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Abstract

Lower and upper bounds for the size of the smallest maximal partial t-
spreads in PG(n, q) are presented. In some cases these bounds are sharp.

1 Introduction

Let PG(n, q) denote the n-dimensional projective space over the finite field of order
q. A partial t-spread of PG(n, q) is a set of mutually disjoint t-spaces in PG(n, q).
It is called maximal if no t-space can be added to obtain a larger partial t-spread.
A t-spread of PG(n, q) is a set of t-spaces in PG(n, q) that partitions the point set
of PG(n, q). PG(n, q) has a t-spread if and only if t + 1 divides n + 1, see e.g. [5,
p. 29]. If n is odd and t = (n− 1)/2, then a (partial) t-spread of PG(n, q) is simply
called a (partial) spread of PG(n, q).

In this paper we will be interested in the following question: “What is the size
of the smallest maximal partial t-spreads of PG(n, q)?” We will obtain upper and
lower bounds on this size, see Theorem 2.7, which in a few cases are sharp and in
many cases reasonably close to one another. Under some extra assumptions (which
might never be fulfilled), Theorem 3.2 improves upon Theorem 2.7 and increases
the number of cases in which the bounds are sharp significantly.

In order to obtain the upper bound for the size of the smallest maximal partial
t-spreads, we will use information on the size of the largest partial t-spreads in
PG(n, q). Recall that if t+1 divides n+1, then PG(n, q) has t-spreads. If t+1 does
not divide n + 1, then PG(n, q) has no t-spread and the following upper bounds on
the size of a partial t-spread are known.
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Theorem 1.1 Let n + 1 = k(t + 1) + r, 1 ≤ r ≤ t. Suppose S is a partial t-spread

of PG(n, q) of size qr qk(t+1)−1
qt+1−1

− s.

1. (Beutelspacher [1]) If r = 1, then s ≥ q − 1.

2. (Drake and Freeman [6]) If r > 1, then s ≥ bθc + 1, where 2θ =√
1 + 4qt+1(qt+1 − qr)− (2qt+1 − 2qr + 1).

To get a clearer view on the upper bound of Drake and Freeman, the value of θ can
be approximated.

Corollary 1.2 Let n + 1 = k(t + 1) + r, 1 ≤ r ≤ t. Suppose S is a partial t-spread

of PG(n, q) of size qr qk(t+1)−1
qt+1−1

− s.

1. If r = 1, then s ≥ qr − 1.

2. If r > 1 and t + 1 ≥ 2r, then s ≥ qr

2
− 1.

3. If r > 1 and t + 1 < 2r, then s ≥ qr

2
− q2r−t−1

2
+ 1.

In Example 1.4, we will recall the construction of the largest known maximal
partial t-spreads in PG(n, q). It will be useful later on. We will need the following
lemma.

Lemma 1.3 (Beutelspacher [1]) If πa is an a-space in PG(a + b + 1, q), a ≥ b,
then it is possible to partition the points of PG(a + b + 1, q) \ πa by a set of qa+1

b-spaces.

Proof Embed PG(a+ b+1, q) in PG(2a+1, q) and take a spread S in PG(2a+1, q)
containing πa. The elements of S \ {πa} intersect PG(a + b + 1, q) in a b-spread of
PG(a + b + 1, q) \ πa. �

Example 1.4 In [1], Beutelspacher gives a construction for partial t-spreads in

PG(n, q), n + 1 = k(t + 1) + r, k ≥ 1, 0 ≤ r ≤ t, of size qr qk(t+1)−1
qt+1−1

− qr + 1. Let

πt+r ⊆ π2(t+1)+r−1 ⊆ . . . ⊆ πk(t+1)+r−1 = PG(n, q)

be a chain of subspaces in PG(n, q), dim(πi(t+1)+r−1) = i(t+1)+r−1, i = 1, 2, . . . , k.
Using the proof of Lemma 1.3, take a partition Sj by t-spaces of π(j+1)(t+1)+r−1 \
πj(t+1)+r−1 for each j ∈ {1, . . . , k − 1}. Let πt be a t-space in πt+r. Then

S = ∪1≤j≤k−1Sj ∪ {πt}

is a maximal partial t-spread of size qr qk(t+1)−1
qt+1−1

− qr + 1 in PG(n, q). This is the
largest known example.

Hence in Theorem 1.1, for r = 1, Beutelspacher’s bound is sharp, and for r > 1,
Drake and Freeman’s bound is approximately halfway in between the trivial upper
bound and the largest known example.
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2 Small maximal partial t-spreads

A blocking set with respect to t-spaces in PG(n, q) is a set of points that has nonempty
intersection with every t-space of PG(n, q). By this definition, a partial t-spread S
in PG(n, q) is maximal if and only if the set of points covered by S is a blocking
set with respect to t-spaces. Hence, in order to construct a small maximal partial
t-spread, it makes sense to start from a small blocking set with respect to t-spaces
and to try to find a partial t-spread which covers all its points and as little extra
points as possible. This is exactly what we will do in Subsection 2.1.

Theorem 2.1 (Bose and Burton [3]) If B is a blocking set with respect to t-
spaces in PG(n, q), then |B| ≥ |PG(n− t, q)|. Equality holds if and only if B is an
(n− t)-space.

A blocking set with respect to t-spaces that contains an (n−t)-space is called trivial.
In Theorem 2.2, for q > 2 the smallest nontrivial blocking sets with respect to t-
spaces in PG(n, q) are characterized, while for q = 2 a lower bound on their size is
recalled. In its statement blocking sets in projective planes are mentioned. These
are blocking sets with respect to lines. It is not hard to see that if q = 2, then every
blocking set in PG(2, q) is trivial and it is known that if q > 2, then every nontrivial
blocking set in PG(2, q) has size at least q +

√
q + 1, see [4].

Theorem 2.2

1. (Beutelspacher [2]) In PG(n, 2), n ≥ 3, the size of a nontrivial blocking
set with respect to t-spaces is greater than 2n−t+1 +

√
2× 2n−t−1 − 1.

2. (Beutelspacher [2], Heim [10]) In PG(n, q), q > 2, the smallest nontrivial
blocking sets with respect to t-spaces are cones with vertex an (n− t− 2)-space
πn−t−2 and base a nontrivial blocking set of minimal cardinality in a plane skew
to πn−t−2.

2.1 A construction

The following lemma gives some motivation for the way in which we will construct
maximal partial t-spreads.

Lemma 2.3 (Beutelspacher [2]) If U is a set of subspaces of PG(m, q), m ≥ 1,
that partitions the point set of PG(m, q), then either

1. U = {PG(m, q)}, or

2. |U| ≥ qβ+1 + 1, where β = dm−1
2
e.

If equality is reached in the second case, then U consists of one β-space and qβ+1

(m− 1− β)-spaces.
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Remark 2.4 The lower bound in the second case of Lemma 2.3 can be reached by
applying Lemma 1.3 with a = β and b = m − 1 − β. The same tactic can be used
to construct partitions of PG(m, q) consisting of one α-space and qα+1 (m− 1−α)-
spaces for every β ≤ α < m.

We will now construct partial t-spreads in PG(n, q), n ≥ 3t + 1; for some com-
ments on this lower bound on n, see Remark 2.6. Since their elements will cover
the point set of an (n − t)-space, they will be maximal. The dimension n can be
written in a unique way as n = k(t + 1) + t− 1 + r, with 0 ≤ r ≤ t. Assuming that
n ≥ 3t + 1, we assume that k ≥ 2. Let B be an (n− t)-space in PG(n, q) and write
n − t + 1 = k(t + 1) + r. As in Example 1.4, it is possible to take a t-spread S ′ of
B \ πt+r where πt+r is a (t + r)-space in B.

If r = 0, then πt+r can be added to S ′ to obtain a maximal partial t-spread S of
PG(n, q) of size

qk(t+1) − 1

qt+1 − 1
,

which is in fact a t-spread of B.
If r > 0, then we can use the construction from Remark 2.4. As shown there, it

is possible to partition the set of points of πt+r by a set U consisting of one β-space
and qβ+1 (t + r− β − 1)-spaces, where β = d(t + r− 1)/2e. By Lemma 2.3, it is not
possible to partition the points of πt+r using a smaller number of subspaces. We will
now construct a set S ′′ of qβ+1 + 1 mutually skew t-spaces that intersect B exactly
in the elements of U .

Let γ = b(t+r−1)/2c, β∗ = b(t−r−1)/2c and γ∗ = d(t−r−1)/2e. Let πβ and
πi

γ, i = 1, 2, . . . , qβ+1 be the β-space and the qβ+1 (t+r−β−1)-spaces that partition
πt+1. If t+r is even, then take a (t+1)-space π∗t+1 that intersects B in a line l skew to
πt+r and let π∗β be a β-space in π∗t+1 containing l. Now construct a partition of π∗t+1

consisting of π∗β and qβ+1 γ∗-spaces π∗,iγ∗ , i = 1, 2, . . . , qβ+1. Let π∗β∗ be a β∗-space in

π∗β skew to l. Then let S ′′ = {〈πβ, π∗β∗〉}∪{〈πi
γ, π

∗,i
γ∗ 〉 : i = 1, 2, . . . , qβ+1}. In a similar

way, if t + r is odd, then take a t-space π∗t that intersects B in a point P skew to
πt+r and let π∗β be a β-space in π∗t containing P . Now construct a partition of π∗t
consisting of π∗β and qβ+1 γ∗-spaces π∗,iγ∗ , i = 1, 2, . . . , qβ+1. Let π∗β∗ be a β∗-space in

π∗β skew to l. Then let S ′′ = {〈πβ, π∗β∗〉} ∪ {〈πi
γ, π

∗,i
γ∗ 〉 : i = 1, 2, . . . , qβ+1}.

In this way, considering the set S = S ′∪S ′′, we obtain a maximal partial t-spread
of size

qr qk(t+1) − 1

qt+1 − 1
+ qβ+1 − qr + 1.

Theorem 2.5 In PG(n, q), n = k(t+1)+ t−1+r, with k ≥ 2, there exist maximal
partial t-spreads of size

qr qk(t+1) − 1

qt+1 − 1
+ qβ+1 − qr + 1, where

{
β = −∞ if r = 0,
β = d(t + r − 1)/2e otherwise.

(1)

Remark 2.6 The condition that n ≥ 3t+1 was imposed to ensure that—using the
notation from above—B \ πr+t is nonempty, such that the spaces π∗t+1 and π∗t can
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be chosen skew to πr+t. It seems plausible that when 2t + 1 ≤ n ≤ 3t a slightly
modified construction will yield maximal partial t-spreads of size (1). Note that for
r = 0, or equivalently n = 2t + 1, this is immediately clear by taking a t-spread of
PG(2t + 1, q). In the cases where 2t + 1 ≤ n ≤ 3t the spaces π∗t+1 and π∗t would

necessarily intersect πt+r = B nontrivially, such that the spaces πβ, πi
γ, π∗β∗ , π∗,iγ∗

would need to be chosen carefully to make sure that the resulting t-spaces of S ′′ are
skew. We do not pursue this line of thought here, since in Theorem 2.7 we will need
to assume that k > 2 anyway. Also, it seems unlikely that if 2t + 1 ≤ n ≤ 3t, then
partial t-spreads of size (1) can be called small. Again, for r = 0, it is immediately
clear that they are not.

2.2 Lower bounds

Let S be a maximal partial t-spread in PG(n, q), n ≥ t. The dimension n can be
written in a unique way as n = k(t + 1) + t− 1 + r, with 0 ≤ r ≤ t. If n < 2t + 1,
then |S| = 1. So, from now on, assume that k ≥ 1 and (k, r) 6= (1, 0). Let B
denote the smallest blocking set with respect to t-spaces contained in ∪πt∈Sπt. We
will distinguish two cases.

Case 1. The set B is an (n− t)-space

The smallest possibility for B is an (n − t)-space πn′ . We can write n′ = n − t as
n′ + 1 = k(t + 1) + r. Let S1 denote the set of elements of S that are contained
in π′n and let S2 = S \ S1. Write v = qr(qk(t+1) − 1)/(qt+1 − 1) and |S1| = v − s.
By Corollary 1.2 (i) if r = 0, then s ≥ 0, (ii) if r = 1, then s ≥ qr − 1, (iii) if
r > 1 and t + 1 ≥ 2r, then s ≥ qr/2 − 1, and (iv) if r > 1 and t + 1 < 2r, then
s ≥ qr/2− q2r−t−1/2 + 1.

The points of A := π′n \ ∪πt∈S1πt must be covered by the elements of S2, which
means that the elements of S2 must intersect π′n in a partition of A by subspaces
of dimension at most t − 1. Note that |A| = θr−1 + sθt, where θi = |PG(i, q)| =
(qi+1 − 1)/(q − 1).

To find a lower bound on the size of S2, we can take a lower bound on the size of a
partition of A by subspaces of dimension at most t−1. The size of such a partition is
bounded from below by a lower bound for the size of a partition P of a set of size |A|
by subsets whose sizes are elements of {θt−1, θt−2, . . . , θ0 = 1}. Let at−1 = b|A|/θt−1c
and define recursively ai = b(|A| − ∑i+1

j=t−1 ajθj)/θic for i = t − 2, t − 3, . . . , 0; then

|P| ≥ ∑t−1
i=0 ai. This lower bound can be attained by applying a greedy algorithm,

that is, by taking as many disjoint subsets of size θt−1 as possible, then taking
as many disjoint subsets of size θt−2 that are disjoint from the previously chosen
subsets, etcetera.

Let us for instance discuss the case r = 1. In this case, |A| = 1 + sθt and
s ≥ q − 1. If s = q − 1, then |A| = qt+1. The best possible way to partition
a set of qt+1 points by subspaces of dimension at most t − 1 is by taking q2 − q
(t − 1)-spaces and q points, from which the lower bound |S2| ≥ q2 is obtained.
Therefore |S| ≥ v − (q − 1) + q2 such that |S| ≥ v + q2 − q + 1. If s > q − 1, then
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|S| ≥ v − s + d(1 + sθt)/θt−1e = v + s(q − 1) + d(1 + s)/θt−1e, such that as before
|S| ≥ v + q2 − q + 1.

The other cases are handled similarly. We will only look at the situation where
s attains the lower bound from Corollary 1.2. As above, if s is larger, then the same
lower bound for |S| is immediately obtained.

If r > 1, t + 1 ≥ 2r and s = qr/2 − 1, then |A| = (qt+r + qt+r−1 + . . . + qt+1 −
qt − qt−1 − . . . − qr)/2. The best possible way to partition a set consisting of this
number of points by subspaces of dimension at most t − 1 is by taking qr+1/2 − q
(t−1)-spaces, q/2 (r−1)-spaces and q/2 (r−2)-spaces, from which the lower bound
|S| ≥ v + (qr+1 − qr)/2 + 1 follows.

If r > 1, t + 1 < 2r and s = (qr − q2r−t−1 + 2)/2, then |A| = (qt+r + . . . + q2r +
2qt + . . . + 2qr+1 + 4qr + 3qr−1 + . . . + 3q2r−t−1 + 4q2r−t−2 + . . . + 4)/2. The best
possible way to partition a set consisting of this number of points by subspaces of
dimension at most t−1 is by taking (qr+1+q)/2 (t−1)-spaces, one r-space, (q−1)/2
(r − 1)-spaces, q/2 (2r − t − 3)-spaces and one point, from which the lower bound
|S| ≥ v + (qr+1 − qr + q2r−t−1 + 3q + 1)/2 follows.

Summarizing, the following lower bounds were obtained for the size of a maximal
partial t-spread S containing πn′ .

1. If r = 0, then |S| ≥ qk(t+1)−1
qt+1−1

.

2. If r = 1, then |S| ≥ q qk(t+1)−1
qt+1−1

+ q2 − q + 1.

3. If r > 1 and t + 1 ≥ 2r, then |S| ≥ qr qk(t+1)−1
qt+1−1

+ (qr+1 − qr)/2 + 1.

4. If r > 1 and t+1 < 2r, then |S| ≥ qr qk(t+1)−1
qt+1−1

+(qr+1− qr + q2r−t−1 +3q +1)/2.

Case 2. The set B is not an (n− t)-space

Now suppose that B is not an (n− t)-space. If q > 2, then by Theorem 2.2 the size
of B is at least the size of a cone with vertex an (n− t− 2)-space πn−t−2 and base
the smallest nontrivial blocking set in a plane skew to πn−t−2. So, in this case

|B| ≥ qn−t−1 − 1

q − 1
+ (q +

√
q + 1)qn−t−1. (2)

If q = 2, then by Theorem 2.2

|B| > 2n−t+1 +
√

2× 2n−t−1 − 1. (3)

Noting that |S| ≥ |B|/θt, some calculations show that if k ≥ 2, then a set of t-spaces
covering at least (2) points when q > 2 or at least (3) points when q = 2 has size
greater than (1).
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2.3 Conclusions

Theorem 2.7 Let s(t, n, q) denote the size of the smallest maximal partial t-spreads
in PG(n, q) and write n = k(t + 1) + t− 1 + r, 0 ≤ r ≤ t. Let β = d(t + r − 1)/2e.
If k ≥ 2, then the following hold.

1. If r = 0, then s(t, n, q) = qk(t+1)−1
qt+1−1

.

2. If r = 1, then q qk(t+1)−1
qt+1−1

+ q2 − q + 1 ≤ s(t, n, q) ≤ q qk(t+1)−1
qt+1−1

+ qβ+1 − q + 1.

3. If r > 1 and t + 1 ≥ 2r, then qr qk(t+1)−1
qt+1−1

+ (qr+1 − qr)/2 + 1 ≤ s(t, n, q) ≤
qr qk(t+1)−1

qt+1−1
+ qβ+1 − qr + 1.

4. If r > 1 and t + 1 < 2r, then qr qk(t+1)−1
qt+1−1

+ (qr+1 − qr + q2r−t−1 + 3q + 1)/2 ≤
s(t, n, q) ≤ qr qk(t+1)−1

qt+1−1
+ qβ+1 − qr + 1.

If S is a maximal partial t-spread in PG(n, q) whose size lies in the corresponding
interval above, then ∪πt∈Sπt contains an (n− t)-space in PG(n, q).

Proof Theorem 2.5 immediately supplies the upper bounds. The second part of
Subsection 2.2 shows that a maximal partial t-spread S in PG(n, q) whose size is at
most the appropriate upper bound covers an (n − t)-space. The lower bounds are
provided by the first part of Subsection 2.2. �

Corollary 2.8 1. In PG(2k + 1, q), k ≥ 2, the smallest maximal partial line-

spreads have size q q2k−1
q2−1

+ q2 − q + 1.

2. In PG(3k + 2, q), k ≥ 2, the smallest maximal partial planespreads have size

q q3k−1
q3−1

+ q2 − q + 1.

Proof In these cases, the lower and upper bound from Theorem 2.7 coincide. �

Corollary 2.9 If n 6= 3, then the size of the smallest maximal partial linespreads
in PG(n, q) is known.

Remarks 2.10 1. The case where r = 0 in Theorem 2.7 was already known,
see Beutelspacher [1].

2. In the difficult cases where 2t + 1 ≤ n ≤ 3t, we don’t obtain new results. In
these cases, the gap between the best known lower bounds and the smallest
known examples of maximal partial t-spreads is quite large. For example, for
maximal partial linespreads in PG(3, q) this lower bound is proved by Glynn [9]
and equals 2q, while the examples are by Gács and Szőnyi [8] and have size
(c log q + 1)q + 1, where c = 2 if q is odd and c ≤ 6.1 if q > q0 is even.

3. If t ≤ n ≤ 2t, then s(n, t, q) = 1.
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3 Wishful thinking

In [7], it is conjectured that the size of Beutelspacher’s maximal partial t-spreads
in PG(n, q) from Example 1.4 is maximal, i.e., that there exist no larger maximal
partial t-spreads in PG(n, q). Although I am unable to prove this, I am inclined to
believe that it is true. In this section, we will have a look at what implications it
would have if the conjecture were correct.

Conjecture 3.1 (Eisfeld and Storme [7]) If n + 1 = k(t + 1) + r, 1 ≤ r ≤ t,

then the largest maximal partial t-spreads in PG(n, q) have size qr qk(t+1)−1

qt+1−1
− qr + 1.

Of course the assumption of the correctness of Conjecture 3.1 does not affect
the upper bounds in Theorem 2.7, but it significantly increases the lower bounds.
Indeed, it implies that, under the conditions of Theorem 2.7, a maximal partial

t-spread of PG(n, q) with r > 0 has size at least qr qk(t+1)−1

qt+1−1
+ qr+1 − qr + 1.

Theorem 3.2 Let s(t, n, q) denote the size of the smallest maximal partial t-spreads
in PG(n, q) and write n = k(t + 1) + t− 1 + r, 0 ≤ r ≤ t. Let β = d(t + r − 1)/2e
and assume that Conjecture 3.1 is true. If k ≥ 2, then the following hold.

1. If r = 0, then s(t, n, q) = qk(t+1)−1
qt+1−1

.

2. If r > 0, then qr qk(t+1)−1
qt+1−1

+qr+1−qr+1 ≤ s(t, n, q) ≤ qr qk(t+1)−1
qt+1−1

+qβ+1−qr+1.

If S is a maximal partial t-spread in PG(n, q) whose size lies in the corresponding
interval above, then ∪πt∈Sπt contains an (n− t)-space in PG(n, q).

Corollary 3.3 Assume that Conjecture 3.1 is correct. Then the following hold.

1. In PG((k +1)(t+1)+ t−2, q), k ≥ 2, the smallest maximal partial t-spreads

have size qt qk(t+1)−1
qt+1−1

+ qt+1 − qt + 1.

2. In PG((k + 1)(t + 1) + t− 3, q), t > 1, k ≥ 2, the smallest maximal partial

t-spreads have size qt−1 qk(t+1)−1
qt+1−1

+ qt − qt−1 + 1.

Proof In the respective cases r = t and r = t − 1, such that in both cases β = r,
implying that in these cases the lower and upper bound from Theorem 3.2 coincide.

�

Corollary 3.4 If Conjecture 3.1 is true, then for n 6∈ {5, 6} the size of the smallest
maximal partial planespreads in PG(n, q) is known.
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[8] A. Gács and T. Szőnyi. On maximal partial spreads in PG(n, q). In Proceedings
of the Conference on Finite Geometries (Oberwolfach, 2001), volume 29, pages
123–129, 2003.

[9] D. G. Glynn. A lower bound for maximal partial spreads in PG(3, q). Ars
Combin., 13:39–40, 1982.

[10] U. Heim. Blockierende Mengen in endlichen projektiven Räumen. Mitt. Math.
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