A stability theorem for the index of
sphere bundles
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Abstract

We prove that the index of every m-dimensional vector bundle over B is
equal to m if m > 2dim B. We also determine the smallest integer k for
which every m-dimensional vector bundle with m > k is I-stable in the cases
B =FP" and B = 5".

1 Introduction

Let « be a finite-dimensional real vector bundle over a CW complex B, and let S(«)
be its sphere bundle with respect to some metric on a. We regard S(«) as a Z/2
-space by the antipodal map on each fibre. The index of «, denoted ind «, is defined
to be the largest integer k for which there exists a Z/2 -map from S*~1 to S(«)
[CF1, CF2, T1]. Here, S¥~1 also is regarded as a Z/2 -space by the antipodal map.
From the inclusion of the fibre, we clearly have ind @ > dim «. It is also clear that
inda < ind(a @ 1).

We describe « as I-stable if the equality ind(a @ k) = ind o + k holds for any
positive integer k. Here, we abuse notation and denote the k-dimensional trivial
bundle simply by k. Our definition of the stability is slightly different from that in
[CF1] in the sense that we consider the fibrewise suspension. If « is trivial, then
inda = dima and « is I-stable. The tangent bundle 75, of a closed manifold M
also has this property ; ind 7y = dim 73, and 757 is I-stable (see [T2, Theorem 4.6]).
For the canonical line bundle ng over the projective space F'P" (F = R, C or H),
nr @ dn has the above property but ng @ ¢ (0 < ¢ < dn) does not, where d = dimg F
and nr is considered as a real bundle (see [T2, Theorem 4.2, 4.4]).
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In this paper, we prove the following theorem.

Theorem 1.1. Let o be a vector bundle over a finite compler B with dim B = n.
If dima > 2n, then ind a = dim« and « is I-stable.

From this theorem, the following corollary follows immediately.

Corollary 1.2. For any vector bundle o over a finite complex B, there exists an
integer k such that ind(a @ k) = dim(a @ k) and o @ k is I-stable. Moreover, such
k can be taken so that k < 2dim B — dim «.

The condition dima > 2n in Theorem 1.1 is best possible at least when B =
St 5% 5% and S8. Likewise, the condition & < 2dim B — dim « in Corollary 1.2 is
best possible as a general estimate.

If we define ind®(«), the stable index of «, by

ind*(a) = lim {ind(a ® k) — dim(a @ k)},

k—oo

the above corollary can be restated as follows.
Corollary 1.3. For any vector bundle o over a finite complez, we have ind*(a)) = 0.

The stable co-index co-ind*(«) is similarly defined using the co-index which is the
dual of the index. We note that the stable co-index satisfies 0 < co-ind*(«) < dim B
in general and, in the case B = RP", every integer k such that 0 < k£ < dim B can
be realized actually as the stable co-index of some vector bundle over B (see [T3,
Corollary 1.6]).

The condition dim v > 2n in Theorem 1.1 can be made more strict for individual
spaces B. For B = FP", we obtain the following result.

Theorem 1.4. Let o be a vector bundle over FP". If dima > dim F'P™ + d, then
inda = dima and « s I-stable. This condition is best possible; there is a vector
bundle o over F'P" with dima = dim F'P" + d — 1 such that ind a # dim «, nor is
a I-stable.

By this result, for B = F'P", the smallest integer k such that every m-dimensional
vector bundle with m > k is I-stable is equal to dn + d. The smallest integer k£ such
that the equality ind @ = dim « holds for every vector bundle o with dima > k is
also equal to dn + d.

For B = S™, we obtain the following result.

Theorem 1.5. Ifn # 1,2,4,8, then ind o = dim « and « is I-stable for any vector
bundle o over S™. Ifn = 1,2,4 or 8, there is a vector bundle o over S™ with
dim o = 2n — 1 such that ind a # dim o, nor is v I-stable.

By this result and Theorem 1.1, the smallest integer k, for B = S", such that
every m-dimensional vector bundle with m > k is I-stable, is equal to 2n if n =
1,2,4 or 8, and equal to 0 otherwise. The smallest integer £ such that the equality
ind @ = dim « holds for every vector bundle o with dim o > k is the same as above.
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2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We use the following result in [T1].

Proposition 2.1. [T1, Proposition 2.4] Let a be an m-dimensional real vector bun-
dle over B. If B satisfies Hom(H*(B), H*(RP™)) =0, then ind o = m.

Here, the cohomology has coefficients Z/2 and Hom(-,-) consists of all homo-
morphisms (of degree 0) as graded algebra over the Steenrod algebra mod 2.

Sketch proof of Proposition 2.1. The inequality ind @ > m is obvious by the
inclusion of the fibre. Assume ind @ > m. Then there is a Z/2-map f : S™ — S(«)
and it induces f : RP™ — P(a). Here P(a) denotes the associated projective
bundle of a. Let e(e¢ H'(P(a))) denote the Z/2-Euler class of the line bundle
a — P(a), and let t(e H'Y(RP™)) denote the Z/2-Euler class of the canonical
line bundle over RP™. Then we have f*(e™) = t™ # 0 € H™(RP™). Let f :
RP™ — B be the composition of f with the projection p : P(ar) — B. Then f*
is the zero homomorphism since Hom(H*(B), H*(RP™)) = 0. Using the relation

em = ?;01 Wp—i€', where w; denotes the ith Stiefel-Whitney class of a, we have

fre™) = F(Xrs wmoie’) = S5 f*(wm_s)t" = 0. This contradicts f*(e™) # 0. m

From the above proposition, we have the following theorem.

Theorem 2.2. Suppose that a finite complex B satisfies the condition
Hom(H*(B), H*(RPY)) = 0

for some integer £ with ¢ > dim B. Then, for any real vector bundle o over B with
dima >/, inda = dima and « is I-stable.

Proof. Suppose that B satisfies Hom(H*(B), H*(RP’)) = 0 with ¢ > dim B, and
let @ be an m-dimensional vector bundle over B with m > ¢. We prove that
ind(a®k) = dim(a® k) for all k¥ > 0. In view of Proposition 2.1, it suffices to prove
that Hom(H*(B), H*(RP™**)) = 0. Consider the diagram

H*(B) % H*(RP™")
ropN\. L7
H*(RPY)

where 7 is the inclusion RP! < RP™**. Since dim B < ¢ and i* is an isomorphism
for + < ¢, we have ¢ = 0 if i* 0 o = 0. Thus, Hom(H*(B), H*(RP")) = 0 implies
Hom(H*(B), H*(RP™%)) = 0. This proves the theorem. m

By the above theorem, Theorem 1.1 follows immediately from the following
Lemma.
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Lemma 2.3. Let B be a finite compler with dim B = n. Then, Hom(H*(B),
H*(RP?™)) =0.

Proof. Let ¢ : H*(B) — H*(RP?") be a homomorphism. For any « € H'(B)
(1 <i<n), weput p(x) = et’, where t is the generator of H*(RP?") and € = 0 or 1.
Now, choose an integer j so that n < ij < 2n. Then we have 27 = 0 because of the
dimension reason, and so we have ¢(z7) = 0. On the other hand, we have p(z7) =
(¢(z))! = et”. Hence, e must be zero since t” is not zero. Therefore, ¢(x) = 0 for
any x € H'(B) and we conclude that ¢ is the zero homomorphism. ]

3 Proof of Theorem 1.4 and 1.5

In this section, we prove Theorem 1.4 and Theorem 1.5.

First, we consider the case B = F'P™. Theorem 1.4 is actually proved in [T2], but
we reconsider it to emphasize that the first half of it follows as an immediate corollary
of Theorem 2.2. In fact, it is easy to see that Hom(H*(FP"), H*(RP 1)) = 0.
Therefore, for any real vector bundle o over F'P™ with dima > d(n+1), we see that
inda = dim« and « is I-stable from Theorem 2.2. For the latter half of Theorem
1.4, we recall that ind(mnp @ ¢) = max{d(n + 1),dm + ¢} (see [T2, Theorem 4.2,
4.4]). This has been shown as follows. It is enough to consider the case where
dm+{¢ < d(n+1). First, it is shown that ind(mng & ¥¢) < d(n+ 1) by an analogous
argument as in the proof of Proposition 2.1 calculating f*(edm”) with the fact
Hom(H*(FP"), H*(RP*"*1))) = 0. On the other hand, a Z/2 -map S4+D-1
S(mnp @ {) is given by the composition SU"+HD=1 = S(ng) — S(mnp @ (). Thus,
ind(mnp @ £) = d(n + 1) when dm + ¢ < d(n + 1).

From this result, for such a bundle a over F/P" with dima = d(n+ 1) — 1 as
nr® (dn—1) or npp @ (d—1), we have inda = ind(a® 1) = dim(a® 1) = d(n+1),
so that ind a # dim « and « is not I-stable either.

Next, we consider the case B = S™. If we intend to utilize Theorem 2.2, we will
see that Hom(H*(S™), H*(RP")) = 0 if £ > n+2* (and of course if £ < n), where a
is the integer defined by n = 2¢(2b + 1). In fact, let ¢ : H*(S") — H*(RP*) be a
homomorphism and put ¢(z) = et for x € H™(S™) just as in the proof of Lemma
2.3. Since S¢*'z = 0 by the dimension reason, we have ¢(S¢* ) = 0. On the other
hand, we have ¢(S¢*" ) = S¢* o(z) = e S¢* (t") = e(;)t"”a. Since (27;) =1 (mod
2) and """ # 0 (because ¢ > n + 2%), we obtain € = 0 and we conclude that ¢ is
the zero homomorphism. Therefore, by Theorem 2.2, it is seen that a vector bundle
a over S™ such that dima > n + 2% has the property that inda = dim« and « is
I-stable. However, Hom(H*(S™), H*(RP")) is not zero at least for £ = n (for any
positive integer n), so that the above method does not seem to be adequate enough
for our purpose.

Let W («a) be the total Stiefel-Whitney class of a. By Proposition 2.2 in [T1], if
W(a) =1, then ind @ = dim . This has been shown in the same context just as in
the proof of Proposition 2.1 observing e™ = Y7 ' wy,, e’ = 0 (m = dima). Since
W(a @ k) = W(a) for any positive integer k, we can improve this proposition as
follows.
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Proposition 3.1. Let a be a real vector bundle over B. If W(«a) = 1, then ind o =
dima and a is I-stable.

In view of the above proposition, the first half of Theorem 1.5 follows from the
following theorem, which was originally proved by Milnor.

Theorem 3.2. [M, Theorem 1] If n # 1,2,4,8, then W(a) = 1 for any vector
bundle o over S™.

Proof. Milnor proved this theorem, first by using Wu’s formula of Steenrod squares
on Stiefel-Whitney classes (see [W]) for the case n # 2", and next by using Bott’s
theorem on Pontrjagin classes. Here we give an alternative proof, which is more
straightforward for the case n # 2" and related to the Hopf invariant one problem.

It is obvious that W(«) = 1 if dima < n. If dima > n, o can be written as
a =@k (k€ Z) for some n-dimensional vector bundle § and W («a) = W([).
Therefore it suffices to prove the theorem in the case dima = n. Let a be an
n-dimensional vector bundle over S™ (n > 1) and assume that w,(«) # 0, where
w, is the nth Stiefel-Whitney class. We look at the associated projective bundle
P(a) of a. If we denote by e the Z/2-Euler class of the line bundle A : & — P(«),
H*(P(a)) can be written as H*(P(«a)) = H*(S™"){1,e,¢e* -+ ,e" 1} as a H*(S")-
module. Moreover, in H*(P(«)), we have the relation " = w,(«) + w,_1(a)e +
wy_a(a)e?+- - -+wi(a)e" . Let s denote the generator of H*(S™). Then, w,(a) = s
by the assumption w,(a) # 0, and we have the relation e” = s. Applying the total
squaring operation Sgq, we have Sq(e™) = Sq(s). Clearly, Sq(s) = s. On the other
hand, Sq(e™) = (Sq(e))™ = (e + €*)" = €"(1 + e)". Hence, we obtain (Z)e”*k =0
for k > 1. Now we remark that, in H*(P(a)), €2"~! = se"™! # 0 because e" = s,
so that e"** #£ 0 for 1 < k < n — 1. Therefore, we obtain (Z) = 0 (mod 2) for
1 <k <n—1. This implies that n is a power of 2.

In the case where n is a power of 2, a considerably deeper argument would
be necessary. So we reduce it to the problem of nonexistence of elements of Hopf
invariant one. Let U € H"(D(«), S(«)) denote the Thom class of «, where D(«) is
the disk bundle of a.. Let ¢ : H*(S™) — H*(D(a), S(«)) be the Thom isomorphism.
Then we have Sq"U = ¢(w,(«)). Since we have assumed w,(«) # 0, S¢"U is not
zero. Let T'(a) be the Thom space of a. Then the operation S¢" is not trivial
on H*(T(«a)) = H*(D(«),S(a)). As is well-known, T'(«) is homotopy-equivalent
to S"Uj.e*, where Jo : S?"~! — S™ is a map obtained by the Hopf-Whitehead
construction from « considered as a map S"! — SO(n) (e.g. see [A, Lemma
10.1]). Since Sq" is not trivial on H"(T'(«)), Ja is a map of Hopf invariant one. By
the Adams’ theorem, it follows that n = 2,4 or 8. ]

For the latter half of Theorem 1.5, we consider the Hopf bundle. Let d = 1,2
or 4 and consider S% as FP', where F = R,C or H respectively. As shown in
the proof of Theorem 1.4, if we put a = ng @ (d — 1), then dima = 2d — 1 and
inda = ind(a® 1) = dim(a ® 1) = 2d, so that ind @ # dim « and « is not I-stable
either.

In the case d = 8, we should be a little more careful. As is well-known, there is a
S7-bundle S — S® with group O(8) which is obtained by using Cayley numbers
(e.g. [S, p109]). This bundle can be extended to a 8-dimensional real vector bundle
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o with S(o) identified with S'°. If we have constructed a Z/2 -map S** — S(o),
we will have 16 < indo < ind(c @ k) < ind(o & 8) for all k& with 0 < k& < 8. Since
ind(o ® 8) = dim(c & 8) = 16 by Theorem 1.1, we will obtain ind(oc & k) = 16
for all £ with 0 < k£ < &8 Thus, if we put @« = 0 & 7, then dima = 15 and
inda =ind(a @ 1) = dim(a @ 1) = 16, so that ind @ # dim « and « is not I-stable
either.

Finally, we construct a Z/2 -map S — S(¢). Let T denote the involution
of S(o), which by definition is the antipodal map on each fibre. We consider the
covering projection S(c) — S(o)/T. First, we choose a map f : RP' = S§1 —
S(0)/T so that f represents the generator of m;(S(0)/T) = Z/2. Since 2 f represents
zero in m (S(0)/T) and m;(S(0)/T) = 0 for 2 < ¢ < 14, f can be extend to a map
g :RPY — S(0)/T. Moreover, g can be covered by a map g : S*® — S(o) by the
lifting theorem. Then, § has the property either g(—z) = T'g(x) or g(—z) = g(z)
(for all z € S'9). If g(—z) = g(z), then g has a lift, which contradicts our choice of
f. Therefore, g is a Z/2 -map.

Remark. Since ind o = 16 # dim o, it follows from Proposition 3.1 that wg(o) # 0.

References

[A]  J.F. Adams. On the groups J(X)-IV. Topology 5 (1966), 21-71.

[CF1] P.E. Conner and E.E. Floyd. Fixed point free involutions and equivariant
maps. Bull. Amer. Math. Soc. 66 (1960), 416-441.

[CF2] P.E. Conner and E.E. Floyd. Fixed point free involutions and equivariant
maps II. Trans. Amer. Math. Soc. 105 (1962), 222-228.

[M]  J. Milnor. Some consequences of a theorem of Bott. Ann. Math. 68 (1958),
444-449.

[S] N. Steenrod. The topology of fibre bundles. Princeton Mathematical Series
14, Princeton University Press, Princeton, 1951.

[T1] R. Tanaka. On the index and co-index of sphere bundles. Kyushu J. Math.
57 (2003), 371-382.

[T2] R. Tanaka. On the stability of (co-)index of sphere bundles. Kyushu J. Math.
59 (2005), 321-331.

[T3] R. Tanaka. The index and co-index of the twisted tangent bundle over pro-
jective spaces. Math. J. Ibaraki Univ. 37 (2005), 35-38.

[W]  W-T. Wu. Les i-carrés dans une variété grassmannienne. C. R. Acad. Sci.
Paris 230 (1950), 918-920.

Department of Liberal Arts,
Faculty of Science and Technology,
Tokyo University of Science,
Noda, Chiba, 278-8510 Japan

e-mail address : tanaka ryuichi@ma.noda.tus.ac.jp



