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Abstract

In this paper we give necessary and sufficient conditions for uniform ex-
ponential stability of evolution equations in Banach spaces. This is done by
employing a skew-product semiflows technique and Banach function spaces.
Generalizations of some well-known results of Datko, Neerven, Rolewicz and
Zabczyk are obtained.

1 Introduction

In recent years, an important progress has been made in the study of the asymp-
totic behaviour of evolution equations in infinite-dimensional Banach spaces. Sig-
nificant progress has been made in this direction pointing out that an impressive
list of classical problems can be treated using the theory of linear skew-product
semiflows (see, for example, Sacker and Sell [16], Chow and Leiva [2]-[6], Chicone
and Latushkin [1] and Latushkin, Montgomery - Smith and Randolph [11]). There
have been obtained results concerning dichotomy of linear skew-product flows over
locally compact Banach spaces (see Latushkin, Montgomery-Smith and Randolph
[11]) and dichotomy of linear skew-product semiflows over compact Hausdorff spaces,
respectively (see Chow and Leiva [3], [4] and [6]). The asymptotic behaviour of the
linear skew-product flow has been also characterized in terms of spectral properties
of the evolution semigroup associated to the skew-product flow (see Latushkin,
Montgomery-Smith and Randolph [11]).
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In this paper we consider a concept of uniform exponential stability for linear
skew-product semiflows which is an extension of the classical concept of exponential
stability for time-dependent linear differential equations in Banach spaces (see, for
example, Datko [8] and Daleckii and Krein [9]). We give necessary and sufficient
conditions for uniform exponential stability of linear skew-product semiflows using
a Banach function spaces technique. We not only answer questions concerning
stability of linear skew-product semiflows but also obtain generalizations of some
well-known results due to Datko ([8]), Zabczyk ([17]), Neerven ([14]) and Rolewicz

([15]).

The theory developed here is applicable for a large class of systems described in
Chow and Leiva ([2]-[6]).

2 Notations and preliminaries

In this section we shall present some definitions, notations and results about linear
skew-product semiflows and Banach function spaces.

2.1 Linear Skew-Product Semiflows

We begin with the notion of linear skew-product semiflow on the trivial Banach
bundle £ = X x O, where X is a fixed Banach space - the state space - and ©
is a compact Hausdorff space. We shall denote by B(X) the Banach algebra of all
bounded linear operators from X into itself.

Definition 2.1. A mapping ¢ : © x R, — © is called a semiflow on O, if it
has the following properties:
(f1)o(0,0) =0, for all § € O;
(f2)o(0,s+1t)=0(c(0,s),t), for all (0,s,t) € © x R%;

(f3) o is continuous.

Definition 2.2. A pair 7 = (®,0) is called a linear skew-product semiflow on
=X x0if ois asemiflow on © and ¢ : © x R, — B(X) satisfies the following
conditions:

(s1) ®(0,0) = I, the identity operator on X, for all § € ©;

(52) @(0,t+s) = ©(0(0,1),s)P(0,t), for all (6,t,s) € ©xR2 (the cocycle identity);

(s3) th%l ®(0,t)r = x, uniformly in #. This means that for every x € X and every
—Y+

e > 0 there is 0 = d(z,e) > 0 such that ||®(0,t)x — x|| < €, for all § € © and
0<t<o.

Remark 2.1. The mapping t — ®(0, t)x is right continuous, for all (z,6) € £.

Example 2.1. Let © be a compact Hausdorff space and let S = {S(¢) }+>0 be
a Cy - semigroup on X. Then for every semiflow ¢ : © x R, — © on © the pair
s = (Pg, o), where

Ds(0,t) = S(t),  (0,1) €O xR,
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is a linear skew-product semiflow on £ = X x O, which is called the linear skew-
product semiflow generated by the Cy - semigroup S and the semiflow o.

The following example can be found in Chow and Leiva ([2]):

Example 2.2. Let o be a semiflow on the compact Hausdorff space © and
let S = {S(t)}+>0 be a Cp -semigroup on the Banach space X. For every strongly
continuous mapping D : © — B(X) there is a linear skew-product semiflow 7p =
(®p,0) on &€ = X x O such that

@M&ﬂx:S@ﬁHh{S@—SﬂXJ@£»¢DWJﬂdS

for all (z,6,t) € X x © x Ry.
The linear skew-product semiflow 7p = (®p, o) is called the linear skew-product
semiflow generated by the triplet (S, D, o).

Remark 2.2. As a consequence of condition (sq) from Definition 2.2. it follows
that if 7 = (¥, 0) is a linear skew product semiflow on &€ = X x ©, then

PO, nt) = (a(0, (n—1)t),t)...2(c(0,2t),t)P(c(0,1),t)P(6,1)
for all (A,n,t) € ® x N x R,.
The following result can be found in Chow and Leiva [3].

Proposition 2.1. Let 1 = (®,0) be a linear skew-product semiflow on £ =
X x ©. Then there exist constants M > 1 and w > 0 such that

19(0,8)]] < Me*', (0,t) € © x R,,.

Definition 2.3. A linear skew-product semiflow 7 = (®,0) on &€ = X x © is
called uniformly exponentially stable if there are N > 1 and v > 0 such that

|®(6,%)|] < Ne™™, (0,t) €© x R,.

A sufficient condition for uniform exponential stability of a linear skew-product
semiflow is given by

Proposition 2.2. Let 1 = (®,0) be a linear skew-product semiflow on & =
X x ©. If there are ty > 0 and ¢ € (0,1) such that

|2(0, o)l <c, €80,
then w is uniformly exponentially stable.

Proof: Let M > 1 and w > 0 given by Proposition 2.1. Let v be a positive number
such that ¢ = e "%,

Let § € © be fixed. For t € R, there are n € N and r € [0,t;) such that
t = nty+r. Then by Remark 2.2. we obtain

120, 8)[| < [[®(a(0, nto), r)[[ [|(0, nto)|| <
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< Me“[|(a (0, (n — 1)to), to)ll .. - [|2(a (0, to), o) [| 20, to)]| <

S Mewto G*W/to S Nefl/t’

where N = Me@t)% _ So, 1 is uniformly exponentially stable. [

2.2 Banach function spaces

Let (€2, %, 1) be a positive o - finite measure space. By M () we denote the linear
space of p-measurable functions f : 2 — C, identifying the functions which are
equal p - a.e.

Definition 2.4. A Banach function norm is a function N : M (u) — [0, co] with
the following properties:

(n1) N(f) =0if and only if f =0u - a.e;

(na) if | f| < lglp - ae. then N(f) < N(g);

(n3) N(af) =la|N(f), for all a € C and all f € M(u) with N(f) < oc;
(ng) N(f+9) < N(f)+ N(g), for all f,g € M(u).

Let B = By be the set defined by:

Bi={f € M(n): |f|s:= N(f) < oo}.

It is easy to see that (B, |-|p) is a normed linear space. If B is complete then B
is called Banach function space over §2.

Remark 2.3. B is an ideal in M (u), ie. if |[f| < |g|p - a.e. and g € B then
also f € B and |f|p < |g|5.

Remark 2.4. If f, — f in norm in B, then there exists a subsequence (fy, )
converging to f pointwise (see [12]).

Let (2, %, 1) = (R4, £,m) where L is the o-algebra of all Lebesgue measurable
sets A C Ry and m the Lebesgue measure. For a Banach function space over R,
we define

— if xj0.4) € B
Fs:R, —R,, Fgt):= ‘X[O,t)|B ) 1 [0,t)
B + + B( ) { 00 7 if X[0.6) g_f B
where x(o4 denotes the characteristic function of [0,¢). The function Fp is called
the fundamental function of the Banach space B.
In what follows we shall denote by B(R.;) the set of all Banach function spaces
with the property that tlim Fg(t) = oo and there exists a strictly increasing sequence

(t,) of positive real numbers with

t, — 00, sup(t,+1 — t,) < oo and i%f | X(tntnin)| B > 0.

tn+1

A trivial example of Banach function space over R, which belongs to B(R.) is
LP(R;,C) with 1 < p < 0.
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Similarly, let (2,%, 1) = (N, P(N), p.) where p. is the countable measure and
let B be a Banach function space over N (in this case B is called Banach sequence
space). We define

* 5 |X{0...n71}|B , if X{o,...,n—
Fg: N R, Fp(n):= T . e
R B R ey
called the fundamental function of B.
In what follows we denote by B(N) the set of all Banach sequence spaces B with

lim Fp(n) = oo and

n—o0

i%f |X{n}|B > 0.

Remark 2.5. If B is a Banach function space over R which belongs to B(R.;)
then

Sp = {(an)n : Z On X[tn tnt1) < B}

n=0
with respect to the norm

|(an)n|53 = | Z anX[tn,tn+1)|Bv

n=0
is a Banach sequence space which belongs to B(N).
Indeed, this assertion follows by observing that

‘X{n}‘SB = |X[tnytn+1)‘B and FSB(”) = FB(tn>7 n € N.

In what follows we shall give some examples of Banach sequence spaces.

Example 2.4. If p € [1,00) then B = [P with

o= (2 |s<n>|p)%

is a Banach sequence space which belongs to B(N).

Example 2.5. (Orlicz sequence spaces) Let ¢ : R, — R, be a nondecreasing,
left continuous function which is not identically 0 or co on (0,00). We define the
function:

(1) = [ gts) ds

which is called the Young function associated to g.
For every s : N — C we consider

M, (s) = i Y, (|s(n)]).

The set O, of all sequences with the property that there exists & > 0 such that
M,(ks) < oo is easily checked to be a linear space. With respect to the norm
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sl = inf{k >0 Mg(%s) <1}

it is a Banach sequence space called Orlicz sequence space. Trivial examples of Orlicz
sequence spaces are [P, 1 < p < oo which are obtained for

0, 0<t<1

. P for p = oc.

gty =pt"',1<p<oo and g(t) = {

Remark 2.6. If g : Ry — R, is a nondecreasing left continuous function with
g(t) > 0, for all t > 0 and ¢(0) = 0 then the Orlicz sequence space O, associated to
g belongs to B(N).

3 The main results

In this section we shall give necessary and sufficient conditions for uniform expo-
nential stability of linear skew-product semiflows in Banach spaces.
Our main result is

Theorem 3.1. The linear skew-product semiflow 7 = (®,0) on € = X x O
is uniformly exponentially stable if and only if there are a Banach sequence space
B € B(N) and a sequence (t,,) of positive real numbers with the following properties:

(i) sup [tns1 — | < 003
(1) for every (x,0) € € the function

Pzx,0 - N — R-i—a (pxﬂ(n) = ||<D(07tn)x||

belongs to B;
(iii) there ezists K : X — (0,00) such that

|90x,0|B < K(l’), (2?,(9) €. (31)
Proof: Necessity. It is immediate by taking B = {! and t, = n.
Sufficiency. We have two possible situations.
Case 1. It T =supt, < oo then we have
120, T)x|| < [|2(a(0, ), T — tn)[ ||| (0, tn) ]| <
< MeT[|®(0, t,)x]| = poz(n), neN,(z,0) €€,
where 7 = Me“Tx and M > 1,w > 0 are given by Proposition 2.1. Thus we have

||<I)(9,T)x|| X{0,.n—1} < Pz, N E N*.
Using (3.1) it follows that

Fi(m)||®(0, T)z|| < |¢s0ls < K(z), ne N
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Because B € B(N) it results

o0, T)x =0, (x,0) €&
and hence 7 is uniformly exponentially stable.

Case 2. Suppose that (¢,) is unbounded. Since B € B(N) there exists ¢ > 0
such that

IXn}B > ¢ n € N.

From

%,G(n)X{n} < ©r.0, neN,(x,0) €&

we have

c||®0, tn)z]| < lpuplp < K(x),  neN,(z,0) €.
By applying the uniform boundedness principle there exists N > 0 such that

|2(0,t,)[| <N, neN,0co.

Let 6 € ©. If s > t( then using the fact that (¢,) is unbounded and the hypothesis
(i) it follows that there exists n(s) € N such that

tn(s) <s< tn(s) +0

where 0 = sup |t, 41 — t,|. Then

1D, 9)|| < [|P(0(0, tus))s s — tu)|| |0, tugs)|| < MNe, s> t5,0 € O.
It follows that

|®(0, 5)|| < L := max{Me“" MNe}, seR;,0€0.

We consider the sequence (k,,) defined by ko = 0, k41 = min{j : t; > ¢4, }. Then
k, — oo and

t; <tn, je{0,... k.},neN.

From

120, k|| < [[P(a(0,85), b, — 1) [[@(8, 1) <

< L||®(0,t))x||, s € {0,...,k,}, n €N

it results

1@(0, )| X0, k) < Lpwp, mn€N,(z,0)€E

.....

and hence
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||®(0,ty,)z|| Fe(k, +1) < LK(xz), ne€N,(z,0) €&
By uniform boundedness principle there exists K > 1 such that

||(I)(9 tkn)HFB(/{Z +1)<K, n € N,0 e 0.
This inequality together with B € B(N) implies that there is m € N such that

—_

[| D0, tr,,)|| < 0 co.

2
By Proposition 2.2. we conclude that 7 is uniformly exponentially stable. [

Corollary 3.1. The linear skew-product semiflow m = (®,0) on € = X x O is
uniformly exponentially stable if and only if there are p € [1,00) and K : X — (0, 00)
such that

S 00 0ol < K(),  (0,0) € £,

n=0

Proof: Necessity It is immediate.
Sufficiency. It results from Theorem 3.1. for B =[P and t, = n. [

Theorem 3.2. The linear skew-product semiflow m = (®,0) on &€ = X x O
is uniformly exponentially stable if and only if there exist a non-decreasing function
N : R, — Ry, a sequence (t,) C Ry and a constant K > 0 with the following
properties:

(1) N(0) =0 and N(t) > 0, for all t > 0;
(1) sup |tpi1 — tn| < 005

(iii) for every x € X there ezists a(x) > 0 such that
ZN z) ||®(0,t,)x]]) < 0 €0.

Proof: Necessity. 1t results for N(t) =t and t,, = n
Sufficiency. Case 1. If (t,) is bounded let T" = supt, and M > 1,w > 0 given by

Proposition 2.1. Let x € X and Z = [a(z)/Me“"]z. Then

AN(10(0. T)7) < 3 N(MeT|j0(6,1)7) =

_ZN 7)||®(0,t,)z]]) < K, neN,fec6.

It follows that CI>(9 T)z = 0, for all # € © and hence ®(¢,7)xr = 0, for all
(x,0) € £. So 7 is uniformly exponentially stable.
Case 2. 1f supt,, = oo without lost of generality we may suppose that (t,) is a

non-decreasing sequence (if not we shall consider a subsequence with this property
and the proof is analogous).
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Let r = sup(t,+1 — tn) and ng € N* with K < ngN(1). Then

noN (|| ®(0, £n)z]]) < Zn: N(a(x)||®(0,t))z]]) < K, n > no, (z,0) € €

j=n—no+1
where & = a(x)/Me*™". From this inequality we obtain that

N([|®(8, tn)z|] < N(1)

and hence

_ a(z)
) = ) 1.
000,40 = -2 a0, )] <

If we denote by L(x) = Me“™" /a(x) it results that:

[|®(0,t,)x|| < L(x), n > ng, (z,0) € €.

By uniform boundedness principle it follows that there exists L; > 1 such that

19(0,¢)|| < Ly, n>mne0eO

and then we have

[|®(0,t,)]| < L :=max{L;, Me“'o}, neN,0 € 0.

Without lost of generality, we may suppose that N is left continuous - if not we
can consider the function N(t) = li;r% N(s) and the proof is unchanged.

Let (On, |- |n) be the Orlicz sequence space associated to N and Yy the Young
function associated to N.

Let z € X \ {0} and f(z) = min{a(z),1/KL||z||}. If £ = f(x)z and 0 € © |
then the sequence

Pz,0 - N — R;, S%,e(n) = ||(I>(97tn)~%H

verifies the inequality

Yn(pzo(n)) = Yn(B(2)||®(0, tn)x]]) <

< B)|| (0, tn)x|| N(B(x)[ |20, t)x]]) < %N(O&(SU)I@(@?%)J?H), neN

and hence My(pz9) < 1. It follows that pz9 € On and |pze|n < 1. Because
vz = B(z)pse and Oy is a linear space, we obtain that ¢, ¢ € O and

1
< = —_— .
[Praly < K(a) = max{ ooy, KL|all),  (x,0) € €

By Theorem 4.1. we obtain that 7 is uniformly exponentially stable. [
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Theorem 3.3. The linear skew-product semiflow 7 = (®,0) on € = X x O
is uniformly exponentially stable if and only if there is a Banach function space
B € B(R,) with the following properties:

(i) for every (x,0) € € the function

‘I]:B,G : R+ - R+7 ‘;[]:vﬁ(t) = ||(I)(0,t)$H

belongs to B;
(ii) there ezists K : X — (0,00) such that

‘\I]:B,€|B S K(J?), (:1:,(9) S 5

Proof: Necessity. Tt is a simple exercise for B = L'(R,, C).

Sufficiency. Let Sp be the Banach function space associated to B via Remark 2.5.
Since B € B(R;) there exists a strictly increasing sequence (t,) of positive real
numbers with ¢, — 00, := sup(t,41 — t,) < oo and i%f | X[tn,tnin)|B > 0. For every

(x,0) € & the function

tn+1

(pxﬂ N — R-i—a 303670(’”) = ||©(07tn+1)x||

satisfies

pao(n) < |[|0(0(0,1), tni — )] [[2(0, 1)z]| <

< Me||0(0, D)zl| = |00, )], n €N, (2,6) € £, € [t tus),

where & = Me“%x and M, w are given by Proposition 2.1. It follows that

ios%,e(n)X[tn,th) < Wiy
and hence ¢, € Sp and
lozolsy < Vgl < K(2) = K(Me”‘;:c), (x,0) € &.
Then by Theorem 3.1. we conclude that 7 is uniformly exponentially stable. [
Corollary 3.2. The linear skew-product semiflow 7 = (®,0) on € = X X O is

uniformly exponentially stable if and only if there are p € [1,00) and K : X — (0, 00)
such that

[T 0@ neipar < K@), @0 €

Proof: Necessity. It is trivial.
Sufficiency. It results by Theorem 3.3. for B = LP(R,, C). [
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Theorem 3.4. The linear skew-product semiflow m = (®,0) on &€ = X x O
s uniformly exponentially stable if and only if there exist a nondecreasing function
N : R, — R, and a constant K > 0 with the following properties:

(i) N(0) =0 and N(t) > 0, for all t > 0;
(i) for every x € X there exists a(x) > 0 such that

|7 Na@le@ nalhi < K, 6eo.

Proof: Necessity. It results immediately for N(t) = t.
Sufficiency. Let M,w given by Proposition 2.1. If (z,0) € £ and f(x) = a(z)/Me¥
then:

ZN 2)||®(0,n + 1)z|) <z/ 2)||®(6, t)z||)dt < K.

Then by Theorem 3.2. it results that 7 is uniformly exponentially stable. [

Remark 3.1. Theorem 3.2., Corollary 3.2. and Theorem 3.3. are generalizations
for the case of linear skew-product semiflows of well-known results due to Zabczyk
([17]), Datko ([7]) and Neerven ([14]) for Cy -semigroups of linear operators. The-
orem 3.4. is a variant of Rolewicz’s theorem (see [15]) for linear skew-product
semiflows.
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