
Asymptotic properties of Abelian integrals

arising in quadratic systems∗

Henryk Żo la̧dek

Abstract

We consider quadratic perturbations of the vector field (−y+ax2+by2)∂x+
x(1 + cy)∂y and study its limit cycles via Abelian integrals. The asymptotic

analysis suggests that such systems have no more than 4 limit cycles.

1 Introduction

The 16-th Hilbert problem is to find a bound N(n) for the number of limit cycles of
planar vector fields of degree n. Even for quadratic systems the answer is unknown.
There are examples [2], [9] of quadratic systems with 4 limit cycles. In the present
paper the author examines the possibility of finding quadratic systems with >4 limit
cycles in one specific situation.

We consider the vector field

ẋ = −y + ax2 + by2, ẏ = x(1 + cy), c ≤ 0 (1)

which is time–reversible, (invariant under (x, y, t) → (−x, y − t)), and has two
centers: x = y = 0 and x = 0, y = 1/b, (see below). One can check that the center
(0, 0) has cyclicity 2 for 3a + 5b 6= c and 3 for 3a + 5b = c, (see Section 5 below).
The other center also has cyclicity 2 or 3. It seems that the configuration with 3
limit cycles around one focus and 2 cycles around the other focus for a perturbation
of (1) is possible.
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Because the problem of limit cycles for systems, which are close to systems with
Darboux first integral

∏
fαii , reduces to the problem of zeroes of certain Abelian in-

tegral, we study this integral. We do not investigate the Abelian integral completely,
we study only its behaviour near the ends of its domain of definition. The results
show that our expectations of finding 5 limit cycles were premature. In the author’s
opinion the situation considered here is the last one where using relatively simple
methods one could show existence of >4 limit cycles. Now the author believes that
N(2) = 4.

There are some works devoted to study the Abelian integrals arising from the
system (1). Chicone and Jacobs [3] investigated Abelian integrals for the cases of
isochronous center: (a, b, c) = (a, b,−2) with (a, b) equal to (−1, 1) (S1), to (−2, 0)
(S2), to (−1/2, 0) (S3) and to (−4, 1) (S4) (see Fig. 3). They have shown that the
maximal number of zeroes of Abelian integral corresponding to cycles around (0, 0)
is 1 for S1 and 2 for other Sj.

Another result was obtained by Gavrilov and Khorozov [4]. They studied the
Abelian integrals in the case when the system (1) is Hamiltonian (2a + c = 0) and
c = −2, 0 < b (see Fig. 1). They estimated the number of zeroes of the Abelian
integral by 3 for 0 < b < 2 and by 1 for 2 < b. Li Chengzhi, Llibre and Zhang
Zhi-fen [6] have shown that this bound is 1 for all 0 < b.

Shafer and Zegeling [8] have proven that, if c = −2 and the point (a, b) belongs
to the four convex domains bounded by: the line 3a+5b+2 = 0, the half-line a+b =
0, a > 0, the half-line a + b + 2 = 0, a < −2 and the interval −2 < a < 0, b = 0,
then there exist perturbations with three limit cycles.

In the paper [7], an asymptotic analysis of limit cycles, which are close to the
boundary of half of the Poicaré disc, was performed. Two cases of the system (1)
were considered: c = −2, a = 0, 0 < b < 2 (the graphic H1

9 ) and c = a = −2, 0 <
b < 2 (the graphic H1

11). The cyclicity of the graphic H1
9 is 2 and the ciclicity of

H1
11 is 3. There the authors used the method of asymptotic expansion of the return

map.
Świrszcz has investigated the cyclicity of (infinite) contours consisting of a hy-

perbola and an arc at infinity for c = −2, a < −2, 0 < b < −a. This cyclicity is
generally 2 but is 3 along an analytic curve in the (a, b)–plane; this curve begins at
a = −2, b = 0, passes through the point a = −4, b = 2 and is asymptotic to the
half-line b = −a, a < −2. His method is a combination of asymptotic analysis of the
return map and of Abelian integrals.

All the above results concern only limit cycles around one focus. Li Chengzhi
with Dumortier [4] studied Abelian integrals corresponding to limit cycles around
both centers for generic perturbations of the system (1) with c = −2, a = −3, b =
1/2. The resulted complete bifurcational diagram is very complicated, (with several
cones in the parameter space corresponding to systems with 4 limit cycles around
both foci). This shows that namely the stratum QR

3 (of reversible systems) of the
center variety is the most rich and most difficult in analysis.

In [7] there is a short discussion about large limit cycles around two singular
points in the case H1

11. It turns out that there can be at most 4 such large cycles.
Our asymptotic analysis covers the open domain c = −2, −2 < a < 0, 0 <

b < 2 of parameters and we investigate limit cycles around both foci. We study
asymptotics of the cycles which are close to the boundary of half of the Poincaré
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disc and which lie near the foci.

2 The phase portraits

If c 6= 0, then after some rescaling we can put

c = −2.

Performing the change u = 1/2 − y, we get the system

ẋ = ax2 + bu2 − (b− 1)u + (b− 2)/4, u̇ = −2xu

with the first integral
H = |u|a(x2 + αu2 − βu + γ) (2)

and the integrating factor M = |u|a/u. Here α = b
a+2

, β = b−1
a+1

, γ = b−2
4a

for
a 6= 0,−1,−2.

The analysis of bifurcations of singular points of (1) and of invariant algebraic
curves defined by (2) gives the following diagram of phase portraits of (1), (see also
[11]).

Figure 1.

To be precise we take the intersection of the bifurcational diagram with the
semi-sphere a2 + b2 + c2 = 1, c ≤ 0 and project it onto (a, b)-plane. We do not
treat the surface a = c/2(= −1) as bifurcational (see the first integral (2)) because
the topological picture does not change there. We see that the region 0 < b < −c
consists of systems with 2 centers.

3 The perturbation

We choose the following 3-parameter perturbation of the system (1)

ẋ = ax2 + by2 − y + ε1x + ε2xy, ẏ = x(1− 2y) + ε1y + ε3x
2 (3)
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or
ẋ = ax2 + bu2 − (b− 1)u + (b− 2)/4 + (ε1 + ε2/2)x− ε2xu
u̇ = −2xu− ε1/2 + ε1u− ε3x

2 (4)

εi - small.

Remark 1. On the 7–dimensional space of systems

ż = (i + λ)z + Az2 + Bzz̄ + Cz̄2, z = x + iy, (5)

the group S1 of changes z → eiψz acts. The systems with center form an algebraic
set, called the center manifold, consisting of 4 components: QH

3 : λ = 2A + B̄ = 0
(the Hamiltonian systems), QLV

3 : λ = B = 0 (Lotka–Volterra systems with 3
invariant lines), QR

3 : λ =Im(AB) =Im(A3C) =Im(B̄3C) = 0 (reversible systems)
and Q4 : λ = A− 2B̄ = |B| − |C| = 0 (with quadratic and cubic invariant curves),
(see [11]). The system (1) belongs to QR

3 (A,B,C - real). The perturbations of the
system (1) are three-fold: 3–dimensional (non-essential) changes of the parameters
a, b, c, 1–dimensional (non-essential) perturbation along the orbit of S1 - action and
3–dimensional essential perturbations. The non-essential perturbations are within
QR

3 . The perturbation (3) is just the essential perturbation, (except for b = 2 where
the essential part of the perturbation (3) is 2–dimensional, see Remark 6 below).

Remark 2. We ought consider the case b = 2 separately. In what follows we
shall have many limit cases where general formulas and properties fail. We shall
omit a separate analysis of them. The reason is two-fold. Firstly, they usually are
not difficult but make the work more complicated. Secondly, we are interested in
examples of systems with many limit cycles and the limit cases cannot add new
examples. Let us state these restrictions explicitely

c = −2, (a− 1)a(a + 1)(a + 2)b(b− 1)(b− 2)(a + b)(b− a + 2) 6= 0.

Limit cycles of the system (4) surrounding the point x = 0, u = 1/2 are repre-
sented by fixed points of the Poincaré map P. If we expand P− id into powers of ε,
then the linear part of this expansion forms the following linear Poincaré–Pontriagin–
Melnikov integral along the component γh ⊂ {u > 0} of the curve H(x, u) = h
oriented by the vector field (4), (see [3], [4], [5], [6], [11]),

I(h) =∫
γh

M [(−(ε1 + ε2/2)x + ε2xu)du + (−ε1/2 + ε1u− ε3x
2)dx]

= ε1I1 + ε2I2 + ε3I3

(6)

where
I1 = a−1

2
J0 − (a + 1)J1

I2 = −J1/2 + J2

I3 = a−1
3

∫
γh
|u|a−2x3du

and
Ji = Ji(h;α, β, γ) =

∫

γh

|u|a−2uixdu = −2
∫ u2

u1

ua−2+ix(u)du.
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Here x2(u) = hu−a − αu2 + βu− γ and 0 < u1 < u2 are the roots of the function
x2(u) (see Fig. 2). The number of zeroes of the function I is equal to the number
of limit cycles of the perturbation (4).

Figure 2.

Remark 3. The above statement is generally true but there are some exceptions.
If two or more components of the center manifold meet at some point, then the
number of zeroes of the linear Poincaré–Pontriagin–Melnikov integral is less or equal
to the number of limit cycles of the perturbation. We ought to take into account
higher order terms of the expansion of the Poincaré map. The intersections of the
space of systems (1) with other components of the center manifold are: a = 1 (QH

3 ),
a + b = 0 (QLV

3 ) and a = −2/3, b = 0 and a = −4, b = 2 (Q4).

The integral I3 is nonzero for a 6= 1. Therefore, we can introduce the functions
Pj = Ij/I3, j = 1, 2 and the equation I(h) = 0 is equivalent to

L : ε1P1 + ε2P2 + ε3 = 0. (7)

If we denote by Ω = Ω(a, b) the curve {(P1, P2)(h)} ⊂ R2 then then the number of
zeroes of the integral I is equal to the number of intersection points of the line L
(defined by (7)) with the curve Ω.

If 0 < b < 2, then the unperturbed system (1) possesses another center x =
0, y = 1/b. Limit cycles surrounding this point correspond to zeroes of the Poincaré–
Pontriagin–Melnikov integral I ′ = I ′(h; a, b) along the component δh ⊂ {u < 0} of
the curve H(x, u) = h. The subintegral function is the same as in (5) and I ′ =

∑
εjI
′
j,

where
I ′1 = a−1

2
J ′0 − (a + 1)J ′1

I ′2 = −J ′1/2 + J ′2
I ′3 = −2a−1

3

∫ u′2
u′1
|u|a−2x3(u)du

(8)

J ′i = J ′i(h; , α, β, γ) = −2
∫ u′2

u′1
|u|a−2uix(u)du, u′2 < u′1.

Introducing the functions P ′j = I ′j/I
′
3, j = 1, 2 we can define the curve Ω′ =

Ω′(a, b) = {(P ′1, P ′2)(h)} ⊂ R2. We have the following statement.

Lemma 1. Let (a, b) does not belong to the intersection of QR
3 with other strata

of the center manifold. If b < 0 or b > 2, then the number of limit cycles of the
system (3) is equal to the number of intersections of the line (7) with the curve Ω.
If 0 < b < 2, then the number of limit cycles is equal to the number of intersections
of the line (7) with the set Ω ∪ Ω′.
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The remaining part of the work is wholly devoted to studying the Poincaré–
Pontriagin–Melnikov integrals. Let us mention some of their properties.

Lemma 2. We have J ′i(h;α, β, γ) = (−1)i+1Ji(h;α,−β, γ) and I ′3(h;α, β, γ) =
−I3(h;α,−β, γ). (Here we forget that α, β, γ depend on a, b).

Lemma 3. We have

(a + 2)I3 = (1− a)[((b− 2)/4)J0 − (b− 1)J1 + bJ2]

(a + 2)I ′3 = (1− a)[((b− 2)/4)J ′0 − (b− 1)J ′1 + bJ ′2]

Proof. We have (ax2 + bu2 − (b − 1)u + (b − 2)/4)du + 2xudx = 0 along γh.
Multiplying this identity by ua−2x and integrating along γh we get

a+2
a−1

I3

= a+2
3

∫
ua−2x3du

= a
∫

ua−2x3du + 2
∫

ua−1x2dx
= −bJ2 + (b− 1)J1 − b−2

4
J0

In the same way we prove the second identity. �

Lemma 4. The curve Ω′(a, b) is equal to the the image of the curve Ω(a, 2 − b)
under the following transformation of R2 (with b′ = 2− b)

P ′1 = b−a−1
b′ P1 + 2b(a2−1)

b′2 P2 + 2(a+1)(a+2)

b′2

P ′2 = −1
2b

P1 + ab+b2−5b+4
bb′ P2 + a+2

bb′

Proof. From Remark 1 it follows that the space of linear Poincaré–Pontriagin–
Melnikov integrals is 3–dimensional. Moreover, from Lemma 6 below it follows that
for b 6= 2 the integrals I1, I2, I3 are independent and can be chosen as the basis of
the space of linear Poincaré–Pontriagin–Melnikov integrals along γh. The transition
from the singular point x = y = 0 to the singular point x = 0, y = 1/b means the
transformation (a, b)→ (a, b′) of the (a, b) - diagram of the stratum QR

3 of the center
manifold. Indeed, the change y′ = 1/b−y gives ẋ = ax2+y′(by′−1), ẏ′ = x(b′/b−2y′).
The next transformation x → (b′/b)1/2x, y′ → (b′/b)y′, t → (b/b′)1/2t leads to the
initial system with b replaced with b′.

Now we apply the above transformation to the perturbed system (3). We obtain

ẋ = ax2 + y′(b′y′ − 1) + (kε1 + lε2)x−mε2xy′

ẏ′ = x(1− 2y′)− nε1 + kε1y
′ − kε3x

2,
(9)

where k = (b/b′)1/2, l = (bb′)−1/2,m = (b′/b)1/2, n = b1/2(b′)−3/2. So, the Poincaré–
Pontriagin–Melnikov integral I ′(h′; a, b) along δh′ = δh′(a, b), connected with the per-
turbation (3), is equal to an integral along γh = γh(a, b′), h = const·h′, correspond-
ing to the perturbation (9). But we know that the space of Poincaré–Pontriagin–
Melnikov integrals is generated by I1, I2, I3. Hence, I ′j(h

′; a, b) are equal to some lin-
ear combination of Ii(h; a, b′). Moreover, I ′1 = (k/2−n)(a− 1)J0− k(a+ 1)J1, I ′2 =
(m/2− l)J1 −mJ2,

I ′3(h
′; a, b) = −kI3(h; a, b′), k > 0. (10)

Now Lemma 4 follows from straightforward calculations using (6), (8) and Lemma
3. �
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4 Behaviour of integrals near critical values

The first integral H has the critical point x = y = 0 with the critical value hc and
H(x, y)− hc = Dρ2 + . . . , ρ2 = x2 + y2, D > 0. The analysis of behaviour of the
integral I(h) can be reduced to study of the Poincaré map P : {x = ρ > 0, y = 0} →
{x = ρ > 0, y = 0}. Bautin [1] has proved that P(ρ)− ρ =

∑3
i=0 v2i+1ρ

2i+1(1 + . . .),
where v1 = e2πλ − 1, v3 = −2πIm(AB), v5 = −2π

3
Im[(2A + B̄)(A − 2B̄)B̄C], v7 =

−5π
4

(|B|2 − |C|2)Im[(2A + B̄)B̄2C] for the system (5).

Remark 4. The above form of the expansion of P(ρ) is not unique. One can
add to vj a combination of vi, i < j.

Remark 5. The Lyapunov quantities vj are different from those given by Bautin
and are taken from the author’s work [11].

Lemma 5. We have λ = ε1, A = 1
4
[a− b− 2 + i(ε3− ε2)], B = 1

2
(a + b + iε3), C =

1
4
[a− b + 2 + i(ε2 + ε3)] and therefore

v1 = 2πε1 + . . .
v3 = −π

4
[−(a + b)ε2 + 2(a− 1)ε3] + . . .

v5 |v3=0=
π
12

(a + b)(3a + 5b + 2)(b− 2)ε2 + . . .
v7 |3a+5b+2=0= −π · 3 · 10−4(a + 4)2(3a + 2)(a− 1)2ε2 + . . .

The proof consists of straightforward calculations.

Remark 6. It seems that we should consider also the case b = 2. But if b = 2
then the perturbation of the system (5) arising from the change z → zeiψ : A →
A(1 + iψ), B → B(1 − iψ), C → C(1 − 3iψ) lies in the space { 1

4
[(ε3 − ε2)z

2 +
2ε3zz̄ + (ε2 + ε3)z̄

2] ∂
∂z
} defined in Lemma 5, (and generated by the perturbation

(3)). Therefore the perturbation (3) is not correct for b = 2, its essential part is
2–dimensional. We ought take into account also the term y2 ∂

∂y
, but we shall not do

it in this paper.

By the definition of the linear Poincaré–Pontriagin–Melnikov integral, we have
∆H = H(P(ρ))−H(ρ) =

∑
εjIj(h) + O(|ε|2), where h = H(ρ, 0) = hc + Dρ2 + . . ..

Next, ∆H ≈ (2Dρ)∆ρ ≈ 2D
∑

v2i+1ρ
2i+2. From Lemma 5 we get that

ε1I1 ∼ dH
dρ

v1ρ ∼ 2π(2Dρ2)ε1

I2 ∼ π(a + b)(2Dρ4)/4
I3 ∼ −π(a− 1)(2Dρ4)/2

I2 + a+b
2(a−1)

I3 ∼
{

π
12

(a + b)(3a + 5b + 2)(b− 2)(2Dρ6), 3a + 5b + 2 6= 0
−3π
104 (a + 4)2(3a + 2)(a− 1)2(2Dρ8), 3a + 5b + 2 = 0

Moreover, it is also known that the asymptotic analysis of the map P, near
the critical point by means of the focus quantities, is the same as the asymptotic
analysis of the Abelian integrals, provided that the integrals behave correctly (i.e.
are independent).
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Therefore we have the following result.

Lemma 6. For h→ hc we have

P1 →∞, (P1 ∼
−4

(a− 1)ρ2
)

P2 = K1(1 + K2P
ν
1 ) + . . .

where K1 = − a+b
2(a−1)

and ν = −1, K2 = −4(3a+5b+2)(b−2)
3(a−1)

if 3a + 5b + 2 6= 0 and

ν = −2, K2 = −3(a+4)2(3a+2)
4·125(a−1)

otherwise.

Using Lemma 4 and Lemma 6 we obtain the asymptotic behaviour of the integrals
I ′j and of the curve Ω′ as h′ → h′c.

Lemma 7. Near the critical point h′c we have

P ′2 →−∞
P ′1/P

′
2 → 2b(a− b + 1)/b′

5 Behaviour of integrals near infinity

It this section we assume that

−2 < a < 0 < b < 2.

Lemma 8. If h→∞, then
(a) J0 ∼ J ′0 ∼ K0h

1−1/a, K0 < 0;
(b)

J1 ∼ K1h +

{
−βγτLh1+1/a if −2 < a < −1

−2(a+2)
a

α1+σMh1−1/(a+2) if −1 < a < 0

J ′1 ∼ −K1h +

{
−βγτLh1+1/a

−2(a+2)
a

α1+σMh1−1/(a+2)

where K1 = −2π[a(b − 2)]−1/2, τ = 3a+2
−2a

, σ = −3a+4
2a+4

, L,M > 0 and α, β, γ are
defined in Section 2;

(c)

J2 ∼ K2h +

{ −2a
a+2

γ1+τLh1+1/a if −2 < a < −1

−βασMh1−1/(a+2) if −1 < a < 0

J ′2 ∼ K2h +

{ −2a
a+2

γ1+τLh1+1/a

βασMh1−1/(a+2)

where K2 = −π[(a + 2)b]−1/2.

Proof. We have Ji =
∫
γh

ua+i−2xdu = −2
∫ u2
u1

ua+i−2x(u)du. If h → ∞, then
γh tends to the polycycle composed of the line u = 0 and a half of the equator at
infinity. The dominating contributions arise either from integration near u = 0 or
near u =∞. We have

x2(u) = hu−a − αu2 + βu− γ ∼ hu−a − γ near u = 0 (11)
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x2(u) ∼ hu−a − αu2 near u =∞ (12)

Let us estimate the orders of the integrals Ji in these two domains.
(i) u = 0: then u ∼ h1/a, x ∼ 1 and

∫
du gives h1/a. Hence Ji ∼ h1+(i−1)/a.

(ii) u = ∞: then u ∼ h1/(a+2), x ∼ h
1
2
− a

2a+4 and
∫

du ∼ h1/(a+2). Hence Ji ∼
h(a+i)/(a+2).

Therefore J0 ∼ h1−1/a. For J1, the region near u = 0 is dominating. Putting x(u)
in the form (11) and introducing the new variable z = γuah−1 we obtain J1 ∼ K1h.
For J2, we take the approximation (12) and introduce the variable v = αua+2h−1.
This gives J2 ∼ K2h.

In order to find the next terms in the asymptotic expansions of J1 and J2,
we notice that they arise from taking into account the terms in x2(u) which were
neglected in the approximations (11) and (12). We have

∂J1

∂β
= −∂J2

∂γ
= − ∫ uax−1(u)du

∂J1
∂α

= −∂J2
∂β

=
∫

ua+1x−1du.
(13)

The integrals
∫

ua+ix−1 are estimated as before. Near u = 0 they are of the order
h1+(1+i)/a and the terms with i = 0 are dominating. Near u = ∞ the growth order
is h1+(i−2)/(a+2) and we have to choose i = 1. Of course, h1+1/a > h1−1/(a+2) for
−2 < a < −1 and h1+1/a < h1−1/(a+2) for −1 < a < 0.

Thus, if −2 < a < −1, then introduction of the variable z = γuah−1, gives∫
uax−1 ∼ h1+1/aγτB(3a+2

2a
, 1

2
) and if−1 < a < 0, then the change u→ v = αua+2h−1

shows that
∫

ua+1x−1 ∼ h1−1/(a+2)ασB(2a+4
2a+4

, 1
2
). (Here B(·, ·) denotes the Euler

Beta–function). Integrating the formulas (13), we obtain the second terms of the
expansions of J1 and J2.

The asymptotes of J ′i follow from Lemma 2. �

Using the above lemma we can describe the asymptotic behaviour of the curves
Ω and Ω′.

Lemma 9. If h→∞, then
(a) P1, P

′
1 → 2(a+2)

2−b ;

(b) P2 ∼ C1(a + b)h1/a, P ′1 ∼ C2h
1/a, C1,2 > 0;

(c)

P2 = λ(P1 − 2(a+2)
2−b ) + µ(P1 − 2(a+2)

2−b )θ + . . .

P ′2 = λ′(P ′1 − 2(a+2)
2−b ) + µ′(P ′1 − 2(a+2)

2−b )θ + . . .

where θ = 2 for −2 < a < −1 and θ = 1− a
a+2

> 1 for −1 < a < 0;
(d) λ 6= λ′, (they may be equal to ±∞);
(e) µ 6= 0 for a + b 6= 0 and µ′ 6= 0 for b 6= a + 2.

Proof. The points (a), (b) and (c) are obvious. The values of the coefficients λ
and λ′ are

λ = lim I2/(I1 − 2(a+2)
2−b I3)

= 2−b
2

[
1√

a(b−2)
− 1√

(a+2)b

]
/
[
ab−3b+4√
a(b−2)

− b(a−1)√
(a+2)b

]
,

λ′ = 2−b
2

[
1√

a(b−2)
+ 1√

(a+2)b

]
/
[
ab−3b+4√
a(b−2)

+ b(a−1)√
(a+2)b

]



274 H.Zo la̧dek

From this we easily get that

λ− λ′ = const · [(ab− 3b + 4)− b(a− 1)] = const · 2(2 − b) 6= 0

To prove (e) we firstly show that µ 6= 0. (Then µ′ 6= 0 by Lemma 4). This property
is equivalent to the linear independence of the functions J0, J1, J2 or that

det




J0 J1 J2

J̇0 J̇1 J̇2

J̈0 J̈1 J̈2


 6= 0 (14)

The leading term in (14) has growth order h1−1/ah0h1/a−1 for −2 < a < −1 and
h1−1/ah0h−1/(a+2)−1 for −1 < a < 0. The coefficient can be computed from (14),
when we replace J0 with K0h

1−1/a and J1.2 with the first two terms of their asymp-
totics. It is equal DALγτ , (−2 < a < −1), and DBMασ, (−1 < a < 0), where
D 6= 0,

A = −2a
a+2

γK1 + βK2 = −π√
(a+2)b

[√
b(b−2)
a(a+2)

+ b−1
a+1

]
and

B = −βK1 + 2a+2
a

αK2 = −π√
a(b−2)

[
b−1
a+1

+
√

b(b−2)
a(a+2)

]
.

Here if b < 1, a < −1, then (b− 1)/(a + 1) > 0 and A < 0 and if b > 1, a < −1,
then

b(b− 2)

a(a + 2)
−
(

b− 1

a + 1

)2

=
(a + b)(b− a− 2)

a(a + 1)2(a + 2)
(15)

vanishes at a + b = 0, (QLV
3 ). Similarily, B < 0 for b > 1 and for b < 1 we have the

formula (15). Therefore µ 6= 0 for a + b 6= 0. The property µ′ 6= 0 is proved in the
same way, (it also follows from µ 6= 0 and from Lemma 4). �

The exact sign of µ can be easily calculated but we shall not do it here. Besides,
we can use the fact that, for the case S3 : a = −1/2, b = 0, the curve Ω has no
inflection points (see [3]).

Remark 7. Unfortunately, in the case of large cycles we do not have automatic
statement that the zeroes of the Abelian integral determine the position of limit
cycles of the perturbed system. The reason is that the integrals behave singularly
as h→∞ and the linear approximations can be not sufficient.

For example, one can extend the statements of Lemmas 8 and 9 to the case
a = −2; the formulas acquire some logarithmic factors lnh. The curve Ω(−2, b)
remains convex near the corresponding endpoint and the Abelian integral has at
most 2 zeroes.

On the other hand, it has been proven in [7] that the cyclicity of the correspond-
ing contour H1

11 is 3.
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6 The global bifurcation diagram

The results of Sections 5 and 6 describe the positions of the curves Ω and Ω′ near
their endpoints for parameters in the square −2 < a < 0 < b < 2. We believe that
the following conjecture holds.

Conjecture 1. The curve Ω has at most one inflection point away from its ends,
(for any (a, b) ∈ R2).

Theorem 1. If the Conjecture is true and c = −2 < a < 0 < b < 2, then any per-
turbation of the system (1) has at most 4 limit cycles of amplitude O(1), (i.e. away
from the equator at infinity), with possible configurations (0, 0), (1, 0), (1, 1), (2, 0),
(2, 1), (3, 1). The bifurcation diagram of the curves Ω and Ω′ is the same as at
Figure 3.

Figure 3

Remark 8. For a < −2 and for a > 0, the curves Ω and Ω′ diverge. Their ends
have no simple expressions. They are ratios of definite integrals

∫
ua+ixjdu along

quadratic curve x2 + αu2 − βu + γ = 0.
One may also ask what happens with the inflection point p of Ω (below the line

3a + 5b + 2 = 0 at Fig. 3). We know that for the point S4 : a = −4, b = 1 the curve
Ω is convex (see [3]). So, the only possibility is that it bifurcates to infinity, i.e. the
corresponding triple limit cycle tends to a separatrix contour in the Poincare sphere
with cyclicity 3. The evidence of this phenomenon is proved in [10].

Remark 9. One can try to combine the result of this paper (extended to the
case a = −2, 0 < b < 2) with the result of [7] about cyclicity 3 of the infinite contour
H1

11. When a = −2, the curves Ω and Ω′ become tangent at their common enpoint.
It is shown in [7] that, if there are 3 large limit cycles around one focus, then

there can be at most 1 large cycle around the other focus.
The situation with 2 or 3 large cycles around one focus occurs for perturbations

such that the line L (see (7)) is almost equal to the common line tangent to the
curves Ω nad Ω′ at their point of intersection.

The position of the curves Ω, Ω′ shows that we cannot obtain additional limit
cycle arising from points of the intersection L ∩ (Ω ∪ Ω′).
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