
vector fields, we get:

T 0
UV = TUV − 1

2n
g(U, V )N = α(U, V ) + g(U, V )ξ = 0,

T 0
Uξ = TUξ + 1

2n
g(N, ξ)U = ∇Uξ − U = 0.

Thus T 0 = 0 and M2n+1 is locally a warped product of (M ′, g0) and (N2n, g̃) by a
positive function f 2 on M ′, where g0 is the flat metric and g̃ is an almost Kähler
metric. The vector field N = −2nξ is π-related to −2n

f
gradg0

f ([1], 9.104). It follows

that gradg0
f = f d

dt
, which implies that f = ket and f 2 = ce2t, with c a positive

constant. Hence, the warped metric is given by dt ⊗ dt + ce2tg̃.

Proposition 2. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold such that

the integral manifolds of D are Kähler. Then, M2n+1 is a Kenmotsu manifold if and

only if ∇ξ = −ϕ2.

Proof. An easy computation shows that N(X, ξ) = −2h(ϕX) for any vector
field X. Hence, assuming that the structure is normal, then h(Y ) = 0 for any
Y ∈ D. Being h(ξ) = 0, we get h = 0 and (2) implies that ∇ξ = −ϕ2. Vice versa,
if ∇ξ = −ϕ2 then h = 0 by (2), and thus N(X, ξ) = 0 for any vector field X.
Moreover, for X, Y ∈ D we have N(X, Y ) = NJ(X, Y ) = 0, the leaves of D being
Kähler manifolds.

Proposition 3. An almost Kenmotsu manifold M3 such that ∇ξ = −ϕ2 is a Ken-

motsu manifold.

Proof. In this case the integral manifolds of the distribution D are almost Kähler
of dimension 2 and thus they are Kähler. The result follows from the previous
proposition.
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2 Curvature properties and local symmetry

A simple computation gives:

Proposition 4. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold. Then, for

any X, Y ∈ X (M2n+1),

RXY ξ = η(X)(Y − ϕhY ) − η(Y )(X − ϕhX) + (∇Y ϕh)X − (∇Xϕh)Y . (4)

Proposition 5. Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold. For any

X ∈ X (M2n+1) we have:

RξXξ = − ϕ2X − 2ϕhX + h2X − ϕ(∇ξh)(X), (5)

(∇ξh)X = − ϕX − 2hX − ϕh2X − ϕ(RXξξ), (6)

1

2
(RξXξ − ϕRξϕXξ) = − ϕ2X + h2X. (7)

Proof. (5) follows by direct computation, using ∇ξϕ = 0 and (1). Applying ϕ to
(5) and remarking that g((∇ξh)X, ξ) = 0, we get (6). Finally, we write (5) for ϕX
obtaining

RξϕXξ = ϕX + 2ϕ2hX + ϕh2X − ϕ(∇ξh)(ϕX).

Then, we get

RξXξ − ϕRξϕXξ = −2ϕ2X + 2h2X − ϕ(∇ξh)(X) + ϕ2(∇ξh)(ϕX)

which reduces to (7), since (∇ξh) ◦ ϕ = −ϕ ◦ (∇ξh).

Proposition 6. Let M2n+1 be a locally symmetric almost Kenmotsu manifold.

Then, ∇ξh = 0.

Proof. We notice that (7) can be written as

1

2
(Rξ•ξ − ϕRξϕ•ξ) = − ϕ2 + h2

and since the operator Rξ•ξ is parallel with respect to ξ, ξ being a geodesic vector
field, we get ∇ξh

2 = 0. Now, writing (6) as ∇ξh = − ϕ − 2h − ϕh2 − ϕ(R•ξξ)
and applying ∇ξ, we obtain ∇ξ(∇ξh) = −2∇ξh. Moreover, ∇ξh

2 = 0 implies
(∇ξh) ◦ h + h ◦ ∇ξh = 0, and applying ∇ξ to this equality, we get (∇ξh)2 = 0.
Hence, ∇ξh = 0, since one easily verifies that ∇ξh is a symmetric operator.

Theorem 3. Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost Kenmotsu mani-

fold. Then, the following conditions are equivalent:

a) M2n+1 is a Kenmotsu manifold;

b) h = 0.

Moreover, if any of the above conditions holds, M2n+1 has constant sectional curva-

ture K = −1.
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Proof. Assuming that M2n+1 is a Kenmotsu manifold, we have ∇ξ = −ϕ2 and,
by (2), h = 0. Now, supposing h = 0, it follows that ∇ξ = −ϕ2, ∇η = g − η ⊗ η
and, by (4), RXY ξ = − η(Y )X + η(X)Y . Then, we get

(∇ZR)(X, Y, ξ) = g(Z, X)Y − g(Z, Y )X − RXY Z.

Since ∇R = 0, M2n+1 has constant sectional curvature K = −1. Now, each integral
manifold M ′ of D is an almost Kähler, totally umbilical submanifold and then
it has constant sectional curvature ([7]). Computing its sectional curvature for
orthonormal vectors X, Y we get:

k′(X, Y ) = k(X, Y ) + ‖ξ‖2 = k(X, Y ) + 1 = 0

and thus M ′ is Kähler and flat. By Proposition 2, M2n+1 is a Kenmotsu manifold.
Hence, a) and b) are equivalent and each of them implies the value K = −1 for the
curvature.

Theorem 4. An almost Kenmotsu manifold of constant curvature K is a Kenmotsu

manifold and K = −1.

Proof. Clearly, M2n+1 is locally symmetric, so ∇ξh = 0. Comparing (4) and
RXY ξ = K(η(Y )X − η(X)Y ), we obtain

(K + 1)(η(Y )X − η(X)Y ) − η(Y )ϕhX + η(X)ϕhY − (∇Y ϕh)X + (∇Xϕh)Y = 0.

Choosing X = ξ and Y ∈ D, we get −(K + 1)Y + 2ϕhY − h2Y = 0. Now, if Y is
an eigenvector of h with eigenvalue λ, then −(K + 1)Y + 2λϕY − λ2Y = 0, which
implies λ = 0 and K = −1, since Y and ϕY are linearly independent. Hence h = 0,
K = −1 and we apply the previous theorem.

Now, we consider the rank of the locally symmetric almost Kenmotsu manifold
M2n+1. If the rank is equal to one, then M2n+1 has constant curvature K, being
of odd dimension, it is Kenmotsu, K = −1 and h = 0. If M2n+1 does not have
constant curvature then, its rank must be greater than one and h 6= 0.

Proposition 7. Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost Kenmotsu

manifold. If M2n+1 has rank greater than one, then ±1 are eigenvalues of h.

Proof. The hypothesis on the rank implies that there exists a vector X ortho-
gonal to ξ such that RXξξ = 0 and by (6) we get ϕX + 2hX + ϕh2X = 0. Let
(ξ, e1, . . . , en, ϕe1, . . . , ϕen) be a local frame of eigenvectors of h with corresponding
eigenvalues (0, λ1, . . . , λn,−λ1, . . . ,−λn). Writing X =

∑n
i=1(X

iei + X̄ iϕei), we
obtain

n
∑

i=1

(

(X i − 2X̄ iλi + X iλ2
i )ϕei + ( − X̄ i + 2X iλi − X̄ iλ2

i )ei

)

= 0,

which implies
{

(1 + λ2
i )X

i − 2λiX̄
i = 0

2λiX
i − (1 + λ2

i )X̄
i = 0
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for each i ∈ {1, . . . , n}. Since X 6= 0, there exists j ∈ {1, . . . , n} such that the corre-
sponding system admits a non trivial solution and this implies − (1+λ2

j)
2 +4λ2

j = 0
and then λj = ±1.

Let us consider the operator h′ = h ◦ ϕ. This operator is symmetric and, if
Y is an eigenvector with eigenvalue µ, then ϕY is an eigenvector with eigenvalue
−µ. Moreover, if X is an eigenvector of h with eigenvalue λ, then X + ϕX is an
eigenvector of h′ with eigenvalue −λ, while X − ϕX is an eigenvector of h′ with
eigenvalue λ. It follows that h and h′ admit the same eigenvalues. Denoting by
[λ] and [λ]′ respectively the eigenspaces of h and h′ with eigenvalue λ, we have
[λ] ⊕ [−λ] = [λ]′ ⊕ [−λ]′. Furthermore, ∇ξϕ = 0 implies that ∇ξh

′ = 0 if and only
if ∇ξh = 0.

The operators h and h′ are related to the curvature by the following proposition.

Proposition 8. Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost Kenmotsu

manifold. Then,

1) k(X, ξ) = − (1 + λ2) for any unit h-eigenvector X with eigenvalue λ,

2) k(X, ξ) = − (1 + µ)2 for any unit h′-eigenvector X with eigenvalue µ.

Furthermore, Ric(ξ, ξ) < 0.

Proof. Since ∇ξh = 0, from (5), we have RXξξ = − X + 2λϕX − λ2X, and
k(X, ξ) = g(RXξξ, X) = − 1 − λ2 which proves 1).
Analogously, since ∇ξh

′ = 0, applying (5), we have RXξξ = −X − 2h′(X) − h′2(X)
for any X ∈ D, and k(X, ξ) = − (1 + µ)2, for any unit eigenvector X of h′ with
eigenvalue µ.

Proposition 9. Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost Kenmotsu

manifold. Then, for any X, Y ∈ X (M2n+1), the curvature tensor satisfies:

RY Xξ + Rh′Y Xξ + RξXY + RξXh′Y = −g(X, Y + h′Y )ξ − η(X)(Y + h′Y )

+2η(Y )(X + 2h′X + h′2X)

+2(∇Y h′)X + (∇Y h′2)X.

(8)

Proof. Since M2n+1 is locally symmetric, then ∇ξh
′ = 0. Being h2 = h′2, from

(5), we have
RξXξ = X − η(X)ξ + 2h′X + h′2X (9)

for any X ∈ X (M2n+1). Derivating with respect to Y ∈ X (M2n+1), since ∇R = 0,
we get

R∇Y ξ Xξ + Rξ∇Y Xξ + RξX∇Y ξ = ∇Y X − Y (η(X))ξ − η(X)∇Y ξ

+2∇Y (h′X) + ∇Y (h′2X).
(10)

Now, applying (9), Rξ∇Y Xξ = ∇Y X − η(∇Y X)ξ + 2h′(∇Y X) + h′2(∇Y X). More-
over, from (1), ∇Y ξ = Y − η(Y )ξ + h′Y and thus, Y (η(X)) = Y (g(X, ξ)) =
g(∇Y X, ξ) + g(X, Y − η(Y )ξ + h′Y ). Substituting in (10), and using again (9),
by a simple computation we obtain (8).
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In the following, we denote by [µ] the distribution of the eigenvectors of h′ with
eigenvalue µ. We remark that the condition RXY ξ = 0 for any X, Y ∈ X (M2n+1),
which gives the local decomposition R

n+1×Sn(4) in the context of locally symmetric
contact metric manifolds, in our case has to be relaxed to X, Y ∈ D, otherwise we
get a contradiction with Proposition 8.

Proposition 10. Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost Kenmotsu

manifold and suppose h′ 6= 0. Then,

1) ∇Y ξ = 0 and [ξ, Y ]∈ [−1] for any Y ∈ [−1], while ∇Y ξ = 2Y and [ξ, Y ]∈ [+1]
for any Y ∈ [+1],

2) the distribution [−1] is integrable with totally geodesic leaves or, equivalently,

for any X, Y ∈ [−1], RXY ξ = 0.

Proof. If Y ∈ D then we have ∇Y ξ = Y +h′Y and this implies that ∇Y ξ = 0 for
any eigenvector Y of h′ with eigenvalue −1 , ∇Y ξ = 2Y for any eigenvector Y with
eigenvalue +1. Furthermore, ∇ξh

′ = 0 implies ∇ξ[−1] ⊂ [−1] , ∇ξ[+1] ⊂ [+1] and
1) holds. From (8) and (4), if X and Y are orthogonal to ξ, we have, respectively,

R(Y +h′Y )Xξ + RξX(Y + h′Y ) = −g(X, Y + h′Y )ξ + 2(∇Y h′)X + (∇Y h′2)X, (11)

RXY ξ = (∇Xh′)Y − (∇Y h′)X . (12)

Supposing X, Y ∈ [−1], (11) gives

∇Y X + 2h′(∇Y X) + h′2(∇Y X) = 0. (13)

Let {0, +1,−1, λi,−λi} be the spectrum of h′, where λi > 0, λi 6= +1. Now, ∇Y X
decomposes as ∇Y X = A0 + A1 + A−1 +

∑

i Aλi
+

∑

i A−λi
. Hence,

h′(∇Y X) = A1 − A−1 +
∑

i λiAλi
−

∑

i λiA−λi

h′2(∇Y X) = A1 + A−1 +
∑

i λ
2
i Aλi

+
∑

i λ
2
i A−λi

.

Applying (13), we get A0 = A1 = 0 and, for any i, (1+λi)
2Aλi

= 0, (1−λi)
2A−λi

= 0
which imply Aλi

= A−λi
= 0. Thus ∇Y X ∈ [−1]. Being also ∇XY ∈ [−1],

we deduce that [X, Y ] ∈ [−1] and the distribution [−1] is integrable with totally
geodesic leaves. From (12), it follows that the integrability of the distribution [−1]
is equivalent to RXY ξ = 0 for any X, Y ∈ [−1].

Theorem 5. Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost Kenmotsu man-

ifold such that h′ 6= 0 and RXY ξ = 0 for any X, Y ∈ D. Then, the spectrum of

h′ is {0, +1,−1}, with 0 as simple eigenvalue. Moreover, choosing Y ∈ [−1] and

X ∈ [+1] one has ∇Y X ∈ [+1], ∇XY ∈ [−1] and the distribution [+1]⊕ [ξ] is totally

geodesic.

Proof. We know that 0, +1,−1 are eigenvalues of h′. First we prove that for any
unit eigenvector X ∈ [λ], with λ 6= −1, and for any unit Y ∈ D, orthogonal to X,
we have

k(X, Y ) = k(ξ, Y ). (14)
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Namely, since RXY ξ = 0, covariantly derivating with respect to X, we get

0 = R∇XX Y ξ + RX ∇XY ξ + RXY ∇Xξ
= g(∇XX, ξ)Rξ Y ξ + g(∇XY, ξ)RX ξξ + (1 + λ)RXY X
= −(1 + λ)Rξ Y ξ + (1 + λ)RXY X.

Hence Rξ Y ξ = RXY X and, taking the scalar product with Y , we get (14). Now,
we suppose that there exists a unit eigenvector X ∈ [λ] with λ 6= ±1 and applying
(14) to X and ϕX we get k(X, ϕX) = k(ξ, ϕX) = −(1 − λ)2. Again, applying (14)
to ϕX ∈ [−λ] and choosing Y = X, we have k(ϕX, X) = k(ξ, X) = −(1 + λ)2. It
follows that (1 − λ)2 = (1 + λ)2 so that λ = 0 and Sp(h′) = {0, +1,−1}. Finally,
let us suppose that dim [0] > 1 and let X be a unit eigenvector orthogonal to
ξ such that h′(X) = 0. Applying (14) to X and to a unit Y ∈ [+1], we get
k(X, Y ) = k(ξ, Y ) = −4 and k(Y, X) = k(ξ, X) = −1, which is a contradiction.
Now, let be Y ∈ [−1] and X ∈ [+1]. Since [−1] is totally geodesic, then ∇Y X ∈ [+1].
Applying (12) it follows that 0 = RXY ξ = −∇XY − h′(∇XY ) so that ∇XY ∈ [−1]
and [+1] ⊕ [ξ] is totally geodesic.

Theorem 6. Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost Kenmotsu man-

ifold such that h′ 6= 0 and RXY ξ = 0 for any X, Y ∈ D. Then, M2n+1 is locally

isometric to the Riemannian product of an (n+1)-dimensional manifold of constant

curvature −4 and a flat n-dimensional manifold.

Proof. As proved in Proposition 10 and Theorem 5, the distributions [ξ]⊕ [+1],
[−1] are integrable and totally geodesic. It follows that M2n+1 is locally isometric to
the Riemannian product of an integral manifold Mn+1 of [ξ] ⊕ [+1] and an integral
manifold Mn of [−1]. Therefore, we can choose coordinates (u0, . . . , u2n) such that
∂/∂u0 ∈ [ξ], ∂/∂u1, . . . , ∂/∂un ∈ [+1] and ∂/∂un+1, . . . , ∂/∂u2n ∈ [−1]. Now, we
set Xi = ∂/∂ui for any i ∈ {1, . . . , n}, so that the distribution [−1] is spanned
by the vector fields ϕX1, . . . , ϕXn. We notice that [Xi, ϕXj] ∈ [−1] for any i, j in
{1, . . . , n}. Taking the scalar product with any Z ∈ [+1], since ∇Xi

ϕXj ∈ [−1], we
get g(∇ϕXj

Xi, Z) = 0 and then ∇ϕXj
Xi = 0. Applying (3), we have (∇Xi

ϕ)Xj −
ϕ(∇ϕXi

ϕXj) = 0, which implies

∇ϕXi
ϕXj = 0, (∇Xi

ϕ)Xj = 0,

since the two addenda belong to [−1] and [+1], respectively. The first condition
implies that Mn is flat. We compute the curvature of Mn+1. Applying ϕ to
(∇Xi

ϕ)Xj = 0, we have

∇Xi
Xj + ϕ(∇Xi

ϕXj) = −2g(Xi, Xj)ξ.

Derivating with respect to Xk, we obtain:

∇Xk
∇Xi

Xj+(∇Xk
ϕ)(∇Xi

ϕXj)+ϕ(∇Xk
∇Xi

ϕXj) = −2Xk(g(Xi, Xj))ξ−4g(Xi, Xj)Xk

and, by scalar product with Xl,

g(∇Xk
∇Xi

Xj, Xl) − g(∇Xk
∇Xi

ϕXj, ϕXl) = −4g(Xi, Xj)g(Xk, Xl),
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since g((∇Xk
ϕ)(∇Xi

ϕXj), Xl) = −g(∇Xi
ϕXj, (∇Xk

ϕ)Xl) = 0.
Now, we interchange i and k, subtract and, being [Xi, Xk] = 0, obtain

g(RXkXi
Xj, Xl)−g(RXkXi

ϕXj, ϕXl) = −4g(Xi, Xj)g(Xk, Xl)+4g(Xk, Xj)g(Xi, Xl).

Since ∇ϕXi
Xj = 0 = [ϕXi, ϕXj ], then g(RXkXi

ϕXj , ϕXl) = g(RϕXjϕXl
Xk, Xi) = 0,

and thus

g(RXkXi
Xj , Xl) = − 4(g(Xi, Xj)g(Xk, Xl) − g(Xk, Xj)g(Xi, Xl)).

Moreover, we recall that g(RXiXj
ξ, Xk) = 0 and, by (5), g(RXiξξ, Xj) = −4g(Xi, Xj).

We conclude that Mn+1 is a space of constant curvature −4.

Now, we provide an example of an almost Kenmotsu manifold which is locally
isometric to the Riemannian product H

n+1(−4) × R
n.

Let {ξ, X1, . . . , Xn} be the standard basis of R
n+1 and let us denote by h the Lie

algebra obtained by defining:

[ξ, Xi] = −2Xi, [Xi, ξ] = 2Xi, [Xi, Xj] = 0,

for any i, j ∈ {1, . . . , n}. Let {Y1, . . . , Yn} be the standard basis of R
n; we consider

on R
n the structure of abelian Lie algebra, denoted by k. On the Lie algebra g = h⊕k

define the endomorphism ϕ : g → g such that

ϕ(ξ) = 0, ϕ(Xi) = Yi, ϕ(Yi) = −Xi,

for any i ∈ {1, . . . , n}. Let η : g → R be the 1-form defined by

η(ξ) = 1, η(Xi) = η(Yi) = 0,

for any i ∈ {1, . . . , n}. We denote by g the inner product on g such that the basis
{ξ, Xi, Yi} is orthonormal.

Let G, H and K be connected Lie groups with Lie algebras g, h and k respectively.
Being g = h⊕ k, we have G = H ×K. The vectors ξ, Xi, Yi determine left-invariant
vector fields on G, which we denote in the same manner. Analogously, we denote by
ϕ, η and g the left-invariant tensor fields determined by the corresponding tensors.
It can be easily seen that (ϕ, ξ, η, g) is an almost contact metric structure on G. We
prove that it is an almost Kenmotsu structure.

Indeed, for any X, Y ∈ g, η(X) and η(Y ) are constant, [X, Y ] is orthogonal to
ξ and then dη(X, Y ) = 0 follows. It remains to prove that dΦ = 2η ∧ Φ. Since
Φ(X, Y ) is constant for any X, Y ∈ g, it follows that for any X, Y , Z ∈ g,

dΦ(X, Y, Z) = −
1

3
{Φ([X, Y ], Z) + Φ([Y, Z], X) + Φ([Z, X], Y )} . (15)

On the other hand,

2(η ∧ Φ)(X, Y, Z) =
2

3
{η(X)Φ(Y, Z) + η(Y )Φ(Z, X) + η(Z)Φ(X, Y )} . (16)

Now, if X, Y and Z are orthogonal to ξ, then η(X) = η(Y ) = η(Z) = 0 and
[X, Y ] = [Z, X] = [X, Y ] = 0. Hence, dΦ(X, Y, Z) = 2(η ∧ Φ)(X, Y, Z) = 0. Let
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us suppose that X = ξ and Y, Z orthogonal to ξ. Using (15) and (16), we have to
verify that

− Φ([ξ, Y ], Z) − Φ([Z, ξ], Y ) = 2Φ(Y, Z).

If Y, Z ∈ k, then [ξ, Y ] = [Z, ξ] = 0; moreover, ϕZ ∈ h and thus Φ(Y, Z) =
g(Y, ϕZ) = 0. Let us suppose that Y, Z ∈ h. Then, [ξ, Y ] = −2Y and [Z, ξ] = 2Z
imply −Φ([ξ, Y ], Z)−Φ([Z, ξ], Y ) = 4Φ(Y, Z) and, since ϕZ ∈ k, we have Φ(Y, Z) =
g(Y, ϕZ) = 0. Finally, we suppose Y ∈ h and Z ∈ k. Since [ξ, Y ] = −2Y and
[Z, ξ] = 0, we have − Φ([ξ, Y ], Z) − Φ([Z, ξ], Y ) = 2Φ(Y, Z).

Furthermore, it can be easily verified that, for any X, Y ∈ h, we have [X, Y ] =
l(X)Y − l(Y )X, where l : h → R is the linear mapping such that l(ξ) = −2 and
l(Xi) = 0 for any i ∈ {1, . . . , n}. It follows that H is a space of constant sectional
curvature k = −‖l‖2 = −4 (see Example 1.7 in [12]). Hence, H is locally isometric
to the hyperbolic space of dimension n + 1 and curvature −4, which implies that G
is locally isometric to the Riemannian product H

n+1(−4) × R
n.
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