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Abstract

The Cartan product is a generalization of the symmetric product of two

vectors. We review its definition, present some examples, and exhibit its rôle

in the construction of various natural algebras.

1 Definitions and Examples

Let G denote a compact Lie group (or g a semisimple Lie algebra). Suppose V and
W are finite-dimensional irreducible representations of G (or g). The tensor product
V ⊗W decomposes into irreducibles amongst which there is one of largest dimension
and it occurs with multiplicity one. (Facts concerning the representation theory of
semisimple Lie algebras may be found in [6] or [7].) This is the Cartan product [3]
of V and W and we shall denote it by V ⊚ W . The decomposition

V ⊗W = V ⊚ W ⊕ · · ·

affords a projection and inclusion V ⊗W
←
→ V ⊚ W . The image of v⊗w ∈ V ⊗W

under the projection V ⊗W → V ⊚ W is the Cartan product v ⊚ w of v ∈ V and
w ∈W . An alternative definition of the Cartan product is in terms of weights. The
irreducible representations of g are in 1–1 correspondence with dominant integral
weights in the usual way. If V and W have highest weights λ and µ respectively,
then V ⊚ W has highest weight λ + µ and is generated as a g-module by the tensor
product v ⊗ w of highest weight vectors v ∈ V and w ∈W .

The basic example is if g = sl(n, C) and V = W = C
n, the defining representa-

tion. Then V ⊚ W =
⊙2

Cn and the Cartan product of two vectors coincides with
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their symmetric product v ⊙ w. Written in a given basis therefore, viwj 7→ v(iwj)

where, following [9], round brackets denote symmetrization. In terms of Young
tableau (see [9] for a discussion of Young tableau well suited to this article and [6]
for proofs)

⊚ = .

If V = Cn is the defining representation of sl(n, C) and W = V ∗ is its dual, then
V ⊗W = End(Cn) whilst V ⊚W = End◦(C

n), the trace-free endomorphisms. With
indices, the Cartan product is

viwj 7→ viwj −
1
n
δi

jv
kwk,

where δi
j is the Kronecker delta and repeated indices implicitly carry a sum.

If g = sl(n, C) acting on symmetric powers of the defining representation, the
Cartan product again coincides with the symmetric product vi···jwk···l 7→ v(i···jwk···l).
With Young tableau,

. . .
︸ ︷︷ ︸

p boxes

⊚ . . .
︸ ︷︷ ︸

q boxes

= . . . . . .
︸ ︷︷ ︸

p + q boxes

.

More generally, the Cartan product of two Young tableau is given by a tableau with
row-lengths obtained by simple addition. For example,

⊚ = .

In this case the Cartan product is vijwk 7→ vijwk−v[ijwk] where, again following [9],
square brackets denote skew symmetrization.

When g = so(n, C), the Cartan product also removes traces:–

viwj 7→ v(iwj) −
1
n
gijv

kwk, (1)

where gij is the quadratic form preserved by so(n, C) and whose inverse is used to
raise indices.

These simple examples may mislead. For tensors with slightly more complicated
symmetries the Cartan product is difficult to express in terms of indices. If, for
example, v, w ∈ Λ2(V ), then v ⊚ w is given by

1
3
vijwkl + 1

3
vlkwji + 1

6
vikwjl −

1
6
vilwjk + 1

3
vljwki −

1
6
vkjwli

under sl(V ) whilst, under so(V ), several extra terms are needed:–

1
3
vijwkl + 1

3
vlkwji + 1

6
vikwjl −

1
6
vilwjk + 1

3
vljwki −

1
6
vkjwli

− 1
2(n−2)

(vi
mwkmgjl − vj

mwkmgil + vj
mwlmgik − vi

mwlmgjk)

− 1
2(n−2)

(vk
mwimgjl − vk

mwjmgil + vl
mwjmgik − vl

mwimgjk)

+ 1
(n−1)(n−2)

vpqwpq(gikgjl − gjkgil)

to ensure that the resulting tensor is totally trace-free.
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2 Associativity

Suppose U , V , and W are g-modules and denote by U ⊚ V ⊚ W the irreducible
representation in U⊗V ⊗W generated by u⊗v⊗w for highest weight vectors u ∈ U ,
v ∈ V , w ∈W . Then, in the sense that (U ⊚V ) ⊚W = U ⊚V ⊚W = U ⊚ (V ⊚W )
and the following diagram evidently commutes,

U ⊗ V ⊗W → U ⊚ V ⊗W
↓ ↓

U ⊗ V ⊚ W → U ⊚ V ⊚ W
(2)

the Cartan product is associative on vectors: (u ⊚ v) ⊚ w = u ⊚ (v ⊚ w). Beware,
however, that even in the simplest cases, the operations

U ⊗ V ⊗W ∋ u⊗ v ⊗ w 7→ u ⊚ v ⊗ w ∈ U ⊗ V ⊗W

U ⊗ V ⊗W ∋ u⊗ v ⊗ w 7→ u⊗ v ⊚ w ∈ U ⊗ V ⊗W

do not commute. In many cases, there is a kind of associativity on the level of
representations. Specifically, we might expect that

((U ⊚ V )⊗W ) ∩ (U ⊗ (V ⊚ W )) = U ⊚ V ⊚ W (3)

where the intersection is taken inside U ⊗ V ⊗W . Manifestly, we have

((U ⊚ V )⊗W ) ∩ (U ⊗ (V ⊚ W )) ⊇ U ⊚ V ⊚ W

and, in many cases, we have equality. For example, it is clear that

((Cn
⊚ C

n)⊗C
n) ∩ (Cn ⊗ (Cn

⊚ C
n)) = C

n
⊚ C

n
⊚ C

n

under sl(n, C) or so(n, C). In the former case, this is the statement that a tensor
Tijk that is symmetric in the indices ij and jk is, in fact, completely symmetric.
The latter case is simply the observation that if, in addition, Tijk is trace-free in ij
and jk then Tijk is totally trace-free.

In [5], general equality was conjectured but it was pointed out to me by Vladimir
Souček that this is too optimistic. He observed that

((V ⊚ V ∗)⊗ V ) ∩ (V ⊗ (V ∗
⊚ V )) 6= V ⊚ V ∗

⊚ V

as representations of sl(V ) since the left hand side consists of tensors Ti
j
k that are

trace free in ij and jk but the right hand side imposes, in addition, that Ti
j
k be

symmetric in ik. He further speculated that the reason behind this counterexample
is that the representation in the middle has a highest weight that, when written
as an integral linear combination of the fundamental weights, has a zero coefficient
where the outside representations have a non-zero coefficient. This seems to be
confirmed by other examples. Thus, one should expect

((Cn
⊚ Λ2

C
n)⊗ C

n) ∩ (Cn ⊗ (Λ2
C

n
⊚ C

n)) 6= C
n

⊚ Λ2
C

n
⊚ C

n

and this is the case. Tensors Tijkl in the left hand side are characterized by the
symmetries

Tijkl = Ti[jk]l T[ijk]l = 0 Ti[jkl] = 0
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which decompose into two irreducible parts according to

Tijkl = Tljki or Tijkl = −Tljki

only the first of which corresponds to the right hand side. For sl(n, C) it is possible
directly to verify that Souček’s speculation is correct. For sl(2, C) it is clear: if a
tensor

Ti1i2···ipj1j2···jqk1k2···kr

is symmetric in the indices i1i2 · · · ipj1j2 · · · jq and j1j2 · · · jqk1k2 · · · kr, then is is
totally symmetric unless, of course, q = 0 and both p and r are non-zero. For
sl(3, C) and, more generally, for any complex semisimple Lie algebra, we may specify
its irreducible representations by attaching non-negative integers to the nodes of
the corresponding Dynkin diagram, defining a dominant integral weight as a linear
combination of the fundamental weights. Following the conventions of [2] in this
regard, Souček’s statement for sl(3, C) is as follows.

Theorem 1.

((
p
•

a
• ⊚

q
•

b
•)⊗

r
•

c
•) ∩ (

p
•

a
• ⊗ (

q
•

b
•⊚

r
•

c
•)) =

p
•

a
• ⊚

q
•

b
•⊚

r
•

c
• (4)

unless p 6= 0, q = 0, r 6= 0 or a 6= 0, b = 0, c 6= 0.

Proof. We may realize
p
•

a
• explicitly as those tensors

Ti1i2···ip
j1j2···ja = T(i1i2···ip)

(j1j2···ja) such that Tki2···ip
kj2···ja = 0.

An element of the left hand side of (4), therefore, is a tensor

Ti1···ipip+1···ip+qip+q+1···ip+q+r

j1···jaja+1···ja+bja+b+1···ja+b+c (5)

that is, in particular,

• symmetric in i1 · · · ip+q and ip+1 · · · ip+q+r

• symmetric in j1 · · · ja+b and ja+1 · · · ja+b+c

and, therefore, totally symmetric in both its contravariant and covariant indices.
In addition, this tensor is trace-free with respect to some pair of contravariant and
covariant indices and, therefore, totally trace-free. This is precisely the remaining
characterizing feature of

p
•

a
• ⊚

q
•

b
•⊚

r
•

c
• =

p+q+r
•

a+b+c
• ,

the right hand side of (4).

The method of proof suggests an inductive possibility for sl(n, C) since the key
deduction of total symmetry in the upper and lower indices of the tensor (5) is
evidently no different from the sl(2, C) case. This is, indeed, the case:–
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Theorem 2. Suppose that U, V, W are irreducible representations of sl(n, C) and
that if the integer corresponding to a particular node in the Dynkin diagram for V
is zero then the same is true for at least one of U or W . Then (3) holds.

Proof. To avoid notational awkwardness, the method of proof is best explained by
means of a typical example, the general case being left to the reader. Let us consider
the case sl(5, C). The Cartan product is

a
•

b
•

c
•

d
• ⊚

p
•

q
•

r
•

s
• =

a+p
•

b+q
•

c+r
•

d+s
• .

If all three representations are of the form
p
•

0
•

0
•

0
•, then the statement is the familiar

one, namely that tensors that are symmetric in two overlapping clumps of indices

are completely symmetric. Next we need to describe tensors in
0
•

q
•

0
•

0
•. There are

two ways, using either covariant tensors or contravariant indices:–

Ti1j1i2j2···iqjq
= T[i1j1][i2j2]···[iqjq] subject to . . .. . .

︸ ︷︷ ︸

q columns

(6)

or

T i1j1k1i2j2k2···iqjqkq = T [i1j1k1][i2j2k2]···[iqjqkq] subject to . . .. . .. . .

︸ ︷︷ ︸

q columns

, (7)

where the Young tableau specify the additional symmetries satisfied by T . These
two realizations are easily related by raising the indices in clumps using the invariant
volume form ǫijklm. Though not usually included in their definition, it is well known
that for such rectangular tableau, the corresponding tensors must be symmetric in
their clumped skew indices. Indeed, ⊚

qV ⊆
⊙q V for any representation V and, in

particular,
0
•

q
•

0
•

0
• = ⊚

q 0
•

1
•

0
•

0
• ⊆

⊙q 0
•

1
•

0
•

0
•.

Using either (6) or (7), if all three representations are of the form
0
•

q
•

0
•

0
•, the

theorem follows easily: a tensor in the left hand side of (3) is completely symmetric in
its indices clumped as skew pairs or triplets, respectively. The additional symmetries
corresponding to a rectangular tableau follow immediately.

Using the contravariant realization (7), the representation
p
•

q
•

0
•

0
• is realized by

tensors

Th1h2···hp

i1j1k1i2j2k2···iqjqkq

symmetric in h1h2 · · ·hp, subject to (7) in the remaining indices, and totally trace-
free. Owing to the symmetry in the covariant and clumped contravariant indices,
however, the trace-free condition is equivalent to any of the traces vanishing:–

Tkh2···hp

kj1k1i2j2k2···iqjqkq = 0.

At this point it is clear that by mimicking the proof of Theorem 1, but with the
contravariant indices gathered in skew triplets, we may deduce Theorem 2 in case

all three representations are of the form
p
•

q
•

0
•

0
•. But we may also view this result
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as a statement about tensors with only covariant indices. Specifically, if we revert

to (6), then
p
•

q
•

0
•

0
• may be realized as tensors

Th1h2···hpi1j1i2j2···iqjq
= T(h1h2···hp)[i1j1][i2j2]···[iqjq]

subject to some additional symmetries, namely those specified by the tableau

. . .. . .
︸ ︷︷ ︸

q

. . . . .
︸ ︷︷ ︸

p

.

Now we are in a position to proceed to the case
p
•

q
•

r
•

0
•. By writing

p
•

q
•

r
•

0
• =

p
•

q
•

0
•

0
• ⊚

0
•

0
•

r
•

0
•

and adopting the contravariant realization of
0
•

0
•

r
•

0
• we may view the Cartan

product as the trace-free part of the tensor product. This allows us to combine with

the result we already have for
p
•

q
•

0
•

0
• exactly as before. Of course, we may view

this result as a statement about tensors with covariant indices. Finally, we bring in
0
•

0
•

0
•

s
• realized contravariantly

0
•

0
•

0
•

s
• = {T i1i2···is = T (i1i2···is)}

in order to reach the general representation
p
•

q
•

r
•

s
•. The proof for sl(n, C) proceeds

similarly by induction.

This proof gives no clue for the general case of a semisimple Lie algebra g. If
u ∈ U , v ∈ V , and w ∈W are highest weight vectors, then (3) is equivalent to saying
that one can apply suitable raising operators from g to any vector in the left hand
side to achieve u⊗ v ⊗ w. A direct proof of this would be much more satisfactory.

If U = V = W , then the hypotheses of Theorem 2 are certainly satisfied. More

generally, since ⊚
m p
•

q
•

r
•

s
• =

mp
•

mq
•

mr
•

ms
• and so on, the following corollary is

immediate.

Corollary 1. For any irreducible representation V of sl(n, C),

((⊚
pV ⊚ ⊚

qV )⊗⊚
rV ) ∩ (⊚

pV ⊗ (⊚
qV ⊚ ⊚

rV )) = ⊚
p+q+rV. (8)

It seems reasonable to suppose that this corollary is valid for any semisimple Lie
algebra. The particular case of so(n, C) acting on Λ2Cn, for example, is proved ‘by
hand’ in [4, §4]. More generally, most cases of tensor representations of so(n, C)
follow from Corollary 1 since being trace-free with respect to the metric is usually
the only extra requirement for irreducibility (but, for tensors whose symmetries are
described by Young tableau of height n/2 in case n is even, there is the further
decomposition into self-dual and anti-self-dual parts).
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3 Algebras

As usual, suppose V is an irreducible representation of a semisimple Lie algebra g.
The Cartan algebra ⊚V associated to V is the direct sum

⊚V =
∞⊕

s=0

⊚
sV (9)

equipped with the algebra operation induced by the Cartan product:–

⊚
rV ⊗⊚

sV
⊚
−→⊚

r+sV. (10)

The commutativity of diagram (2) implies that ⊚V is an associative algebra.
Clearly we have an algebra homomorphism:

⊗
V →⊚V and, indeed,

⊙
V →⊚V ,

which is the identity if g = sl(V ). Let

I = span{u⊗ v − u ⊚ v | u, v ∈ V } ⊂
⊗2 V.

Evidently, I is in the kernel of
⊗

V →⊚V . In the case of sl(V ) acting on V , the
kernel of

⊗
V →⊚V is the two-sided ideal generated by I. But this corresponds

to such a familiar fact, namely that the symmetry group on finitely many letters is
generated by adjacent transpositions, that it is rarely mentioned. The generalization
of this result to the Cartan product requires proof:–

Theorem 3. Suppose that, for all r ≥ 1,

(⊚
2V ⊗⊚

rV ) ∩ (V ⊗⊚
r+1V ) = ⊚

r+2V,

where the intersection is taken inside
⊗r+2 V . Then the kernel of

⊗
V → ⊚V is

the two-sided ideal generated by I.

Proof. By definition, I is the kernel of
⊗2 V → ⊚

2V . Better is the canonical
splitting

⊗2 V = ⊚
2V ⊕ I

obtained by decomposing
⊗2 V under the action of g. We shall deduce that

⊗3 V = ⊚
3V ⊕ ((I ⊗ V ) + (V ⊗ I)).

More generally, we shall write

⊗s V = ⊚
sV ⊕Js

and deduce that

⊗s+1 V = ⊚
s+1V ⊕ ((I ⊗

⊗s−1 V ) + (V ⊗ Js)).

Then, it will be clear by induction that Js is in the two-sided ideal generated by I.
Both of these deductions are special cases of the following. Suppose that (3) holds
and we write

U ⊗ V = (U ⊚ V )⊕ I and V ⊗W = (V ⊚ W )⊕ J .
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Then
U ⊗ V ⊗W = U ⊚ V ⊚ W ⊕ ((I ⊗W ) + (U ⊗ J )). (11)

To see this, let us regard U , V , and W as representations of the compact real form
G of g and endow them with G-invariant Hermitian inner products (essentially this
is Weyl’s ‘unitary trick’). Denote by P and Q, orthogonal projection onto

(U ⊚ V )⊗W and U ⊗ (V ⊚ W ),

respectively. Our hypothesis (3) says that

U ⊚ V ⊚ W = im P ∩ im Q

and we are required to show (11), which now reads

U ⊗ V ⊗W = (im P ∩ im Q)⊕ (ker P + ker Q).

This is a general property of orthogonal projections. Suppose v ∈ (im P ∩ im Q)⊥.
We are required to show that v ∈ ker P + ker Q. Let w ∈ im P ∩ im Q and write
w = Pu. Then

〈Pv, w〉 = 〈v, Pw〉 = 〈v, P 2u〉 = 〈v, Pu〉 = 〈v, w〉 = 0.

Therefore, P preserves (im P ∩ im Q)⊥. This is also true of Q and, hence, their
composition QP . Now P is strictly norm-decreasing except on its image. Similarly,
for Q. Therefore QP , not only preserves (im P ∩ im Q)⊥, but is also strictly norm-
decreasing there. Thus, Id −QP is invertible on this subspace. Therefore, we may
write

v = (Id−QP )(Id−QP )−1v

=
(

(Id− P ) + (Id−Q)P
)

(Id−QP )−1v

= (Id− P )(Id−QP )−1v + (Id−Q)P (Id−QP )−1v,

an expression evidently lying in ker P + ker Q, as required.

Corollary 2. For an arbitrary irreducible representation V of sl(n, C), the kernel
of

⊗
V →⊚V is the two-sided ideal generated by I.

Proof. Corollary 1 ensures that the hypotheses of Theorem 3 are met.

Though the procedure just described to obtain (11) from (3) is, in principle,
quite feasible, in practise it can be extraordinarily complicated. The projections P
and Q can be defined algebraically by Young projectors and the problem is to invert
QP on (U ⊚ V ⊚ W )⊥. To do this, we can break (U ⊚ V ⊚ W )⊥ into irreducibles
and employ Schur’s lemma. But, since there can be many such irreducibles, perhaps
occurring with multiplicity, this can be algebraically complicated. In simple cases,
it is feasible. For example,

φijk = 1
6
(φijk + φjki + φkij + φjik + φikj + φkji)

+ 1
6
(3φijk − φjki + φkij − 3φjik + φikj − φkji)

+ 1
6
(2φijk − 2φkij + 2φjik − 2φikj)
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explicitly describes the simplest possible decomposition

⊗
3Cn =

⊙
3Cn ⊕ ((Λ2Cn ⊗ Cn) + (Cn ⊗ Λ2Cn).

In other cases it can be much more difficult. For example, if V = Λ2Cn acted upon
by so(n, C), then we have already remarked that (8) is valid. The decomposition of
⊗3 V in this case is very complicated indeed.

According to (9) and (10), the algebra ⊚V is graded. This is reflected in the
generators of I being homogeneous (of degree 2). The main point of Theorem 3 is
that it allows us to define some natural filtered algebras whose corresponding graded
algebra may be identified as ⊚V .

Suppose, for example, we consider so(n, C) with its defining action on Cn and
denote by gij the invariant non-degenerate quadratic form. The Cartan algebra in
this case is

⊙

◦ Cn, the trace-free symmetric tensors with algebra operation

vi1i2···ipwj1j2···jq
7→ v(i1i2···ipwj1j2···jq) −

pq

n+2p+2q−4
g(i1j1v

k
i2···ipwj2···jq)k + · · · .

This is an example to which Theorem 3 applies:–

⊙

◦ Cn =
⊗

Cn/(u⊗ v − u⊙◦ v)

where
u⊙◦ v = 1

2
(u⊗ v + v ⊗ u)− 1

n
〈u, v〉g,

as in (1). We could also take 〈u, v〉 and feed it into the zeroth gradation. Precisely,
we may define a filtered algebra

⊗
C

n/(u⊗ v − u⊙◦ v + 〈u, v〉) (12)

whose corresponding graded algebra is evidently
⊙

◦ Cn. The construction is similar
to that of the Clifford algebra

⊗
Cn/(u⊗ v − u ∧ v + 〈u, v〉)

whose corresponding graded algebra is the exterior algebra ΛCn. This is the point
of view taken in [5].

Perhaps the most interesting constructions start with the adjoint representation
of a semisimple Lie algebra g. In this case, not only is there an invariant inner
product in the Killing form, but also an invariant skew form with values in g, namely
the Lie bracket itself. This gives rise to a series of algebras:–

Lλ(g) ≡
⊗

g/(X ⊗ Y −X ⊚ Y − 1
2
[X, Y ] + λ〈X, Y 〉)

where [ , ] is the Lie bracket and 〈 , 〉 is the Killing form. The factor of 1
2

is
conventional and can be adjusted by scaling but, having fixed this, λ cannot simply
be scaled away: different values of λ apparently give isomorphically distinct filtered
algebras. In cases when Theorem 3 applies, certainly for sl(n, C) or so(n, C), the
corresponding graded algebra is always ⊚ g. The construction of Lλ is similar to
that of the universal enveloping algebra

U(g) ≡
⊗

g/(X ⊗ Y −X ⊙ Y − 1
2
[X, Y ])
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whose corresponding graded algebra is
⊙

g.
The algebra Lλ arises geometrically as follows. Let us say that a linear differential

operator D on R is a symmetry of the Laplacian ∆ if and only if ∆D = δ∆ for some
linear differential operator δ. Let us say that two symmetry operators are equivalent
if and only if their difference is of the form P∆ for some linear differential operator P.
The symmetry algebra An comprises the symmetries of ∆ on Rn up to equivalence
with algebra operation induced by composition. The main result of [4] is that An is
isomorphic to a real form of Lλ, specifically

An
∼= L n−2

4(n+1)
(so(n + 1, 1)),

the filtering on An being induced by the degree of the symmetry.
The algebra Lλ(g) is built from g-invariant ingredients. Also the representation

⊚
k
g occurs with multiplicity one in

⊗k g. It follows that, as a vector space and,
indeed, as a g-module, we have a canonical isomorphism

Lλ(g) ∼=
∞⊕

s=0

⊚
s
g.

This is analogous to the enveloping algebra: as vector spaces U(g) ∼=
⊙

g. It is
difficult, though possible, to transfer the algebra structure on U(g) to

⊙
(g). The

result is Kontsevich’s ⋆-product [1, 8]. An analogous description of An has recently
been given by Vasiliev [10] in terms of the Weyl (or Moyal) ⋆-product.

Presumably, a more elementary ⋆-product would arise in describing the algebra
structure on (12) directly on the vector space

⊙

◦ Cn. As a commutative example,
however, it is surely too elementary to shed much light on Lλ(g).
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Birkhäuser 2004, pp. 265-278.

[6] W. Fulton and J. Harris, Representation Theory, a first Course, Springer 1991.

[7] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory,
Springer 1972.



The Cartan Product 651

[8] M. Kontsevich, Deformation quantization of Poisson manifolds I,
arXiv:math.QA/9709040.

[9] R. Penrose and W. Rindler, Spinors and Space-time, Volume 1, Cambridge
University Press 1984.

[10] M.A. Vasiliev, Nonlinear equations for symmetric higher spin fields in (A)dSd,
Phys. Lett. B567 (2003), 139-151.

Department of Pure Mathematics
University of Adelaide,
South AUSTRALIA 5005
email:meastwoo@maths.adelaide.edu.au


