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1 Introduction

A (finite) generalized quadrangle (GQ) of order (s,t) is an incidence structure S =
(P, B,I), in which P and B are disjoint (non-empty) sets of objects, called points
and lines respectively, and for which [ is a symmetric point-line incidence relation
satisfying the following axioms:

(i) Each point is incident with ¢ + 1 lines (¢ > 1) and two distinct points are
incident with at most one line.

(ii) Each line is incident with s+1 points (s > 1) and two distinct lines are incident
with at most one point.

(iii) If z is a point and L is a line not incident with x, then there is a unique pair
(y, M) € P x B for which e IM IyIL.

Interchanging points and lines in S yields a GQ of order (¢, s), which is called the
dual SP of S. For the theory of generalized quadrangles, we refer to [12].

Here we will consider the classical generalized quadrangles (with ¢ a power of a
prime):

e The quadrics Q(4,q) and Q~(5,q): let Q@ = Q(4,q) (resp. @ = Q(5,q)) be
a non-singular quadric of projective index 1 of the projective space PG(4,q)
(resp. PG(5,q)). Then the points of () together with the lines on ) (subspaces

of maximal dimension on Q) form a GQ of order (s,t) = (¢, q) (resp. (¢, ¢%)).
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e The symplectic generalized quadrangle W (q): the points of the projective
space PG(3,q), together with the totally isotropic lines with respect to a
symplectic polarity, form a GQ of order (s,t) = (q,q). Note that W(q) is
isomorphic to the dual of Q(4, q).

e The Hermitian varieties H(3,q?) and H(4,q?): let H be a non-singular Her-
mitian variety of the projective space PG(3,q?), resp. PG(4,q¢*). Then the
points of H together with the lines on H form a GQ of order (s,t) = (¢%, q),
resp. (¢%,¢%). Note that H(3,¢?) is isomorphic to the dual of Q@ (5, q).

Two points p and g of S are called collinear if there is a line L in B incident
with both. Two lines L and M of S are called concurrent if there is a point p in P
incident with both. An ovoid of S is a set O of points of S such that each line of S
is incident with a unique point of O, or equivalently, a set of st + 1 pairwise non-
collinear points. A partial ovoid is a set O’ of points of S such that each line of S
is incident with at most one point of O, i.e. a set of pairwise non-collinear points.
Dually, a spread of S is a set R of lines of S such that each point of S is incident with
a unique line of R, or equivalently, a set of st + 1 pairwise non-concurrent lines. A
partial spread of S is a set R’ of lines of S such that each point of S is incident with
at most one line of R, i.e. a set of pairwise non-concurrent lines. A partial ovoid
(or spread) is called maximal or complete if it is not contained in a larger partial
ovoid (or spread). We call two (partial) ovoids (or spreads) equivalent if there is an
automorphism of S that transforms one into the other.

We denote an undirected graph by G = (V| E), where V' is the set of vertices
and FE is the set of edges. The order of a graph G is the number of its vertices, the
size of GG is its number of edges. Two vertices are said to be adjacent if they are
connected by an edge. A clique is a set of pairwise adjacent vertices; an independent
set is a set of pairwise non-adjacent vertices. A clique in a graph G is an independent
set in its complement G. A mazimal clique is a clique that is not contained in a
larger clique. A maximum clique is a clique of maximum cardinality in the graph.
Maximal and maximum independent sets are defined in the same way. Searching for
maximal and maximum cliques and independent sets are well known to be NP-hard
problems [6].

With a generalized quadrangle S a so-called collinearity graph Gs can be asso-
ciated, where the points of S correspond to the vertices of Gg and two vertices are
adjacent if and only if the corresponding points are collinear. An ovoid of S is a
maximum independent set of size st + 1 in Gg, or equivalently, a maximum clique
in its complement Gg. A spread of S is a maximum independent set of size st + 1
in the collinearity graph Ggp of the dual SP. Maximal partial ovoids and spreads
are maximal independent sets in Gg or Ggn.

In this paper we tackle the problems of finding the largest maximal partial ovoid
or spread in a generalized quadrangle, of exploring the spectrum of sizes for which
maximal partial ovoids or spreads exist, and of classifying up to equivalence all
maximal partial ovoids or spreads of a certain size in a generalized quadrangle.

The paper is organized as follows. Section 2 describes the algorithms. A first class
of algorithms, described in subsection 2.1, are exhaustive search algorithms, where
we use standard backtracking clique searching algorithms and add pruning strategies
based on specific properties of the collinearity graphs. This approach leads to exact
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answers concerning e.g. the size of the largest maximal partial ovoid or spread, or
the classification of all maximal partial ovoids and spreads of a given size. Another
class of algorithms, described in subsection 2.2 are heuristic algorithms, based on
techniques from combinatorial optimization. This approach turns out to be very
effective for exploring the spectrum of sizes for which maximal partial ovoids or
spreads exist. Finally in section 3 we present some new results obtained by our
computer searches. These include new exact values, improving on earlier theoretical
bounds, for the size of the largest maximal partial ovoids (resp. spreads) in several
of the classical GQs which do not have an ovoid (resp. spread), as well as their
complete classification up to equivalence. For Q~(5,q) and H(3,¢?*), we extended
the known spectra of sizes for which maximal partial ovoids exist.

2 Search algorithms for maximal partial ovoids and spreads

2.1 Exhaustive search algorithms

The basic form of most published algorithms (e.g. [4]) for the maximal or maximum
clique problem is a backtracking search which tries to extend a partial clique by
adding the vertices of a set A of remaining allowed vertices in a systematic way.
When reaching a point where the set A is empty, a new maximal clique has been
found.

Pruning strategies are used to avoid going through every single clique of the
graph. E.g. when searching for maximum cliques, a straightforward idea is to back-
track when the set A becomes so small that even if all its vertices could be added to
form a clique, the size of that clique would not exceed the size of the largest clique
found so far. Other pruning strategies involve vertex colorings: in a vertex color-
ing adjacent vertices must be assigned different colors, so if a graph or an induced
subgraph can be colored with ¢ colors, then the graph or subgraph cannot contain
a clique of size ¢ + 1.

Recently Ostergard [11] presented a new maximum clique algorithm that allows
to introduce a new pruning strategy. Let vy, v9, ..., v, be an ordering of the vertices
of the graph, let S; = {v;,...,v,} and let ¢(i) denote the size of the largest clique
in S;. For any 1 <i <n —1, either ¢(i) = c¢(i + 1) or ¢(i) = ¢(i + 1) + 1. Moreover
c(i) = c¢(i + 1) + 1 if and only if there is a clique of size ¢(i + 1) + 1 in S; that
contains v;. The algorithm starts with ¢(n) = 1 and computes c(i), i =n—1,...,1
by searching for such a clique. Finally the size of a maximum clique is given by ¢(1).
The values of ¢(i) can be used for pruning the search as follows. When searching
for a clique of size larger than s, the search can be pruned if j 4 ¢(i) < s, where j
denotes the size of the current partial clique and 7 is the index of the next vertex v;
to be added to the current partial clique.

Furthermore the special structure of a collinearity graph allows us to add some
specific pruning strategies to the standard algorithms.

Since the classical generalized quadrangles have automorphism groups that act
transitively on the pairs of non-collinear points, every (partial) ovoid is equivalent
to a (partial) ovoid containing a given pair of non-collinear points. In terms of
the clique finding algorithm, this means that it is possible to restrict the search to
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cliques containing a certain fixed edge. This gives a straightforward and already
very effective way to reduce the search space.

More advanced isomorph-rejection techniques, such as the techniques described
in [13], allow to reduce the search space even further. Having determined the set
stabilizer of the current partial clique in a step of the search process, it suffices to
try only one point of each orbit for extending the current partial clique in the next
recursive steps. We use nauty [9] to compute the set stabilizer.

For some types of generalized quadrangles optimal vertex colorings can be con-
structed from theoretical arguments. For instance, classical constructions for ovoids
in Q(4,q) and H(3,¢*) are known [12]. The points of an ovoid in such a GQ S corre-
spond to lines of s spread in its dual S”, hence to a partition of the vertices of Ggp
into classes of mutually non-adjacent vertices. In other words, this is a partition of
G o into color classes that can be used for pruning the search in a maximum clique
algorithm in Gg. It can be proven that the obtained vertex coloring is optimal, i.e.,
uses a minimum number of colors.

In some situations the pruning in a clique finding algorithm in a collinearity
graph can be improved by keeping track of the incidence structure of the GQ as well
as the graph. For instance, when classifying the ovoids in a GQ or when checking
whether a GQ has an ovoid, the following idea proves to be useful. Consider a step
in the recursive process where the current partial ovoid gives rise to a line for which
only one point still belongs to the allowed set. If that point is not added to the
current partial ovoid, then the resulting partial ovoid can never be extended to an
ovoid, so we can prune these possibilities and force the point to be added to the
current partial ovoid.

2.2 Heuristic completion strategies

A simple greedy algorithm builds a maximal clique step by step, by adding vertices
from a set of allowed vertices, until this set is empty. Several strategies are possible
for choosing a vertex to be added in each step.

For instance, adding a vertex that leaves the largest number of vertices in the
allowed set, will tend to build large maximal cliques. Note that this strategy is
equivalent to the forward-looking approach of choosing a point of minimal relevance
described in [7]. A similar strategy, which is inspired by the pruning strategies using
colorings, consists of adding the vertex that leaves the largest number of colors in
the allowed set for the next step. This also results in large maximal cliques.

On the other hand, choosing the vertex that leaves the least number of vertices
or the least number of colors in the set of allowed vertices, is expected to result in
small maximal cliques.

Starting from a maximal clique obtained by one of the above approaches, a simple
restart strategy removes some of the vertices of the clique and again adds vertices
until the clique is maximal. Both the removing and the adding can be done either
randomly or following one of the above heuristics.
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3 Results

3.1 Largest maximal partial ovoids and spreads

For W(q) (¢ odd), Q= (5,q) and H(4,¢?), it is known that no ovoids exist. Some
theoretical upper bounds on the size of a maximal partial ovoid are known.
For W(q) (¢ odd), Tallini obtained the following upper bound:

Theorem 1 (Tallini [14]). If O’ is a partial ovoid of W(q), q is odd, then |O'| <
2
¢ +1—q.

For Q= (5, q), the best known upper bounds are by Thas and by Blokhuis and
Moorhouse:

Theorem 2 (Thas [15]). If O’ is a partial ovoid of Q= (5,q), then |O'| < ¢+ 1 —
(g —1).

Theorem 3 (Blokhuis and Moorhouse [3]). If K is a k-cap of a quadric in
PG(n,q) with ¢ = p" and p prime, then

()T e

For H(4,¢?), there is an upper bound by Moorhouse:

k<

Theorem 4 (Moorhouse [10]). If K is a k-cap of a Hermitian variety in PG(n, ¢*),
with ¢ = p" and p prime, then

p+n—1 2 p+n—22h
)

In Table 1, we present some new results obtained by the exhaustive search algo-
rithms and pruning techniques described in section 2.1. We have implemented all
algorithms in Java, and use the Java Native Interface (JNI) to call nauty [9] for the
isomorph-rejection steps.

For each quadrangle, Table 1 gives the parameters (s,t), the order |G| of the
corresponding collinearity graph, the value of st + 1 (which would be the size of the
ovoid or spread) and the specific value of the best known theoretical bound. We
present the value for the size |O’| or |R'| of the largest partial ovoid or spread, found
by the program — these values were found by exhaustive search and hence are the
largest possible sizes for maximal partial ovoids or spreads in the respective GQs.
Note that in all cases the size of the largest partial ovoid or spread is smaller than
the best known theoretical bound. Moreover we obtained a complete classification
of all non-equivalent largest partial ovoids or spreads; in the table the number #0’
or #R' of non-equivalent largest partial ovoids or spreads is given.

Also given in Table 1 is the exact value of 29 for the size of the largest maximal
partial spread in H(4,4), thus confirming Brouwer’s unpublished result that H (4, 4)
has no spread (which would have size 33).

k< + 1.
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Largest maximal partial ovoids
GQ (s,t) | |G| | st+1 | bound | |O| | #0O’
W (5) (5,5) | 156 | 26 |21 [14] | 18
W(7) (7,7) | 400 | 50 |43 [14] | 33
Q(5,4) | (4,16) | 325 | 65 37 (3] | 25
H(4,4) | (4,8) | 165 33 | 25]10] | 21
Largest maximal partial spreads
GQ (s,t) | |G| | st+1 | bound | |R'| | #R’
H(4,4) | (4,8) | 297 | 33 32 29 6

|||

Table 1: Size of the largest maximal partial ovoids/spreads, and the
number of non-equivalent largest partial ovoids/spreads, for some
generalized quadrangles, obtained by exhaustive search.

3.2 Spectrum of sizes for maximal partial ovoids in Q@ (5, q)

Theorems 2 and 3 give upper bounds on the size of maximal partial ovoids in Q= (5, q).
Next to these upper bounds, there is a lower bound by Ebert and Hirschfeld:

Theorem 5 (Ebert and Hirschfeld [5]). Let K be a complete cap of Q= (5,q).
Then |K| >2q+ 1. If ¢ > 4, then |[K| > 2q + 2.

Ebert and Hirschfeld also constructed a maximal partial ovoid of size 42 in Q= (5, 5).

In [1], Aguglia, Cossidente and Ebert construct complete spans (i.e. maximal
partial spreads) of size ¢ + 1 in H(3,¢?), which correspond of course to maximal
partial ovoids in its dual @~ (5,¢). They also mention results from (extensive but
not exhaustive) computer searches for possible values for the size of such complete
spans, which seem to indicate that both lower and upper bounds on the size should
be quadratic in ¢, rather than the linear lower bound from Theorem 5 and the cubic
upper bounds from Theorems 2 and 3. For ¢ = 4, they found complete spans of
sizes between 17 = ¢®> + 1 and 25 = (¢ + 1)?, for ¢ = 5 between 26 = ¢*> + 1 and 39.
For ¢ = 7,8, they found complete spans of size less than ¢* + 1.

In Table 2, we present results obtained by the heuristic algorithms described in
section 2.2. Again we have implemented these algorithms in Java.

For each (5, q) considered, Table 2 gives the value of ¢, the parameters (s, t) of
the GQ, the order |G| of the corresponding collinearity graph, the specific value LB
of the lower bound from Theorem 5, earlier results described in [1] and the specific
value UB of the best of the two upper bounds from Theorems 2 and 3. Finally, the
last column lists the sizes for which our program found maximal partial ovoids of
that given size. The notation a..b means that for all values in the interval [a, b], a
maximal partial ovoid of that size has been found.

In all cases, we have extended the spectrum found in [1]. Note that for all
Q= (5,q) considered we found maximal partial ovoids with size less than ¢ + 1.
These results seem to confirm the quadratic upper bound as suggested in [1], but
seem to indicate a subquadratic lower bound.

For Q= (5,4), we also found that no maximal partial ovoids of size 10, 11, 12 or
14 exist; these results were obtained by an exhaustive search for maximal cliques of
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q (s,t) |G| | LB [5] | Earlier results [1] UB New results

4| (416) | 325 | 10 e [17,25] 37 [3] 13,15..25

5 | (5,25 | 756 | 12 € [26,39] 106 [15, 3] 18,20..44,48

7| (749) | 2752 | 16 € [46, 60] 302 [15] 32..92,95,96,98

8 | (3,64) | 4617 | 18 € [57,74] 217 3] | 41..121,123,125,126

9 | (9,81) | 7300 | 20 - 101 [3] 52..146

11| (11,121) | 15984 | 24 - 1222 [15] | 68..212,214,216

13 | (13,169) | 30772 28 - 2042 [15] 89..265,
267,268,272,273

Table 2: Spectrum of sizes for maximal partial ovoids in Q@ (5, q),
for small values of ¢, obtained by heuristic search. The notation
a..b means that all values in the interval [a, b] have been found.

given size. Taking into account the result given in Table 1, that the largest maximal
partial ovoid in @~ (5,4) has size 25, this means that the obtained values 13 and 15
through 25 form the complete spectrum for @~ (5,4).

A maximal partial ovoid of size 96 in Q~(5,7) can also be obtained by the
following construction. Consider the quadric 3 + 23 + ... + 22 = 0. Consider the
set P’ of points of the form (3,+1,4+1,£1,+1,+1) and every cyclic permutation
of the coordinates. The set P’ has cardinality 192. The points of P’ with an even
number of minus-signs form a maximal partial ovoid of size 96 in @~ (5,7), while
the points of P’ with an odd number of minus-signs form another maximal partial
ovoid of size 96.

3.3 Spectrum of sizes for maximal partial ovoids in H(3, ¢*)

H (3, ¢%) is known to have ovoids of size ¢® + 1, and recently it has been proven that
the largest complete strictly partial ovoid has size ¢ — ¢ + 1 [8].

Aguglia, Ebert and Luyckx [2] have shown that, for ¢ even, the smallest maximal
partial ovoid has size ¢®> + 1. They also show that no maximal partial ovoids of
size ¢> + 2 exist, and that, for ¢ odd, a maximal partial ovoid in H (3, ¢?) has size
at least ¢*> + 3. Moreover, in [2], the authors present constructions for a maximal
partial ovoid of size 61 in H(3,25) and one of size 155 in H(3,49); these are the
smallest maximal partial ovoids known up to now.

In [7], Giuzzi describes computational methods to construct maximal partial
ovoids of the Hermitian surface and presents results obtained by this approach.

In Table 2, we present results obtained by the heuristic completion algorithms
described in section 2.2. Again we have implemented these algorithms in Java.

For each H (3, ¢?) considered, Table 3 gives the value of ¢, the parameters (s, t) of
the GQ, the order |G| of the corresponding collinearity graph, earlier results from [7]
and [2]. The last column lists the sizes for which our program found maximal partial
ovoids of that given size. Again the notation a..b means that for all values in the
interval [a, b], a maximal partial ovoid of that size has been found.

In all cases, we have found the ovoids of size ¢®+1 and the largest strictly partial
ovoids of size ¢ — ¢+ 1. For ¢ = 5,7, we extended the previously known spectrum
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q| (s,t) |G| | LB [2] Earlier results New results
3] (9,3) | 280 | 12 16..25,28 [7] 16..25,28
1] (164) | 1105 | 17 - 17,21,25,29..61,65
5 (25,5) | 3276 28 78..119,121,126 [7] 56..121,126
61 [2]
7| (49,7) | 17200 52 195..337,344 [7] 142..337,344
155 [2]
8| (64,8) | 33345 | 67 - 121,153,166,167,174,175,179,
180,186,190,192..505,513

Table 3: Spectrum of sizes for maximal partial ovoids in H(3, ¢?),
for small values of ¢, obtained by heuristic search.

as obtained in [7], and we found smaller maximal partial ovoids than the smallest
previously known ones, constructed in [2].

For H(3,16), we found a maximal partial ovoid whose size meets the lower bound
of ¢> +1 = 17. We also found maximal partial ovoids of size 21 = ¢* + ¢ + 1,
25=q¢*+2¢+1,29=¢*+ (¢ —1)g+ 1, and then all sizes until 61 = ¢* — ¢ + 1.
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