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Abstract

Let X be a compact manifold with boundary ∂X, and suppose that ∂X

is the total space of a fibration

Z → ∂X → Y .

Let DΦ be a generalized Dirac operator associated to a Φ-metric gΦ on X.
Under the assumption that DΦ is fully elliptic we prove an index formula for
DΦ. The proof is in two steps: first, using results of Melrose and Rochon, we
show that the index is unchanged if we pass to a certain b-metric gb(ǫ). Next
we write the b− (i.e. the APS) index formula for gb(ǫ); the Φ-index formula
follows by analyzing the limiting behaviour as ǫ ց 0 of the two terms in the
formula. The interior term is studied directly whereas the adiabatic limit
formula for the eta invariant follows from work of Bismut and Cheeger.

1 Introduction

Let X be an even dimensional, compact, oriented spin manifold with boundary

such that ∂X is the total space of a fibration Zℓ → ∂X
φ−→ Y k. (Thus dim X =

ℓ + k + 1 = 2m.) There are many interesting index formulæ for twisted Dirac
operators D on X corresponding to various different classes of complete metrics
g on the interior of X. Under certain hypotheses which ensure that D is either
Fredholm, or at least has finite L2 index, and that the usual Atiyah-Singer density
has finite integral, the goal is to identify the index defect, i.e. the difference between
Ind(D) and the Atiyah-Singer integrated characteristic form. Most prominent, of
course, is the Atiyah-Patodi-Singer theorem when g has asymptotically cylindrical
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ends, in which case the index defect is (minus one half) the eta invariant of the
induced twisted Dirac operator on ∂X [9]. This does not take advantage of the
fibred boundary structure. Two interesting classes of metrics which do take this
into account are the fibred boundary and fibred cusp metrics, also called Φ− and
d− metrics, respectively. These appear naturally in many interesting geometric
settings, cf. [4]: for example, complete Ricci flat metrics are often Φ−metrics, while
locally symmetric metrics with Q−rank one cusps are d−metrics.

To define these, introduce the following notation. Fix a splitting T (∂X) =
TV (∂X)⊕TH(∂X) into vertical and horizontal subspaces, where TV (∂X) = T (∂X/Y )
is the fibre tangent bundle, and TH(∂X) is identified with φ∗(TY ). We consider met-
rics g̃ on ∂X and h on Y so that φ is a Riemannian submersion. This means that the
restriction of g̃ to TH(∂X) is identified with φ∗h, and the subbundles TH(∂X) and
T (∂X/Y ) are orthogonal. We write g̃ = φ∗h+κ, where κ is a symmetric two-tensor
on ∂X which is positive definite on T (∂X/Y ).

Let x be a defining function for ∂X in some neighbourhood of the boundary.
Suppose also that h and κ are allowed to depend smoothly on x, all the way to
x = 0. Then an exact b-metric and an exact cusp (c-) metric on X are ones which
have the form

dx2

x2
+ g̃,

dx2

x4
+ g̃

in this neighbourhood, respectively; likewise, exact Φ− metrics and exact d−metrics
have the forms

dx2

x4
+

φ∗h

x2
+ κ, and

dx2

x2
+ φ∗h + x2κ,

respectively, in this neighbourhood. (The term ‘exact’ in each of these refers to the
fact that there are no cross-terms, at least to principal order; this is a natural, but
not a serious assumption, and there are generalizations of the ideas and formulæ we
discuss here to the various ‘nonexact’ settings). For simplicity in all of the discussion
below, we usually label a metric as gb, gc, gΦ and gd to indicate that it is one of these
four types. Note also that when discussing b− and c−metrics, it is not important
that g̃ respect the fibration structure (nor, of course, even that ∂X have such a
structure).

Assume that X and Y are spin, and fix spin structures on each of these man-
ifolds; there is an induced spin structure on the fibres φ−1(Y ) := Zy ⊂ ∂X. The
(Z2−graded) spin bundles on X, ∂X and Zy are denoted S, S∂ and SZy , respec-
tively. Let E → X be an hermitian complex vector bundle endowed with a unitary
connection. Fixing also a metric g of any of the types above, we obtain a twisted
Dirac operator

D+
g : C∞(X, E ⊗ S+) → C∞(X, E ⊗ S−).

If g is of one of the preceding types, then we also write Db, Dc, DΦ, Dd for the corre-
sponding Dirac operator to indicate its asymptotic type. The associated boundary
operator D∂ induces a family of Dirac operators {D∂

y}y∈Y , where each D∂
y acts on

C∞(φ−1(y), E ⊗ S∂
y ).

For b− and c− metrics, the simplest form of the APS occurs when D∂ is invert-
ible, although the general result if this is not satisfied is not much more difficult. In
the other two settings, however, the analogous hypothesis is the
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1.1 Assumption. For some δ > 0,

spec(D∂
y ) ∩ (−δ, δ) = ∅, ∀ y ∈ Y (1.2)

The index formula for Dg is known when g is a metric of type b, c or d; as already
noted, the first of these is just the APS theorem, while the second in fact reduces
to this theorem in a rather simple way. (This is proved below.) The index formula
for d−metrics is due in the special case of locally symmetric metrics to Müller [11],
and in this general geometric setting was accomplished by Vaillant [14]. The index
defect in this case is the integral over Y of the Bismut-Cheeger eta form. (Actually,
Vaillant’s result holds under the weaker hypothesis that ker D∂

y has constant rank,
in which case the index formula has an additional boundary contribution.)

Assuming (1.1), D+
Φ is a fully elliptic operator in the (pseudo)differential Φ−calcu-

lus developed in [7] and [14], and the parametrix construction there shows that D+
Φ is

Fredholm acting between the appropriate (Φ-) Sobolev spaces. Answering a question
raised in [7], we prove here that

1.3 Theorem. Assuming (1.1), and using the notation above, we have

Ind(D+
Φ) =

∫

X
Â(X, gΦ) ∧ Ch E − 1

2

∫

Y
Â(Y, h) ∧ η̃, (1.4)

where η̃ ∈ Ω∗(Y ) is the Bismut-Cheeger eta form [3] for the boundary family (D∂
y )y∈Y .

While it is likely that the index formula for this operator can be obtained by
methods similar to those employed in [14] for d-metrics, that proof is very long and
difficult, and it is a reasonable goal to obtain this formula as a consequence either
of that theorem or of the APS theorem.

The equality of the Φ-index and the d-index (when the boundary family is in-
vertible) has been recently proved by Sergiu Moroianu [10] by reducing it directly to
Vaillant’s theorem [14]: if gd = x2gΦ, and both are exact, then Ind (Dφ) = Ind (Dd).
By Vaillant [14],

Ind(Dd) =
∫

X
Â(X, gd) ∧ Ch E − 1

2

∫

Y
Â(Y, h) ∧ η̃,

so it suffices to show that the first integral on the right is the same as the corre-
sponding one for gΦ, i.e. that

1.5 Lemma.
∫
X Â(X, gΦ) ∧ Ch E =

∫
X Â(X, gd) ∧ Ch E.

Notice that the two integrals are well defined: this is discussed in [14, Section
1]. Lemma 1.5 follows simply because Â(X, gΦ) = Â(X, gd) pointwise, by conformal
invariance. Note too that by a standard transgression argument, the integrals are
equal even when gd and x2gΦ coincide only in a neighbourhood of ∂X.

The proof of (1.4) here is indirect too, but it involves only a reduction to the much
simpler APS theorem. We shall use the technique of adiabatic limit, as described
below. We first deform gΦ to a b-metric gb(ǫ). The index is unchanged through
this deformation, and hence equals the index of the Dirac operator corresponding
to gb(ǫ). This follows from the analysis of Melrose and Rochon [8], specifically
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their construction of parametrices which are uniform in an adiabatic parameter ǫ
for certain parts of this metric deformation. In the (APS) index formula for this
b− metric we then take the limit as ǫ → 0. The fact that the eta invariant term
has the correct limiting behaviour follows from the Bismut-Cheeger theory [3] so
it remains only to analyze the limiting behaviour of the interior integral, which is
the new calculation here. The particular metric family gb(ǫ) is chosen because the
Atiyah-Singer integrand for it has the best behaviour in the limit.

In the initial stages of our work, the plan was to develop a more direct deforma-
tion connecting gΦ and gb and to use a parametrix method to analyze this adiabatic
limit. However, just at this time the paper of Melrose and Rochon [8] appeared, and
Lemma C.1 there (i.e. Lemma 2.7 below) allowed us to develop the particular and
much shorter route presented here. By relying on their substantial and deep work,
as well as that of [3], we are able to give a fairly quick proof of this index formula.

It should be possible, and would still be of genuine interest, to prove the Φ−index
theorem directly using heat equation methods. In particular, one would hope to
obtain another derivation of the fundamental Bismut-Cheeger result in the course
of this.

We conclude this discussion by noting that Lauter and Moroianu [6] prove for-
mula (1.4) in the special case Y = S1. In fact, in their earlier paper [5], they also
treat the case where Y is arbitrary and establish a less precise index formula using
homological methods based on ideas of Melrose-Nistor. We refer also to [12] for a
related formula when φ : ∂X = S1 × S2 → S2.

We shall prove formula (1.4) assuming that E is the trivial line bundle X × C.
This is for notational simplicity only, and the general formula may be deduced using
exactly the same reasoning. In the next section we introduce the sequence of metric
homotopies and prove that the index is unchanged under these deformations. In
the third section we analyze the other side of the index formula, and especially its
behaviour in the adiabatic limit.

Acknowledgments. We wish to thank Richard Melrose and Frédéric Rochon for
explaining their work to us, and also Sergiu Moroianu for making some valuable
suggestions on an early draft of this note. This work was initiated during a visit by
the third author to Stanford University, and he wishes to thank that department
for its hospitality. The research of Eric Leichtnam and Paolo Piazza is partially
supported by a CNR-CNRS bilateral project. Rafe Mazzeo was supported by the
NSF grant DMS-0505709.

2 Reduction of Ind(DΦ) to Ind(Db)

In order to avail ourselves of the work of Melrose and Rochon, the homotopy of
metrics we consider consists of the following steps: first deform gΦ to the cusp
metric

g1
c (ǫ) :=

dx2

x4
+

φ∗h

(x + ǫ)2
+ κ; (2.1)

next, deform g1
c (ǫ) to the cusp metric

g0
c (ǫ) :=

dx2

x4
+

φ∗h

ǫ2
+ κ; (2.2)
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from here deform in succession to the following three b-metrics:

g0
b (ǫ) :=

dx2

x2
+

φ∗h

ǫ2
+ κ (2.3)

g1
b (ǫ) :=

dx2

x2
+

φ∗h

(x + ǫ)2
+ κ (2.4)

g2
b (ǫ) :=

(dx)2

x2(x + ǫ)2
+

φ∗h

(x + ǫ)2
+ κ (2.5)

Of course we have only specified the forms of these metrics in a fixed collar neigh-
bourhood of ∂X, but we can extend these to the interior arbitrarily, and standard
results show that neither their indices nor the integrals depend on these extensions.

We denote by Dj
∗(ǫ), ∗ = c, b and j = 0, 1, 2, the Dirac operators associated to

these metrics, respectively.
The first main fact is the

2.6 Lemma. Assuming (1.1), then each of the operators Dj
∗(ǫ) is fully elliptic when

ǫ > 0 is sufficiently small.

Full ellipticity in either the b− or c− pseudodifferential calculi is simply the as-
sumption that not only the interior symbol but also the boundary ‘indicial operator’
is invertible. This follows from Theorem (4.41) in [3] when ǫ is small. Using the full
ellipticity, one may construct parametrices modulo compact remainders in the ap-
propriate pseudodifferential calculi. Hence each of the operators Dj

∗(ǫ) is Fredholm
on the appropriate geometric Sobolev spaces.

From now on we shall omit mention that the hypothesis (1.1) is always in force
here. Furthermore, we shall always assume that 0 < ǫ < ǫ0 for some sufficiently
small ǫ0.

We deform to g2
b (ǫ), rather than any of the ‘simpler’ b-metrics because this is

the metric for which we can more effectively analyze the limit of the Atiyah-Singer
integrand as ǫ ց 0.

We now present a series of lemmata which state that the indices of the Dirac
operators remains the same through this entire deformation.

The first step uses the work Melrose and Rochon and is the most serious one
analytically. [8].

2.7 Lemma. Ind(DΦ) = Ind(D1
c (ǫ)).

Proof. In Appendix C of [8], Melrose and Rochon consider an adiabatic metric
deformation connecting a Φ metric to a c-metric. Actually, they consider a slightly
more general situation where ∂X is the total space of a tower of fibrations ∂X →
Ỹ → Y , and a corresponding transition between a Φ−metric associated to the first
fibration and a Φ−metric associated to the second. By constructing parametrices
in an adiabatic calculus, they prove in Proposition C.1 of [8] that the indices of
the Dirac operators associated to the metrics in this family remain invariant in this
passage to an adiabatic limit. This assumes that the ‘boundary symbols, i.e. the
normal operators ad(P ) and N(P ) are invertible, which follows directly from our
hypothesis (1.1).
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2.8 Lemma. We have Ind(D1
c (ǫ)) = Ind(D0

c (ǫ)), Ind(D0
b (ǫ)) = Ind(D1

b (ǫ)) and
Ind(D1

b (ǫ)) = Ind(D2
b (ǫ)).

Proof. In each case we simply follow the obvious homotopy of metrics. Thus, for
the cusp setting, let

gc(t, ǫ) :=
dx2

x4
+

φ∗h

(tx + ǫ)2
+ κ , 0 ≤ t ≤ 1, (2.9)

so that gc(0, ǫ) = g0
c (ǫ), gc(1, ǫ) = g1

c (ǫ). The indicial family of the corresponding
Dirac operators Dc(t, ǫ) is independent of t, and hence each Dc(t, ǫ) is Fredholm, so
the index is constant. The argument in the other two cases is the same.

2.10 Lemma. Ind(D0
c (ǫ)) = Ind(D0

b (ǫ)).

Proof. As in [8], Lemma (14.1), Ind(D0
c (ǫ) equals the index for the incomplete metric

du2 + φ∗h/ ǫ2 +κ with APS boundary conditions. Since the boundary operator is
invertible, this also equals Ind(D0

b (ǫ)).

Taken together, this chain of equality gives the

2.11 Proposition. Ind(DΦ) = Ind(D2
b (ǫ)).

3 The adiabatic limit

At this point we simplify notation and simply write g(ǫ) instead of g2
b (ǫ) .

We begin with the

3.1 Proposition. Assuming, as always, that (1.1) holds, then for ǫ sufficiently
small,

Ind(DΦ) =
∫

X
AS(g(ǫ)) − 1

2
η(D∂

g(ǫ)). (3.2)

Proof. Define ξ = x/(x + ǫ), so that dξ/ξ = ǫ dx/x(x + ǫ). In terms of this new
boundary defining function, g(ǫ) := ǫ−2 ĝ, where

ĝ =
dξ2

ξ2
+ ǫ2

(
φ∗h

(x + ǫ)2
+ κ

)
.

The middle term on the right has been kept expressed in terms of x simply to
emphasize that ĝ is an exact b-metric which induces ǫ2 times the boundary metric
induced by g(ǫ).

Applying the usual APS formula to ĝ gives

Ind(Dĝ) =
∫

X
AS(ĝ) − 1

2
η(D∂

ĝ ). (3.3)

However, clearly Dg(ǫ) has the same index as Dĝ, which is then the same as Ind(DΦ).
Furthermore, using the fact that ĝ and g(ǫ) differ by a constant, we get both

∫

X
AS(ĝ) =

∫

X
AS(g(ǫ)), and η(D∂

ĝ ) = η(D∂
g(ǫ)).

Replacing each term in (3.3) with the corresponding quantity for g(ǫ) gives (3.2).

The final steps of the proof of the main theorem consist in analyzing the limiting
behaviour as ǫ ց 0 of the two terms on the right in (3.2).
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3.1 Limiting behaviour of the integrand

3.4 Proposition. The integral of the Atiyah-Singer density for g(ǫ) converges to
that for gΦ, i.e.

lim
ǫց0

∫

X
AS(g(ǫ)) =

∫

X
AS(gΦ) . (3.5)

Proof. This is a computation. We shall use the method of moving frames, cf. [13]
for more on this formalism. Recall that if ω0, . . . , ωn is any orthonormal set of one-
forms, then the connection one-forms ω j

i are determined uniquely by the equations

dωi = ωj ∧ ω i
j , ω i

j = −ω j
i .

From these we define the curvature two-forms

Ω j
i = dω j

i − ω k
i ∧ ω j

k .

Here, and elsewhere below, summation on repeated indices is intended.
The strength of this method, of course, is that it can be adapted to the specific

geometry. Thus here we shall choose the coframe for g(ǫ) as follows. Let Y = ∂X.
Choose an orthonormal coframe ω̃α, 1 ≤ α ≤ k, for (Y, h), and ωµ, k + 1 ≤ µ ≤ n,
for the restriction of κ to each fibre. These forms may also depend smoothly on ǫ
and x (in x ≥ 0, ǫ ≥ 0), and in addition, the ωµ may also depend on y ∈ Y . In
the following, we shall use the Chern convention that Roman indices i, j, . . . vary
between 0 and n, while the Greek indices α, β, . . . vary between 1 and k and µ, ν, . . .
vary between k + 1 and n. Now define

ω0 =
dx

x(x + ǫ)
, ωα =

φ∗(ω̃α)

x + ǫ
;

Then
{ω0, ω1, . . . , ωk, ωk+1, . . . , ωn}

is an orthonormal coframe for g(ǫ).
After some computation we obtain

dω0 = 0

≡ ωα ∧ ω 0
α + ωµ ∧ ω 0

µ

dωα = − dx

(x + ǫ)2
∧ φ∗(ω̃α) +

dx

(x + ǫ)
∧ (φ∗(ω̃α))′ + ωβ ∧ φ∗(ω̃ α

β )

≡ ω0 ∧ ω α
0 + ωβ ∧ ω α

β + ωµ ∧ ω α
µ

dωµ = dx ∧ (ωµ)′ + (x + ǫ)ωα ∧ E µ
α + ων ∧ E µ

ν

≡ ω0 ∧ ω µ
0 + ωα ∧ ω µ

α + ων ∧ ω µ
ν .

Here the ′ denotes differentiation with respect to x, and E j
i denotes terms (involv-

ing the curvature and second fundamental form of the fibres) which are uniformly
bounded (with respect to the unscaled metric g̃ on ∂X) along with their derivatives
as x, ǫ → 0.
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More specifically, in the formula for dωα, we use that d commutes with φ∗.
The expression for dωµ contains ωα factors corresponding to the derivative of the
fibre metric in the horizontal direction, and also to the variation of the horizontal
subspaces in the fibre direction. We refer to [4] §5.3.1 (particularly (43)-(45)) for
the precise details, but note simply that the ωα ∧ ων components correspond to the
second fundamental form in the normal direction eα to the fibre (with respect to
the scaled metric on ∂X for a given x and ǫ), and are indeed of the form (x + ǫ)E µ

α ,
while the ωα ∧ ωβ components in dωµ correspond to the curvature of the horizontal
distribution, which are of the form (x + ǫ)2E µ

α , hence even lower order. Next, the
terms E µ

ν are precisely the connection one-forms ω µ
ν for the metric induced by κ

on the fibres; in particular, these do not involve any ωα factors. Finally, we have
included the extra terms involving the x derivative of ω̃α and ωµ since we do allow
the metric h on Y and symmetric two-tensor κ to depend smoothly on x.

Using this same E j
i notation for all ‘negligible’ bounded terms, we now claim

that
ω α

0 = − x

x + ǫ
ω̃α + xE α

0 , ω µ
0 = x(x + ǫ)E µ

0 ,

ω β
α = E β

α , ω µ
α = (x + ǫ)E µ

α , ω ν
µ = E ν

µ .

To verify this, we simply need to show that these forms satisfy the structure equa-
tions and are skew-symmetric in their indices, for then Cartan’s lemma guarantees
uniqueness. The equations for all terms except the ω µ

α (which by skew-symmetry,
we require to be equal to −ω α

µ ) are clear enough. For these terms, first note that
the equation for dωα has no vertical components, which means that ωµ ∧ ω α

µ must
vanish. This means that

ω α
µ = cα,µ,νω

ν, and cα,µ,ν = cα,ν,µ.

(The point is that there can be no ωβ or ω0 components.) Finally, setting this into
the equation for dωµ, and noting that the E ν

ν term is already accounted for by the
ω µ

ν , we must have ω µ
α = (x + ǫ)E µ

α , as claimed.
When computing each of the curvature two-forms Ω j

i , we write all forms in terms
of dx, ω̃α and ωµ, which are smooth in the ordinary sense up to ǫ = x = 0. We
single out the particular terms which help or hurt us, and as before gather all the
harmless remaining factors into terms F j

i , which are uniformly bounded in x, ǫ ≥ 0.
Thus, after further work, we obtain

Ωα
0 = dx ∧

(
− ǫ

(x + ǫ)2
ω̃α + F α

0

)
+ xF α

0 ,

Ωµ
0 = (x + ǫ)F µ

0 ,

Ωβ
α = F β

α ,

Ωµ
α = dx ∧ F µ

α + (x + ǫ)F µ
α ,

Ω ν
µ = F ν

µ .

Only the first of these requires more explanation. We have

dω α
0 − ω β

0 ∧ ω α
β − ω µ

0 ∧ ω α
µ

= d
(
− x

x + ǫ

)
∧ ω̃α + dx ∧ F α

0 − x

x + ǫ

(
dω̃α − ω̃β ∧ ω̃ α

β

)
+ xF α

0 .
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The first terms on the right, involving dx, and the final term, correspond to the
assertion above. The middle terms appear not to be of the correct form, but the
particular combination in parentheses is just the structure equation for the connec-
tion one-forms and hence vanishes.

Recalling that dim X = n + 1 = 2m, the integral
∫
X Â(g(ǫ)) is a linear combina-

tion of terms of the form:
∫

X
Tr Rm1(ǫ) . . .Tr Rmp(ǫ), m1 + . . . + mp = m.

To fix the ideas and simplify the notation we focus on
∫

X
Tr Rm(ǫ),

since all other terms are handled the same way. In terms of the curvature two-forms,

TrRm(ǫ) =
∑

Ω i2
i1 Ω i3

i2 · · ·Ω i1
im . (3.6)

Now substitute in this the expressions we have obtained for the Ω j
i . Using the

boundedness of all of the E j
i , the only terms in any of these curvature forms which

is not bounded near x = ǫ = 0 is Ωα
0 , and in fact only its first term ǫ(x+ ǫ)−2dx∧ ω̃α

causes difficulties. Thus we may as well suppose that this is the first term, i.e. i1 = 0
and i2 = α, and we can replace the entire two-form Ωα

0 by this single bad term. The
final term in the entire product is either Ω 0

µ or Ω 0
β for some µ or β. In the former

case this contains a vanishing factor (x+ ǫ), while in the latter, only the part of this
two-form which does not contain a dx contributes, and this has the same vanishing
factor. Thus in all cases, the entire 2m-form is bounded (though not necessarily
smooth!) near ǫ = x = 0, and we can pass to the limit, as desired.

3.2 Adiabatic limit of the eta invariant

We briefly recall the context of the Bismut-Cheeger theorem [3]. Let M be an odd
dimensional, compact spin manifold which is the total space of a fibration

Z → M
φ−→ Y

where the base Y is also spin. We fix a connection TM = TH(M)⊕T (M/Y ), where
TH(M) ≃ φ∗(TY ) and T (M/Y ) denotes the vertical tangent bundle. Let h be a
Riemannian metric on Y and κ a symmetric two-tensor on TM which restricts to
a metric on each Zy and which annihilates the horizontal space, and introduce the
Riemannian submersion metric g̃ := φ∗h+κ. Denote by ∇ and ∇M/Y the Levi-Civita
connection for gM and the induced connection on T (M/Y ) obtained by compressing
∇ by the projections P : TM → T (M/Y ). Let S be the vertical spinor bundle and
E → M an additional Hermitian bundle endowed with a unitary connection. The
bundle F := S ⊗E is a vertical Clifford module. Finally, let F := φ∗(Λ∗Y )⊗ F . To
fix the notation we assume that the fibers are even dimensional.

To this entire set of data one associates the rescaled Bismut superconnection

At : C∞(M, F) → C∞(M, F) ,
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cf. [2] and [1]. The operator dAt/dt exp(−A2
t ) is a vertical family of smoothing

operators (Ky)y∈Y with coefficients which are differential forms on the base Y . From
this family one obtains a differential form of odd degree on the base Y ,

Str

(
dAt

dt
exp(−A2

t )

)
.

The value of this form at y ∈ Y is obtained by restricting Ky to the diagonal
∆y ⊂ φ−1(y) × φ−1(y), taking its supertrace and then integrating over ∆y.

Assume now that the vertical family of Dirac operators (Dy)y∈Y associated to
the data above is invertible. Then the integral

∫ ∞

0

1√
π

Str

(
dAt

dt
exp(−A2

t )

)
dt

converges and defines the eta form η̃ ∈ C∞(Y, Λ∗Y ) associated to the family (Dy)y∈Y .
The adiabatic limit formula of Bismut and Cheeger states that if η(ǫ) is the eta

invariant for the Dirac operator associated to the metric

gM(ǫ) :=
φ∗h

ǫ2
+ κ ;

then
lim
ǫ→0

η(ǫ) =
∫

Y
Â(Y, h) ∧ η̃ .

Applied to the boundary operator D∂
g(ǫ) on M = ∂X, we obtain the limiting

behaviour of the final term in (3.2). This completes the proof of the index formula
for Dirac operators associated to Φ−metrics in the fully elliptic case.
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