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Abstract
The dynamical systems arising from the tribonacci substitutions: 1→ 12,

2 → 13, 3 → 1 and 1 → 12, 2 → 31, 3 → 1, have very distinctive dynamical
and geometrical properties. In this article we study the dynamics that is
common to these two systems, i.e. the dynamics obtained by the product of
the prefix automata of these substitutions. We show the topological properties
of the geometrical realization in the plane of this symbolic space. We also show
that the dynamic associated to the product automaton can be realized in the
plane and on the torus as a piece exchange transformation. We discuss the
generalization of these results for the k-bonacci substitutions.

1 Introduction

The substitutions

Π1 :


1 → 12
2 → 13
3 → 1

and Π2 :


1 → 12
2 → 31
3 → 1

have the same incidence matrix therefore the same recurrence relation, the tribonacci
recurrence relation. The fixed points of each substitution have the same digit fre-
quencies. In spite of that they have very different dynamical and geometrical prop-
erties, e.g. the Rauzy fractal of the first is simply connected [17] and the second is
not simply connected [14]. The Rauzy fractal is defined in section 3.
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Figure 1: The prefix automata.

In this paper we shall study the common dynamics of these two substitutions.
This is given by the dynamical system associated to the product of the prefix au-
tomata associated to each one of these substitutions. We will show its self-similar
structure and use it to study the topological and dynamical properties of its geo-
metric realization in the plane and on the two-dimensional torus. The topological
structure of the realized symbolic space is a dendrite (Proposition 2). The realized
dynamic is a piece exchange map on the dendrite (Theorem 1). In the last section
we discuss a generalization of these results for k-bonacci substitutions.

Let Π be a substitution on the alphabet C = {1, . . . , k} with a fixed point
u = u0u1 . . .. We associate to it the dynamical system (Ω, σ) where σ is the shift,
i.e. σ(v0v1v2 . . .) = v1v2 . . ., and Ω = {σn(u)|n ∈ Z+}. The closure is taken in the
product topology of CZ+

. This dynamical system admits an equivalent representa-
tion, but we need first to introduce the concepts of the numeration systems and the
prefix automaton associated to Π.

The prefix automaton for the substitution Π, whose fixed point is obtained as
Π∞(1), is defined, in [19] as follows:

• set of states= C

• set of labels= Pref = {the proper prefixes of the words Π(1), . . . ,Π(k)}. We
shall denote by 0 the empty prefix.

• transitions: If p, q are states of the automaton and W a word of Pref then
there exists a transition labelled by W from p to q, if and only if, the word
Wq is a prefix of Π(p).

• initial state= 1.

This automaton reads words from left to right. Let A1 and A2 be the prefix au-
tomaton of Π1 and Π2 respectively. They are shown in figure 1.

In [19, 7] was proved the following theorem:
Let U be a non empty prefix of u, the fixed point of the substitution Π. Then

there exists a unique path in the prefix automaton, starting from 1 and labelled by
(W (n),W (n− 1), . . . ,W (0)) such that W (n) 6= 0 and

U = Πn(W (n))Πn−1(W (n− 1)) · · ·W (0).
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Figure 2: The product automaton of A1 and A2.

o Conversely, to any such path, there correspond a prefix of u, given by the above
formula.

According to this theorem we can write u0u1 . . . un−1, the word formed by the first
n symbols of u, as follows: u0u1 . . . un−1 = Πk(W (k)) · · ·Π(W (1))W (0). Therefore,
n = |Πk(W (k))|+· · ·+|Π(W (1))|+|W (0)| where |W | denotes the length of the word
W . Hence we have a numeration system based in the prefix automaton. See [7, 10]
for more details about numeration systems based on automata.

Let

R = {a = a0a1 . . . ∈ PrefZ
+| an . . . a0 is a path in A for all n ∈ Z+},

where A is the prefix automaton of Π. We can order lexicographically all the finite
paths in A, in a increasing way. So the addition by 1 of such a path is defined as
its consecutive element. Therefore addition by 1 in R is well defined, we will denote
this map by T . Hence we have the dynamical system (R, T ), which is called the
adic system of Π. Using the techniques presented in [17, 18] it can be proved that
this dynamical system is topological equivalent to (Ω, σ). See [12, 26, 27] for more
details about adic systems. Let (R1, T1) and (R2, T2) be the adic systems associated
with Π1 and Π2 respectively. As it can be seen in the automata of Π1, the system
(R1, T1) is defined in the alphabet {0, 1} and the only forbidden factor, according
A1 is three consecutive 1’s. On the other hand the system (R2, T2) is defined on the
alphabet {0, 1, 3} and the forbidden factors are given by the automaton A2.

The automaton product A1×A2 is defined in [8] as the automaton whose set of
states is given by the product of the states of Ai, the set of labels is given by the
intersection of the set of labels of A1 and A2, the initial states are the product of the
initial states of each automaton and the transitions are given in the following way:
If pi and qi are states of the automaton Ai and w is an element of the intersection
of the labels of A1 and A2 then there exists a transition labelled by w from (p1, p2)
to (q1, q2) if and only if there is a transition labelled by w from pi to qi for i = 1 and
2. The automaton A1 ×A2 can be seen in figure 2.

We will define the adic system corresponding to the automaton A1 ×A2 in the
following way: Let

P = {a = a0a1 . . . ∈ {0, 1}Z
+ | an . . . a0 is a path in A1 ×A2 for all n ∈ Z+}.



574 V. F. Sirvent

We order lexicographically all the finite paths in A1 ×A2, this allow us to define a
new numeration system. So we define T (an . . . a0) = bm . . . b0 where bm . . . b0 is the
next sequence of an . . . a0 in the increasing lexicographical order. We extend this
map to the set of one sided infinite sequences on A1 × A2, i.e. P . We will denote
this new map by the same symbol: T . Hence (P , T ) is the adic system associated
to the product automaton A1 ×A2.

Remark 1. The map T is the induced map of Ti on P , when we consider this space
as a subset of Ri, for i = 1 or 2.

Remark 2. By the definition of P , this set admits the dynamic given by the shift
map,

σ : {0, 1}Z+ −→ {0, 1}Z+

a0a1 . . . 7→ a1 . . .

From the automaton A1 × A2 we obtain that the dynamical system (P , σ) is the
sub-shift of the full shift where the symbols 11 and 101 are forbidden. Therefore
it is also a sub-shift of the Fibonacci shift (F , σ). However the adic system (P , T )
does not come from Fibonacci adic system, since this system is minimal.

2 The self-similar structure of P .

As R1 is defined by all one sided infinite sequences in {0, 1} with the forbidden
factor 111. The system (R1, T1) has a self-similar structure, which can be expressed
by the following iterated function system, IFS, {F1, F2, F3}:

F1 = τ, F2 = T1 ◦ τ 2, F3 = T1 ◦ τ ◦ T1 ◦ τ 2.

where τ : R1 → R1, τ (a0a1 . . .) = 0a0a1 . . .. See [4, page 80] for the definition of
IFS. Let Σ3 be the set of all one-sided sequences in {1, 2, 3} and x = x0x1 . . . one
of its elements. The sets {Fx0Fx1 · · ·Fxn(R1)}n form a decreasing sequence of sets
which has a point as limit. Using this fact we have the following map:

p : Σ3 −→ R1

x = x0x1 . . . 7→ limn→∞ Fx0 · · ·Fxn(b),

where b is a point in R1. Due to the property mentioned above the value of p(x) is
independent of the chosen b. This map has the property

Fx0(p(σ(x))) = p(x)

where σ is the shift in Σ3 and without difficulty it can be checked that it is a bijection
between these two symbolic spaces.

From the automaton A1×A2 we get that the forbidden factors on P , as a subset
of R1 are 11 and 101, therefore the maps F3 and F 2

2 are not allowed in its self-similar
structure. Hence we can express the self-similar structure of P using the sub-shift
of finite type associated to the matrix

A =

 1 1 0
1 0 0
0 0 0


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which is (ΣA, σA), where

ΣA = {x ∈ {1, 2, 3}Z+ |Axixi+1 = 1}.
Let

pA : ΣA −→ P
x = x0x1 . . . 7→ limn→∞ Fx0 · · ·Fxn(b)

where b is a point in P . This map is bijective and has the property

Fx0(pA(σA(x))) = pA(x).

Using this we can express the self-similar structure of P by the following IFS:
G = {G1, G2} where G1 = F1 and G2 = F2F1. We can redefine pA in term of this
new IFS:

p2 : Σ2 = {1, 2}Z+ −→ P
x = x0x1 . . . 7→ limn→∞Gx0 · · ·Gxn(b).

3 Geometric realization of (P ,T ).

The incidence matrix of a substitution Π is the matrix M = (mij) such that the
entry mij is the number of occurrences of the symbol i in the word Π(j).

Let

δi : Ri → C
δi(a) =

∑
j≥0

∆(aj)β
j

where β is one of the complex eigenvalues of the incidence matrix of the substitution
Πi, with i = 1 or 2 ([17]) and

∆(aj) =


0 if aj = 0
1 if aj = 1
β−1 if aj = 3

Let Ri = δi(Ri), for i = 1, 2. The sets R1 and R2 are known as the Rauzy fractals
associated to the substitutions Π1 and Π2. Since the complex eigenvalues of M
are conjugate, the sets R1 and R2 are independent of the choice of the complex
eigenvalue.

Let P be the image of P under δ1. If we take the image under δ2 instead of δ1 we
get the same set P , due to P is obtained from the product automaton. Therefore
we denote by δ the restriction of δ1 or δ2 to P .

Proposition 1. The set P is a proper subset of R1 ∩ R2.

Proof: Let z ∈ P , we can write z =
∑
i≥0 ∆(ai)β

i where a = a0a1 . . . is recognized
by A1×A2, i.e. a ∈ P . By the definition of the product automaton, a is recognized
by A1 and A2, therefore

∑
i≥0 ∆(ai)β

i ∈ R1 ∩R2.
However P 6= R1 ∩ R2, since the Lebesgue measure of P is zero (proposition 3)

and we will see the Lebesgue measure of R1 ∩ R2 is positive. The sets R1 and R2

are fixed points of an IFS with the open set condition and they have Hausdorff
dimension equal to 2 ([24]), so they have locally positive measure. Since the origin
is an interior point of R1 and belongs to P , we get that for any U neighbourhood
small enough of the origin, m(U ∩ R1 ∩ R2) = m(U ∩ R2) > 0, where m is the
Lebesgue measure. Hence m(R1 ∩ R2) > 0. �
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Figure 3: The set P

In order to understand the topology of P we need first to address the question:
When are two different sequences of Σ2 mapped to the same point in P by φ =
δ ◦ p2 : Σ2 → P?

In Lemma 3.1 of [22] it was proved that the preimages under δ1 of the points
where the regions of R1 corresponding to the symbols 1, 2 and 3 meet, are:

000100 = 000100100100 · · · , 1000100, 11000100.

Only the first two belong to P . Since 100 is the fixed point of G2, we have:

p2(1112) = 000100, p2(212) = 1000100.

So φ(1112) = φ(212). Moreover this is the only point where the regions of R1 ∩ P
corresponding to the symbol 1 and to the symbol 2 meet. So it turns out from the
self-similarity, that the only symbolic sequences that are mapped to the same point
are of the form w1112 and w212, for any finite word w. From this fact and using
the techniques of [3], we get from proposition 10 of [3]:

Proposition 2. The set P is a dendrite, i.e. a connected and locally connected set
which does not contain a subset homeomorphic to a circle. More over the order of
the branching points is 3.

Proposition 3. The Hausdorff dimension of P is 2 log ρ/ log λ, where ρ is the real
root of x3 − x2 − 1 = 0 and λ the real root of x3 − x2 − x− 1 = 0.

Proof: The matrix that describes the transitions between the blocks: 00, 01 and 10
in P as subset of R1 is:  1 1 0

0 0 1
1 0 0


Note that the characteristic polynomial of this matrix is x3−x2−1 = 0. By Corollary
1 of [21], we get that the Hausdorff dimension of P = δ(P) is 2 log ρ/ log λ, where λ
is the Perron-Frobenius eigenvalue of the matrix associated the substitution Π1. �

Remark 3. The product automaton of A1 and A2 is the prefix automaton of the
substitution 1 → 12, 2 → 3, 3 → 1. However the Rauzy fractal associated to
this substitution is a set with different topological properties of the set P , e.g. has
nonempty interior.



The common dynamics of the tribonacci substitutions 577

-1 -0.75 -0.5 -0.25 0.25 0.5

-0.5

0.5

1

Figure 4: P as a subset of R1

We say that a symbolic system (R, T ) is geometrically realized as (X, T ) if this
is a dynamical system defined on a geometrical structure such that there exists a
continuous and surjective map δ : R→ X satisfying δ ◦ T = T ◦ δ.

The adic systems (Ri, Ti), with i = 1 or 2, can be realized geometrically in R2, as
(Ri, Ti) where Ti is a piece exchange transformation in the plane [17, 14] and (R1, T1)
can be realized on the two-dimensional torus as an irrational translation [17]. In
the construction of the (Ri, Ti)’s we identify R2 with C. The following results tell
us that the adic system of P can be realized geometrically in the plane and on the
two-dimensional torus.

Let X be a connected subset of Rn. We say that the dynamical system (X, T ) is
a piece exchange transformation if there exists {Xi}i a partition of X in connected
sets, such that {T (Xi)}i is also a partition of X.

Theorem 1. The system (P , T ) can be realized in the plane as (P, T ) where T is a
piece exchange transformation, i.e. δ ◦ T = T ◦ δ.

Proof: Since P is a subset of R1, the dynamics on this set is T1. We define T as the
induced map of T1 on P , i.e.

T (z) = T
n(z)
1 (z), where n(z) = min{n |T n1 (z) ∈ P}.

Observe that this is compatible with the symbolic dynamics, since T is the induced
map of T1 on P . If we denote by P (b0 . . . bj) = δ({a ∈ P | a0 = b0, . . . , aj = bj}),
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note that T is well defined on these cylinders. We have:

P (000)
T→ P (100) here T = T1

P (001000) → P (000100) ” T = T 3
1

P (001001000) → P (0000000100) ” T = T 16
1

...
P (01000) → P (00100) ” T = T 2

1

P (01001000) → P (00000100) ” T = T 7
1

...
P (1000) → P (0100) ” T = T1

P (1001000) → P (0000100) ” T = T 6
1

...

The map T1 is continuous (it is an irrational translation) on the cylinders P (0)
and P (10), so by self-similarity T is continuous on each of cylinders of the previous
table. On the other hand P is connected hence each of these cylinders corresponds
to a connected subset of P .

As it can be seen in the previous table the return time function, i.e. the n(z) in
the definition of the map T , is not bounded at the points: δ(001), δ(01001), δ(1001).
The map T is well defined at these points and the image is 0, since T (001) =
T (1001) = T (01001) = 0.

Therefore T is a piece exchange transformation in at most an infinite (countable)
number of pieces.

Note, if we use in this proof (R2, T2) instead of (R1, T1) we get similar results. �

Corollary 1. The system (P , T ) can be realized on the two-dimensional torus as a
piece exchange transformation.
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Figure 6: The product automaton of the k-bonacci substitutions.

Proof: In [16] is given a characterization of the points in R1 that have more than
one symbolic representation, from which it can be concluded that the pre-image
of the boundary of R1 under δ1 does not contain the word 000 (the dynamical
and geometrical properties of the set where the word 000 is forbidden are studied
in [20, 21] ). Therefore the only points of P that belong to the boundary of R1 are
δ(001), δ(01001) and δ(1001). In Lemma 3.1 of [22] we prove that these three points
are mapped under δ̂ = δ/Z2 to the same point to T2. In the proof of Theorem 1 we
show that the images under T of the previous points of the boundary are the same.
Therefore the map T induces a map on the torus. �

4 The k-bonacci case

Consider the following family of substitutions, which generate different dynamical
systems.

Ξ1,k :



1 → 12
2 → 13
3 → 14

...
k − 1 → 1k
k → 1

Ξ2,k :



1 → 12
2 → 31
3 → 14

...
k − 1 → 1k
k → 1

· · · Ξk−1,k :



1 → 12
2 → 31
3 → 41

...
k − 1 → k1
k → 1

The common dynamic to the dynamical systems associated to these substitutions is
given by the adic systems associated to the product automaton of the automata of
Ξ1,k, Ξ2,k, . . . ,Ξk−1,k. Which we will denote by A(k). This automaton is in figure 6.
A k-bonacci substitution is a substitution on a alphabet of k letters, such that its
incidence matrix is the same as the matrix of the substitution Ξ1,k.

Proposition 4. A(k) is the product automaton of all k-bonacci substitutions.
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Proof: Given Ξ any k-bonacci substitution such that Ξ(1) = 12, and let B be its
prefix automaton. We shall show that A(k)×B = A(k). Let us denote the states of
A(k) as follows: (1, 1, . . . , 1) = 1, (2, . . . , 2) = 2, (1, 3, . . . , 3) = 3, . . . , (1, 1, . . . , 1, k−
1, k−1) = k−1, (1, . . . , 1, k) = k. By the hypothesis on Ξ we get that the transitions
on B are 0 between the state 1 and itself and 1 between the states 1 and 2. Therefore
in A(k)×B there will be the transitions labelled by 0 between (1, 1) and itself and
labelled by 1 between (1, 1) and (2, 2). Since Ξ is a k-bonacci substitution, from
each state different from k there are two transitions one of them labelled by 0, and
from the k-th state there is only one transition which is to the state 1, and it is
labelled by 0. Therefore there is a path in B from the state 2 to 1 labelled by 0’s.
Hence A(k)× B = A(k).

If Ξ is k-bonacci substitution such that Ξ(1) = 21, we define Ξ as the substitution
obtained by flipping the images of the elements of the alphabet under Ξ. The
dynamical systems generated by Ξ and Ξ are equivalent, and Ξ is of the type studied
previously. �

Let (P [k], T [k]) be this adic system, and P [k] the geometrical realization of P [k]
on Rk−1 according to the Rauzy map:

δ : P [k]→ Rk−1

δ(a) =
∑
j≥0

ajB
jz

where B is the restriction of the incidence matrix of any k-bonacci substitution (all
these substitutions have the same incidence matrix) to its contractive eigenspace
and z = (1, 0, . . . , 0). The adic system associated to the substitution Ξ1,k is realized
in (Tk−1, T ) where T is a translation by the normalized eigenvector of the matrix
associated to this substitution [17, 25].
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In a similar way as in the tribonacci case, we can conclude that the set P [k] is
the fixed point of the IFS {τ, T [k]τ k}. Therefore P [k] is the fixed point of the IFS
{H1, H2} where H1(x) = T (x), H2(x) = TBk(x) and T is the previous translation,
but acting on Rk−1.

Hence we get that the Hausdorff dimension of this set is in the interval [s0, s1]
where s0 is the solution of |γ0|s + |γ0|ks = 1, s1 is the solution of |γ1|s + |γ1|ks = 1,
γ0 is the smallest eigenvalue in norm of the matrix B and γ1 is the largest.

In a similar way we can conclude that P [k] is a proper subset of the intersection
of the Rauzy fractals associated to each Ξi,k. Theorem 1 can be generalized in the
same way.
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de Théorie des Nombres de Bordeaux, 10, 1998, 135-162.
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