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Abstract

We define some subclasses of Orlicz spaces of functions and establish here
a direct theorem of the approximation theory by rational functions.

1 Introduction and main results

Let Γ be a rectifiable Jordan curve in the complex plane C and let G := IntΓ,
G− := ExtΓ. Without loss of generality we suppose that 0 ∈ G. Further let T :=
{w ∈ C : |w| = 1}, U := IntT, U− := ExtT. We denote by ϕ and ϕ1 the conformal
mappings of G− and G onto U− normalized by the conditions

ϕ (∞) = ∞, lim
z→∞

ϕ (z)

z
> 0

and
ϕ1 (0) = ∞, lim

z→0
zϕ1 (z) > 0

respectively and let ψ and ψ1 be the inverse mappings of ϕ and ϕ1.
Let also Lp (Γ) and Ep (G) (1 ≤ p <∞) be the Lebesgue space of measurable

complex valued functions on Γ and the Smirnov class of analytic functions in G
respectively. Since Γ is rectifiable, we have ϕ

′ ∈ E1 (G−), ϕ
′
1 ∈ E1 (G) and ψ

′
,
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ψ
′
1 ∈ E1 (U−) , which imply that the functions ϕ

′
and ϕ

′
1 admit the nontangential

limits a. e. on Γ belonging to L1 (Γ), and ψ
′
and ψ

′
1 have nontangential limits a. e.

on T belonging to L1 (T ) [8, pp. 419-453].
For z ∈ Γ and ε > 0, we denote by Γ (z, ε) the portion of Γ in the open disk

of radius ε centered at z, i. e. Γ (z, ε) := {t ∈ Γ: |t− z| < ε} . Further let |Γ (z, ε)|
denotes the length of Γ (z, ε) .

Definition 1. Γ is called a Carleson curve if the condition

sup
z∈Γ

sup
ε>0

1

ε
|Γ (z, ε)| <∞

holds.

A convex and continuous function M : [0,∞) → [0,∞) for which M (0) = 0,
M (x) > 0 for x > 0 and

lim
x→0

M (x)

x
= 0, lim

x→∞

M (x)

x
= ∞

is called an N−function. The complementary N−function of M is defined by

N (y) := max
x≥0

{xy −M (x)}

for y ≥ 0.
Let M be an N−function and N be its complementary function. We denote by

LM (Γ) the linear space of Lebesgue measurable functions f : Γ → C satisfying the
condition ∫

Γ
M (α |f (z)|) |dz| <∞

for some α > 0. LM (Γ) becomes a Banach space with respect to the norm

‖f‖LM (Γ) := sup
{∫

Γ
|f (z) g (z)| |dz| : g ∈ LN (Γ) , ρ (g,N) ≤ 1

}
(1)

where ρ (g,N) =
∫
ΓN (|g (z)|) |dz| [17, pp. 52-68].

The norm ‖.‖LM (Γ) is called the Orlicz norm and the Banach space LM (Γ) is
called an Orlicz space.

It is known that every function in LM (Γ) is integrable on Γ, i.e. LM (Γ) ⊂ L1 (Γ)
[17, p. 50 ].

The N−function M is said to satisfy the ∆2−condition if

lim sup
x→∞

M (2x)

M (x)
<∞

holds.
The Orlicz space LM (Γ) is reflexive if and only if the N−function M and its

complementary function N are both satisfy the ∆2−condition [17, p. 113].
The more general information about Orlicz spaces can be found in [16] and [17].
Let Γr be the image of the circle {w ∈ C : |w| = r, 0 < r < 1} under some con-

formal mapping of U onto G and M be an N−function. We denote by EM (G) the
class of functions f analytic in G and satisfying the condition∫

Γr

M (|f (z)|) |dz| <∞

uniformly in r.
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Definition 2. [13] The class EM (G) is called the Smirnov−Orlicz class.

If M (x) = M (x, p) := xp, 1 < p < ∞, then the Smirnov−Orlicz class EM (G)
coincides with the usual Smirnov class Ep (G) . As was noted in [13], every function
of class EM (G) has a. e. nontangential boundary values and the boundary function
belongs to LM (Γ).

The class EM (G−) can be defined similarly.
For ς ∈ Γ we define the points ςh ∈ Γ and ς1h ∈ Γ as

ςh := ψ
[
ϕ (ς) eih

]
, ς1h := ψ1

[
ϕ1 (ς) eih

]
, h ∈ [0, 2π]

and the shifts Thf and T1hf for f ∈ LM (Γ) by

Thf (ς) :=
f (ςh)

ϕ′ (ςh)
ϕ

′
(ς) , ς ∈ Γ (2)

and

T1hf (ς) :=
f (ς1h)

[ϕ1 (ς1h)]
−2 ϕ

′
1 (ς1h)

[ϕ1 (ς)]−2 ϕ
′

1 (ς) , ς ∈ Γ. (3)

For example, if Γ ≡ T , then Thf (w) = f
(
weih

)
, T1hf (w) = f

(
we−ih

)
and

hence Thf (w) ∈ LM (Γ), T1hf (w) ∈ LM (Γ) as soon as f ∈ LM (Γ) . Moreover, if

0 < c1 ≤
∣∣∣ϕ′

(z)
∣∣∣ ≤ c2 <∞

or
0 < c3 ≤

∣∣∣ϕ′

1 (z)
∣∣∣ ≤ c4 <∞

for z ∈ Γ and with the constants c1, c2, c3, c4, which are independent of z, then it
is easy to verify that LM (Γ) is invariant with respect to the shifts Thf and T1hf .
Starting from this we define the functions ω∗M (., f) , ω∗1M (., f) and Ω∗

M (., f) for δ ≥ 0
as

ω∗M (δ, f) := sup
|h|≤δ

‖f − Thf‖LM (Γ) ,

ω∗1M (δ, f) := sup
|h|≤δ

‖f − T1hf‖LM (Γ) ,

Ω∗
M (δ, f) := ω∗M (δ, f) + ω∗1M (δ, f) .

Let ω (δ) be a nonnegative, continuous, nondecreasing real function such that
ω (0) = 0, ω (δ) > 0 for δ > 0, and ω (nδ) ≤ c5 n ω (δ) for every natural number n
and with some constant c5 > 0.

We define the classes of functions Hω
ΓLM (Γ), Hω

ΓEM (G) and Hω
ΓEM (G−) as

Hω
ΓLM (Γ) := {f ∈ LM (Γ) : Ω∗

M (δ, f) ≤ c6 ω (δ)} ,

Hω
ΓEM (G) := {f ∈ EM (G) : ω∗M (δ, f) ≤ c7 ω (δ)} ,

Hω
ΓEM

(
G−

)
:=

{
f ∈ EM

(
G−

)
: ω∗1M (δ, f) ≤ c8 ω (δ)

}
,

where the constants c6, c7 and c8 are independent of f and δ.
It is clear that if f ∈ Hω

ΓLM (Γ), then Thf ∈ LM (Γ) and T1hf ∈ LM (Γ) .

Our main results are the following.
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Theorem 1. Let Γ be a Carleson curve, LM (Γ) be a reflexive Orlicz space on Γ
and f ∈ Hω

ΓLM (Γ) . Then for each natural number n there exists a rational function
Rn (z, f) such that

‖f −Rn (·, f)‖LM (Γ) ≤ c ω (1/n) (4)

holds with a constant c, which is independent of n.

Corollary 1. If f ∈ Hω
ΓEM (G), then for each natural number n there exists an

algebraic polynomial Pn (z, f) of degree ≤ n such that

‖f − Pn (·, f)‖LM (Γ) ≤ c ω (1/n) (5)

holds with a constant c, which is independent of n.

Corollary 2. If f ∈ Hω
ΓEM (G−) then for each natural number n there exists a

polynomial Bn (1/z, f) of 1/z such that

‖ f −Bn (·, f)‖LM (Γ) ≤ c ω (1/n) (6)

holds with a constant c, which is independent of n.

Theorem 1 is new also in the spaces Lp (Γ), 1 < p <∞. To the best of the authors
knowledge in the literature there are no results studying the direct theorems of the
approximation theory by polynomials and rational functions in the Orlicz spaces
and Smirnov-Orlicz classes.

When Γ is a smooth Jordan curve and θ (s), the angle between the tangent
and the positive real axis expressed as a function of arclength s, has modulus of
continuity Ω (s, θ) satisfying the Dini-smooth condition

∫ δ

0

Ω (s, θ)

s
ds <∞, δ > 0

some inverse problems of the approximation theory in the Smirnov-Orlicz classes
were investigated by Kokilashvili [13].

Under different restrictive conditions upon Γ = ∂G the similar problems in Lp (Γ)
and Ep (G),1 ≤ p <∞, spaces were studied in [1], [2], [9], [14], [6], [4], [10], [11].

Throughout this paper we shall denote by c, c1, c2, . . . constants depending
only on numbers that are not important for the questions of interest.

2 Auxiliary results

Let Γ be a rectifiable Jordan curve and f ∈ L1 (Γ) . Then the functions f+ and f−

defined by

f+ (z) :=
1

2πi

∫
Γ

f (ς)

ς − z
dς, z ∈ G (7)

and

f− (z) :=
1

2πi

∫
Γ

f (ς)

ς − z
dς, z ∈ G− (8)

are analytic in G and G− respectively and f− (∞) = 0.
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The Cauchy singular integral of f ∈ L1 (Γ) at z ∈ Γ is defined by

SΓ (f) (z) := lim
ε→0

1

2πi

∫
Γ\Γ(z,ε)

f (ς)

ς − z
dς,

if the limit exists.
For f ∈ L1 (Γ), if one of the functions f+ and f− has nontangential limits a. e.

on Γ, then SΓ (f) (z) exists a. e. on Γ and also the other one of the functions f+

and f− has nontangential limits a. e. on Γ. Conversely, if SΓ (f) (z) exists a. e. on
Γ, then the functions f+ and f− have nontangential limits a. e. on Γ. In both cases,
the formulae

f+ (z) = SΓ (f) (z) +
1

2
f (z) , f− (z) = SΓ (f) (z)− 1

2
f (z) (9)

holds a. e. on Γ [8, p. 431] and hence

f = f+ − f− (10)

a. e. on Γ.
For f ∈ L1 (Γ), if SΓ (f) (z) exists a. e. on Γ, we associate the function SΓ (f)

taking the value SΓ (f) (z) a. e. on Γ. The linear operator SΓ defined in such way is
called the Cauchy singular operator.

The following theorem, proved in [12], characterizes the curves which the singular
operator SΓ is bounded in the reflexive Orlicz space LM (Γ) .
Theorem 2 The singular operator SΓ is a bounded linear operator in the reflexive
Orlicz space LM (Γ) , i. e.,

‖SΓ (f)‖LM (Γ) ≤ c ‖f‖LM (Γ) , f ∈ LM (Γ) (11)

holds, where c is a constant depending only on M and Γ, if and only if Γ is a
Carleson curve.

Let k be a nonnegative integer. Then the function ϕ
′
(z)ϕk (z) has a pole of

order k at ∞. Hence there exists a polynomial Bk (z) of degree k and a function
Ek (z) analytic in G− such that Ek (∞) = 0 and

ϕk (z)ϕ
′
(z) := Bk (z) + Ek (z)

holds for every z ∈ G−.
The polynomials Bk (z) (k = 0, 1, 2, ...) are called the Faber polynomials of the

second kind for G and satisfy the expansion

1

ψ (w)− z
=

∞∑
k=0

Bk (z)

wk+1
(12)

for z ∈ G and w ∈ U− [18, p. 95].
Now let’s consider the function [ϕ1 (z)]k−2 ϕ

′
1 (z) . This function is analytic in

G\ {0} and has a pole of order k at the point 0. If we denote its principal part at 0
by B̃k (1/z) , then there exists an analytic function Ẽk (z) in G such that

[ϕ1 (z)]k−2 ϕ
′

1 (z) = B̃k (1/z) + Ẽk (z)

holds for every z ∈ G\ {0} and for the principal parts B̃k (1/z) the expansion

w−2

ψ1 (w)− z
=

∞∑
k=0

− B̃k (1/z)

wk+1
, z ∈ G−, w ∈ U− (13)

holds [4].
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3 Proofs of the new results

Let f ∈ LM (Γ) . Then f ∈ L1 (Γ) and hence the functions

f0 (w) := f [ψ (w)]ψ
′
(w)

and
f1 (w) := f [ψ1 (w)]ψ

′

1 (w)w2

are integrable on T. We can associate the series

f0 (w) ∼
∞∑

k=−∞
akw

k (14)

and

f1 (w) ∼
∞∑

k=−∞
ãkw

k (15)

for w ∈ T.
Let

Kn (θ) =
n∑

m=−n

λ(n)
m eimθ

be an even, nonnegative trigonometric polynomial satisfying the conditions

1

2π

∫ π

−π
Kn (θ) dθ = 1 (16)

and ∫ π

0
θKn (θ) dθ ≤ c9/n (17)

for n = 1, 2, ... and with a constant c9 > 0. In special case, the Jackson kernel

Jn (θ) =
3 sin4 (nθ/2)

n (2n2 + 1) sin4 (θ/2)

satisfies these conditions[5, p. 203].
Let’s consider the integral

I (θ, z) :=
1

2πi

∫
Γ

f (ς−θ)

ϕ′ (ς−θ)

ϕ
′
(ς)

ς − z
dς, z ∈ G.

Substituting ς = ψ (eit) here, we obtain

I (θ, z) =
1

2π

∫ π

−π
f0

(
ei(t−θ)

) eit

ψ (eit)− z
dt.

Since by (14)

f0

(
eit

)
∼

∞∑
k=−∞

ake
ikt

and by (12)
eit

ψ (eit)− z
∼

∞∑
k=0

Bk (z)

eikt
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we can associate [3, pp. 74-75] to I (θ, z) the series expansion, i.e.,

I (θ, z) ∼
∞∑

k=0

akBk (z) e−ikθ.

Then by the generalized Parseval’s identity [3, pp. 225-228]

1

2π

∫ π

−π
Kn (θ) I (θ, z) dθ =

n∑
k=0

λ
(n)
k akBk (z) ,

because the functionKn (θ) is of bounded variation and I (·, z) ∈ L1 ([−π, π]). Hence
we have

1

4π2i

∫ π

−π
Kn (θ) dθ

∫
Γ

f (ς−θ)

ϕ′ (ς−θ)

ϕ
′
(ς)

ς − z
dς =

n∑
k=0

λ
(n)
k akBk (z)

for z ∈ G. Now, we consider the integral

I1 (θ, z) :=
1

2πi

∫
Γ

f
(
ς1(−θ)

)
ϕ−2

1

(
ς1(−θ)

)
ϕ

′
1

(
ς1(−θ)

) [ϕ1 (ς)]−2 ϕ
′
1 (ς)

ς − z
dς, z ∈ G−.

Making the change of variable ς = ψ1 (eit) we obtain

I1 (θ, z) =
1

2π

∫ π

−π
f1

(
ei(t−θ)

) e−2it

ψ1 (eit)− z
dt.

Similarly, according to the relations(13) and (15), the function I1 (θ, z) has the
Fourier expansion

I1 (θ, z) ∼ −
∞∑

k=0

ãkB̃k (1/z) e−ikθ

by [3, pp. 74-75]. Since the kernel Kn (θ) is of bounded variation and I1 (., z) is
integrable, the generalized Parseval identity [3, pp. 225-228] yields again that

1

2π

∫ π

−π
Kn (θ) I1 (θ, z) dθ = −

n∑
k=0

λ
(n)
k ãkB̃k (1/z) , z ∈ G−,

and by definition of I1 (θ, z) we have

1

4π2i

∫ π

−π
Kn (θ) dθ

∫
Γ

f
(
ς1(−θ)

)
ϕ−2

1

(
ς1(−θ)

)
ϕ

′
1

(
ς1(−θ)

) ϕ−2
1 (ς)ϕ

′
1 (ς)

ς − z
dς

= −
n∑

k=0

λ
(n)
k ãkB̃k (1/z) , z ∈ G−.

Therefore,

Pn (z, f) :=
1

4π2i

∫ π

−π
Kn (θ) dθ

∫
Γ

f (ς−θ)

ϕ′ (ς−θ)

ϕ
′
(ς)

ς − z
dς, z ∈ G

is a polynomial of degree n and

Qn (z, f) :=
1

4π2i

∫ π

−π
Kn (θ) dθ

∫
Γ

f
(
ς1(−θ)

)
ϕ−2

1

(
ς1(−θ)

)
ϕ

′
1

(
ς1(−θ)

) ϕ−2
1 (ς)ϕ

′
1 (ς)

ς − z
dς, z ∈ G−
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is a polynomial of degree n of 1/z.
Since the kernel Kn (θ) is an even function we have

Pn (z, f) =
1

4π2i

∫ π

0
Kn (θ) dθ

∫
Γ

[
f (ςθ)

ϕ′ (ςθ)
+
f (ς−θ)

ϕ′ (ς−θ)

]
ϕ

′
(ς)

ς − z
dς

and
Qn (z, f) =

1

4π2i

∫ π

0
Kn (θ) dθ

∫
Γ

 f (ς1θ)

ϕ−2
1 (ς1θ)ϕ

′
1 (ς1θ)

+
f

(
ς1(−θ)

)
ϕ−2

1

(
ς1(−θ)

)
ϕ

′
1

(
ς1(−θ)

)
 ϕ−2

1 (ς)ϕ
′
1 (ς)

ς − z
dς

for z ∈ G and z ∈ G− respectively. Then by (2) and (3) we obtain

Pn (z, f) =
1

4π2i

∫ π

0
Kn (θ) dθ

∫
Γ

[
Tθf (ς) + T(−θ)f (ς)

] dς

ς − z
, z ∈ G

and

Qn (z, f) =
1

4π2i

∫ π

0
Kn (θ) dθ

∫
Γ

[
T1θf (ς) + T1(−θ)f (ς)

] dς

ς − z
, z ∈ G−.

Taking the relations (7) and (8) into account we finally get

Pn (z, f) =
1

2π

∫ π

0
Kn (θ)

[
(Tθf)+ (z) +

(
T(−θ)f

)+
(z)

]
dθ, z ∈ G (18)

and

Qn (z, f) =
1

2π

∫ π

0
Kn (θ)

[
(T1θf)− (z) +

(
T1(−θ)f

)−
(z)

]
dθ, z ∈ G−. (19)

Proof of Theorem 1. Let f ∈ Hω
ΓLM (Γ) . By (16) for z

′ ∈ G we have

f+
(
z

′)
:=

1

2π

∫ π

−π
f+

(
z

′)
Kn (θ) dθ =

1

2π

∫ π

0
2f+

(
z

′)
Kn (θ) dθ,

which together with (18) implies that

f+
(
z

′)−Pn

(
z

′
, f

)
=

1

2π

∫ π

0
Kn (θ)

{
2f+

(
z

′)− [
(Tθf)+

(
z

′)
+

(
T(−θ)f

)+ (
z

′)]}
dθ.

Limiting z
′ → z ∈ Γ, along all nontangential paths inside Γ, by (9) we have

f+ (z)− Pn (z, f) =
1

2π

∫ π

0
Kn (θ)

[
SΓ (f − (Tθf)) (z) + SΓ

(
f −

(
T(−θ)f

))
(z)

]
dθ

+
1

4π

∫ π

0
Kn (θ)

[
(f − (Tθf)) (z) +

(
f −

(
T(−θ)f

))
(z)

]
dθ

for almost all z ∈ Γ. Now using the norm (1) and later applying the Fubini theorem
and getting the supremum in the integral sign we obtain∥∥∥f+ − Pn (., f)

∥∥∥
LM (Γ)

= sup
∫
Γ

∣∣∣f+ (z)− Pn (z, f)
∣∣∣ |g (z)| |dz|
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≤ sup
∫
Γ

∣∣∣∣ 1

2π

∫ π

0
Kn (θ) [SΓ (f − Tθf) (z) + SΓ(f − T(−θ)f) (z)]dθ

∣∣∣∣ | g (z) || dz |

+ sup
∫
Γ

∣∣∣∣ 1

4π

∫ π

0
Kn (θ) [(f − Tθf) (z) + (f − T(−θ)f) (z)]dθ

∣∣∣∣ | g (z) || dz |

≤ sup
∫
Γ

{
1

2π

∫ π

0
Kn (θ) [| SΓ (f − Tθf) (z) | + | SΓ(f − T(−θ)f) (z) |]dθ

}
| g (z) || dz |

+ sup
∫
Γ

{
1

4π

∫ π

0
Kn (θ) [| (f − Tθf) (z) | + | (f − T(−θ)f) (z) |]dθ

}
| g (z) || dz |

≤ 1

2π

∫ π

0
Kn (θ)

{
sup

∫
Γ
[| SΓ (f − Tθf) (z) | + | SΓ(f − T(−θ)f) (z) |] | g (z) || dz |

}
dθ

+
1

4π

∫ π

0
Kn (θ)

{
sup

∫
Γ
[| (f − Tθf) (z) | + | (f − T(−θ)f) (z) |] | g (z) || dz |

}
dθ

≤ 1

2π

∫ π

0
Kn (θ)

[
‖SΓ (f − Tθf)‖LM (Γ) +

∥∥∥SΓ

(
f − T(−θ)f

)∥∥∥
LM (Γ)

]
dθ

+
1

4π

∫ π

0
Kn (θ)

[
‖f − Tθf‖LM (Γ) +

∥∥∥f − T(−θ)f
∥∥∥

LM (Γ)

]
dθ,

where the supremums in the above are taken over all functions g ∈ LN (Γ) , with
ρ (g,N) ≤ 1. By virtue of (11) from this we conclude that

∥∥∥f+ − Pn (., f)
∥∥∥

LM (Γ)
≤ c10

∫ π

0
Kn (θ)

{
‖f − Tθf‖LM (Γ) +

∥∥∥f − T(−θ)f
∥∥∥

LM (Γ)

}
dθ,

and then by definition of ω∗M (·, f) , we have

∥∥∥f+ − Pn (·, f)
∥∥∥

LM (Γ)
≤ c11

∫ π

0
Kn (θ)ω∗M (θ, f) dθ. (20)

Similarly, for z
′ ∈ G− we obtain

f−
(
z

′)−Qn (z′, f) =
1

2π

∫ π

0
Kn (θ)

{
2f−

(
z

′)− [
(T1θf)−

(
z

′)
+

(
T1(−θ)f

)− (
z

′)]}
dθ.

Here letting z
′ → z ∈ Γ along all nontangential paths outside Γ, by (9) we get

f− (z)−Qn (z, f) =
1

2π

∫ π

0
Kn (θ)

[
SΓ (f − T1θf) (z) + SΓ

(
f − T1(−θ)f

)
(z)

]
dθ

+
1

4π

∫ π

0
Kn (θ)

[
(T1θf − f) (z) +

(
T1(−θ)f − f

)
(z)

]
dθ

for almost all z ∈ Γ. Therefore,

∥∥∥f− −Qn (·, f)
∥∥∥

LM (Γ)
≤ c12

∫ π

0
Kn (θ) dθ

{
‖f − T1θf‖LM (Γ) +

∥∥∥f − T1(−θ)f
∥∥∥

LM (Γ)

}
and by definition of ω∗1M (·, f) we obtain

∥∥∥f− −Qn (·, f)
∥∥∥

LM (Γ)
≤ c13

∫ π

0
Kn (θ)ω∗1M (θ, f) dθ. (21)



232 A. Guven – D. M. Israfilov

If we set Rn (z, f) := Pn (z, f)−Qn (z, f), then by(10), (20), (21) and by definition
of Ω∗

M (·, f) we get

‖f −Rn (·, f)‖LM (Γ) ≤
∥∥∥f+ − Pn (·, f)

∥∥∥
LM (Γ)

+
∥∥∥f− −Qn (·, f)

∥∥∥
LM (Γ)

≤ c14

∫ π

0
Kn (θ) Ω∗

M (θ, f) dθ

≤ c15

∫ π

0
Kn (θ)ω (θ) dθ

= c15

∫ π

0
Kn (θ)ω (nθ/n) dθ

≤ c16ω (1/n)
∫ π

0
Kn (θ) (nθ + 1) dθ.

This relation and (17) gives (4).

Proof of Corollary 1. Let f ∈ Hω
ΓEM (G). Let’s take z

′ ∈ G−. Since f ∈
EM (G) ⊂ E1 (G) we have by the Cauchy theorem

f−
(
z

′)
=

1

2πi

∫
Γ

f (ς)

ς − z′ dς = 0.

So f− (z) = 0 for almost all z ∈ Γ and hence f = f+ a. e. on Γ. By (20) we have

‖f − Pn (.; f)‖LM (Γ) ≤ c17

∫ π

0
Kn (θ)ω∗M (θ; f) dθ

≤ c18

∫ π

0
Kn (θ)ω (θ) dθ

≤ c19ω (1/n)

and hence (5) is proved.

Proof of Corollary 2. Let f ∈ Hω
ΓEM (G−) and z

′ ∈ G. Then by the Cauchy
formula we have

f+
(
z

′)
=

1

2πi

∫
Γ

f (ς)

ς − z′ dς = f (∞) .

Hence f+ (z) = f (∞) a. e. on Γ and by (9) we have f = f (∞) − f− a. e. on Γ.
Now, setting Bn (1/z, f) := f (∞) − Qn (1/z, f) and applying the relation (21) we
conclude that

‖ f −Bn (·, f)‖LM (Γ) ≤ c20

∫ π

0
Kn (θ)ω∗1M (θ; f) dθ

≤ c21

∫ π

0
Kn (θ)ω (θ) dθ

≤ cω (1/n) ,

and the proof is completed.
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