Fixed point results for compact maps on closed subsets of Fréchet spaces and applications to differential and integral equations

M. Frigon *

Abstract

In this paper, we establish fixed point results for compact maps $f: X \to \mathbb{E}$ defined on arbitrary closed subsets X of a Fréchet space \mathbb{E} . In particular, we obtain a continuation principle for suitable compact homotopy $h: X \times [0,1] \to \mathbb{E}$. Afterwards, those results are applied to differential equations and to Fredholm integral equations on the real line.

1 Introduction

It is well known (see [14]) that if $h: X \times [0,1] \to \mathbb{E}$ is a compact map defined on X the closure of an open set of a locally convex space \mathbb{E} , and if $h(x,0) \equiv \hat{x} \in \text{int}(X)$, then one of the following statements holds:

- (a) $h(\cdot, 1)$ has a fixed point;
- (b) there exist $\lambda \in (0,1)$ and $x \in \partial X$ such that $x = h(x,\lambda)$.

In the particular case where \mathbb{E} is a Banach space, this important result was widely applied, notably to nonlinear differential equations. Unfortunately, very few applications were given in the case where \mathbb{E} is a locally convex space which is not normable. The problem is that in many potential applications, the appropriate set X to work with has empty interior, see for example [4].

Received by the editors February 2001.

Communicated by J. Mawhin.

1991 Mathematics Subject Classification: 47H10,34A12,45B05.

^{*}This work was partially supported by CRSNG Canada

Furi and Pera [11] were the first to obtain a continuation principle for compact maps defined on closed convex subsets with possibly empty interior of a locally convex space. Instead of statement (b), it was required that each $(x, \lambda) \in \partial X \times [0, 1)$ with $x = h(x, \lambda)$, has a neighborhood sent in X by h.

In this paper, fixed point results for compact maps $f: X \to \mathbb{E}$ are established for arbitrary closed subsets X (possibly non-convex and with empty interior). Our approach, different from Furi and Pera's one, is in the spirit of results on contractions obtained in [7, 9], where \mathbb{E} is regarded as a projective limit. Of course, in allowing X to have empty interior, the statement (b) must be changed, and the point \hat{x} has to be chosen in a different way. To this aim, we consider an appropriate class of compact maps and we introduce the notion of pseudo-interior of X.

In order to simplify the notations, we consider a Fréchet space $(\mathbb{E}, \{\|\cdot\|_n\}_{n\in\mathbb{N}})$. It is worthwhile to mention that our results are also true in a locally convex space $(\mathbb{E}, \{\|\cdot\|_{\alpha}\}_{\alpha\in\Lambda})$, where Λ is a directed set, and $\|u\|_{\alpha} \leq c_{\alpha,\beta} \|u\|_{\beta}$ when $\alpha \leq \beta$; see [5] for definitions.

In the last section, we present applications of our fixed point results to differential and integral equations. The first one is a result of Lee and O'Regan [12] on first order differential equations on the half line.

The second application concerns infinite systems of first order differential equations. A generalization of Peano's Theorem, and a nonlocal existence result are established.

Finally, we study Fredholm integral equations on the real line. In the very interesting papers of Anselone with Sloan [1] and with Lee [2], integral equations on the half line are treated in considering a sequence of integral equations on finite intervals. This kind of technics was also used by Lee and O'Regan [13]. Our approach is different since we always take into account the behavior of the function on the whole real line.

2 Preliminaries

2.1 Spaces

Let \mathbb{E} be a Fréchet space with the topology generated by a family of semi-norms $\{\|\cdot\|_n\}_{n\in\mathbb{N}}$. For sake of simplicity, we will assume that the following condition is satisfied:

$$||x||_1 \le ||x||_2 \le \cdots$$
 for every $x \in \mathbb{E}$. (\star)

To \mathbb{E} , we associate for every $n \in \mathbb{N}$, a normed space \mathbb{E}_n as follows: For each $n \in \mathbb{N}$, we write

$$x \sim_n y$$
 if and only if $||x - y||_n = 0$. (2.1)

This defines an equivalence relation on \mathbb{E} . We denote by $E_n = \mathbb{E}/\sim_n$ the quotient space, and by \mathbb{E}_n the completion of E_n with respect to $\|\cdot\|_n$ (the norm on E_n induced by $\|\cdot\|_n$ and its extension to \mathbb{E}_n are still denoted by $\|\cdot\|_n$). This construction defines a continuous map $\mu_n : \mathbb{E} \to \mathbb{E}_n$.

For each subset $X \subset \mathbb{E}$, and each $n \in \mathbb{N}$, we set $X_n = \mu_n(X)$, and we denote $\overline{X_n}$, and ∂X_n , respectively the closure and the boundary of X_n with respect to $\|\cdot\|_n$ in

 \mathbb{E}_n . We denote by diam_n, the n-diameter induced by $\|\cdot\|_n$; that is, for $X\subset\mathbb{E}$,

$$diam_n(X) = \sup\{ ||x - y||_n : x, y \in X \}.$$

Since the set X that we will consider can have empty interior, we introduce the notion of pseudo-interior of X that we define by

pseudo-int
$$(X) = \{x \in X : \mu_n(x) \in \overline{X_n} \setminus \partial X_n \text{ for every } n \in \mathbb{N}\}.$$

Example. (1) Let \mathbb{E} be the Fréchet space $C[0,\infty)$, and let $X=\{u\in C[0,\infty): |u(t)|\leq M \text{ for every } t\in [0,\infty)\}$. Then

pseudo-int
$$(X) = \{u \in C[0, \infty) : |u(t)| < M \text{ for every } t \in [0, \infty) \}.$$

(2) Let $X = [-1, 1]^{\mathbb{N}}$ be in the Fréchet space $\mathbb{R}^{\mathbb{N}}$. Then

pseudo-int
$$(X) = (-1, 1)^{\mathbb{N}}$$
.

The following result establishes that the pseudo-int(X) is independent of the choice of the family of semi-norms.

Proposition 2.1. Let X be a subset of \mathbb{E} . Then $x \in pseudo-int(X)$ if and only if for every neighborhood of the origin U, there exists V a neighborhood of x such that

$$V \subset X + \bigcap_{\lambda > 0} \lambda U. \tag{2.2}$$

Proof. If $x \in X$ is such that for every neighborhood of 0 there exists a neighborhood satisfying (2.2), then this holds in particular with $U_n = \{y \in \mathbb{E} : ||y||_n < 1\}$ for $n \in \mathbb{N}$. So,

$$x \in V \subset X + \bigcap_{\lambda > 0} \lambda U_n,$$

and hence

$$\mu_n(x) \in \mu_n(V) \subset \mu_n\left(X + \bigcap_{\lambda > 0} \lambda U_n\right) = X_n.$$

Since $\mu_n(V)$ is open in E_n , there exists $\delta > 0$ such that

$$\{w \in E_n : ||w - \mu_n(x)||_n < \delta\} \subset \mu_n(V).$$

Therefore, $\mu_n(x) \in \overline{X_n} \backslash \partial X_n$.

On the other hand, let $x \in \text{pseudo-int}(X)$ and U a neighborhood of the origin. There exist $n \in \mathbb{N}$ and $\lambda > 0$ such that

$$\lambda U_n = \{ y \in \mathbb{E} : ||y||_n < \lambda \} \subset U.$$

Since $x \in \text{pseudo-interior}(X)$, there exists $\delta > 0$ such that

$$W = \{ w \in E_n : ||w - \mu_n(x)||_n < \delta \} \subset X_n.$$

Therefore,

$$x \in V = \mu_n^{-1}(W) \subset X + \bigcap_{\lambda > 0} \lambda U_n \subset X + \bigcap_{\lambda > 0} \lambda U.$$

Now, observe that, since the condition (\star) is satisfied, the semi-norm $\|\cdot\|_n$ induces a semi-norm on \mathbb{E}_m for every $m \geq n$. For simplicity, this semi-norm is still denoted by $\|\cdot\|_n$. Again, the relation (2.1) defines an equivalence relation on \mathbb{E}_m from which we obtain a continuous map $\mu_{n,m}: \mathbb{E}_m \to \mathbb{E}_n$ since \mathbb{E}_m/\sim_n can be regarded as a subset of \mathbb{E}_n . Observe that \mathbb{E} is the projective limit of $(\mathbb{E}_n)_{n\in\mathbb{N}}$.

The following lemma gives an important property of closed subsets of \mathbb{E} .

Lemma 2.2. Assume that the condition (\star) is satisfied, and let X be a closed subset of \mathbb{E} . Then, for every sequence $(z_n)_{n\in\mathbb{N}}$ with $z_n\in\overline{X_n}$, such that for every $n\in\mathbb{N}$, $(\mu_{n,m}(z_m))_{m\geq n}$ is a Cauchy sequence in $\overline{X_n}$, there exists $x\in X$ such that $(\mu_{n,m}(z_m))_{m\geq n}$ converges to $\mu_n(x)\in X_n$ for every $n\in\mathbb{N}$.

The family of semi-norms $\{\|\cdot\|_n\}_{n\in\mathbb{N}}$ obviously induces a family of semi-norms on $\mathbb{E}\times\mathbb{R}$ that we still denote by $\{\|\cdot\|_n\}_{n\in\mathbb{N}}$. Also, the continuous functions obtained from the relation (2.1) on $\mathbb{E}\times\mathbb{R}$ are still denoted $\mu_n:\mathbb{E}\times\mathbb{R}\to\mathbb{E}_n\times\mathbb{R}$. Similarly for the other notations.

In what follows, X is always a closed subset of \mathbb{E} , and Y is a closed subset of \mathbb{E} or $\mathbb{E} \times \mathbb{R}$. By a compact map $f: Y \to \mathbb{E}$, we mean a continuous map such that f(Y) is relatively compact in \mathbb{E} .

2.2 Multivalued maps

We recall some definitions and results concerning multivalued mappings. For more details, the reader is referred to [3] and the references therein. Let Z_1 , Z_2 , Z_3 be three metrizable spaces, and $I \subset \mathbb{R}$ a measurable set.

Definition 2.3. A multivalued mapping $F: Z_1 \to Z_2$ is upper semi-continuous (u.s.c.) if $\{z: F(z) \cap K \neq \emptyset\}$ is closed for every closed subset K of Z_2 . It is lower semi-continuous (l.s.c.) if $\{z: F(z) \cap U \neq \emptyset\}$ is open for every open subset U of Z_2 . It is continuous if it is lower and upper semi-continuous. A multivalued map $F: I \to Z_2$ is measurable if $\{t: F(t) \cap K \neq \emptyset\}$ is measurable for every closed subset K of Z_2 .

Lemma 2.4. If $F_0: Z_1 \to Z_2$ and $F_1: Z_2 \to Z_3$ are two continuous multivalued mappings, then $F_1 \circ F_0: Z_1 \to Z_3$ is continuous.

Lemma 2.5. Let $F: Z_1 \to Z_2$ be a continuous multivalued map with relatively compact values. Then the map $\overline{F}: Z_1 \to Z_2$ defined by $\overline{F}(z) = \overline{F(z)}$ is continuous.

Lemma 2.6. Let $F: I \times \mathbb{R}^m \to \mathbb{R}^n$ be a multivalued map with compact values such that F is measurable in $t \in I$, and continuous in $x \in \mathbb{R}^m$. Then for every measurable (single-valued) function $t \mapsto x(t)$, the multivalued map $t \mapsto F(t, x(t))$ is measurable.

Definition 2.7. Let $F: I \to \mathbb{R}^n$ be a multivalued map. The *integral* of F is defined by

$$\int_I F(t)\,dt = \Big\{z = \int_I f(t)\,dt: f \in L^1(I), f(t) \in F(t) \ \forall t \in I\Big\}.$$

Lemma 2.8. Let $F: I \to \mathbb{R}^n$ be a multivalued map with compact values such that there exists $h \in L^1(I)$ satisfying

$$||F(t)|| = \sup\{||y|| : y \in F(t)\} \le h(t)$$
 a.e. $t \in I$.

Then, $\int_I F(t) dt$ is non-empty, convex and compact.

3 Strongly admissible compact functions

In this section, we consider a particular case of the main result of this paper. The presentation is simpler and helps to a better understanding of the more general case. More precisely, we establish fixed point results for strongly admissible compact functions that we define as follows. Let X be a closed subset of \mathbb{E} , and Y a closed subset of \mathbb{E} or $\mathbb{E} \times \mathbb{R}$.

Definition 3.1. A compact map $f: Y \to \mathbb{E}$ is called *strongly admissible* if for every $n \in \mathbb{N}$,

- (1) $||f(x) f(y)||_n = 0$ when $||x y||_n = 0$;
- (2) the function $f_n: Y_n \to \mathbb{E}_n$ defined by $f_n(\mu_n(x)) = \mu_n \circ f(x)$ admits a continuous extension $\mathbf{f}_n: \overline{Y_n} \to \mathbb{E}_n$.

Obviously, if f is strongly admissible then $\mathbf{f}_n : \overline{Y_n} \to \mathbb{E}_n$ is compact for every $n \in \mathbb{N}$.

Definition 3.2. Let $f: X \to \mathbb{E}$. We say that f is in the class $A_{\partial}^{s}(X)$, if f is strongly admissible, and for every $n \in \mathbb{N}$, $z \neq \mathbf{f}_{n}(z)$ for every $z \in \partial X_{n}$.

Remark. Let $\hat{x} \in X$ then the constant function associated to \hat{x} (still denoted \hat{x}) is strongly admissible. Moreover, if $\hat{x} \in \text{pseudo-int}(X)$ then $\hat{x} \in A_{\partial}^s(X)$.

In the class $A^s_{\partial}(X)$, we introduce a notion of homotopy.

Definition 3.3. Let $f, g \in A^s_{\partial}(X)$. We say that f and g are homotopic in $A^s_{\partial}(X)$ if there exists a strongly admissible compact map $h: X \times [0,1] \to \mathbb{E}$ such that

- (1) $h(\cdot,0) = f, h(\cdot,1) = q$;
- (2) $h(\cdot, \lambda) \in A_{\partial}^{s}(X)$ for every $\lambda \in [0, 1]$.

We write $f \approx_s q$.

Clearly, \approx_s is an equivalence relation in $A^s_{\partial}(X)$. Now, we can establish the main fixed point result of this section.

Theorem 3.4. Let $f \in A^s_{\partial}(X)$, and let $\hat{x} \in pseudo-int(X)$. If $f \approx_s \hat{x}$, then f has a fixed point.

Proof. Let $h: X \times [0,1] \to \mathbb{E}$ be an homotopy between f and \hat{x} in $A_{\partial}^{s}(X)$. Therefore, for every $n \in \mathbb{N}$,

$$\boldsymbol{h}_n: \overline{X_n} \times [0,1] \to \mathbb{E}_n,$$

is a compact homotopy between f_n and the constant function $\mu_n(\hat{x})$, without fixed point on the boundary of $\overline{X_n}$. By the Topological Transversality Theorem [6, theorem 4.4.7], f_n has a fixed point $z_n \in \overline{X_n}$.

Obviously $\mu_{n,m}(z_m) = \boldsymbol{f}_n(\mu_{n,m}(z_m))$ for every $m \geq n$. By compactness, the sequence $(\mu_{1,m}(z_m))_{m\geq 1}$ has a subsequence $(\mu_{1,m}(z_m))_{m\in N_1}$ converging to $y_1 \in \overline{X_1}$. It follows from the continuity of \boldsymbol{f}_1 that $y_1 = \boldsymbol{f}_1(y_1)$.

Again, the sequence $(\mu_{2,m}(z_m))_{m\in N_1}$ has a subsequence $(\mu_{2,m}(z_m))_{m\in N_2}$ converging to $y_2\in \overline{X_2}$, with $y_2=f_2(y_2)$. By uniqueness of the limit, $\mu_{1,2}(y_2)=y_1$.

In repeating this argument, we obtain for every $n \in \mathbb{N}$, $y_n \in \overline{X_n}$ such that $y_n = f_n(y_n)$; and $\mu_{n,m}(y_m) = y_n$ for every $m \ge n$. It follows from Lemma 2.2 the existence of $y \in X$ such that y = f(y).

Corollary 3.5. Let $f: X \to \mathbb{E}$ be a strongly admissible compact map. If $0 \in pseudo-int(X)$, then one of the following statements holds:

- (a) f has a fixed point;
- (b) there exist $n \in \mathbb{N}$, $\lambda \in (0,1]$, and $z \in \partial X_n$ such that $z = \lambda \mathbf{f}_n(z)$.

Proof. Since $\overline{\operatorname{co}}(\{0\} \cup \overline{f(X)})$ is compact, $h: X \times [0,1] \to \mathbb{E}$ defined by $h(x,\lambda) = \lambda f(x)$ is compact and obviously strongly admissible. The conclusion follows directly from Definition 3.3 and Theorem 3.4.

4 Admissible compact functions

As we have seen in the previous section, strongly admissible compact functions must satisfy a very restrictive condition, namely:

$$||f(x) - f(y)||_n = 0$$
 whenever $||x - y||_n = 0$.

In this section, compact functions which may not satisfy this condition are considered. In this case, $f_n(\mu_n(x)) = \mu_n \circ f(x)$ is not well defined, and hence we can not proceed as in the previous section. We define for every $n \in \mathbb{N}$, the multivalued map $S_n: Y \to Y$ by

$$S_n(x) = \{ y \in Y : ||x - y||_n = 0 \}.$$

Definition 4.1. A compact map $f: Y \to \mathbb{E}$ is called *admissible* if for every $n \in \mathbb{N}$,

(1) the multivalued map $F_n: Y_n \to \mathbb{E}_n$ defined by

$$F_n(\mu_n(x)) = \overline{\operatorname{co}}(\mu_n \circ f \circ S_n(x))$$

admits an upper semi-continuous extension $\mathbf{F}_n : \overline{Y_n} \to \mathbb{E}_n$ with convex, compact values;

(2) for every $\varepsilon > 0$, there exists $m \ge n$ such that for every $x \in Y$,

$$\operatorname{diam}_n(f(S_m(x))) < \varepsilon.$$

Definition 4.2. Let $f: X \to \mathbb{E}$ be a compact map. We say that f is in the *class* $A_{\partial}(X)$, if f is admissible, and for every $n \in \mathbb{N}$, $z \notin \mathbf{F}_n(z)$ for every $z \in \partial X_n$.

Clearly, a strongly admissible function is admissible, and $A_{\partial}^{s}(X) \subset A_{\partial}(X)$. As before, we introduce a notion of homotopy in the class $A_{\partial}(X)$.

Definition 4.3. Let $f, g \in A_{\partial}(X)$. We say that f and g are homotopic in $A_{\partial}(X)$ if there exists an admissible compact map $h: X \times [0,1] \to \mathbb{E}$ such that

- (1) $h(\cdot,0) = f, h(\cdot,1) = g;$
- (2) $h(\cdot, \lambda) \in A_{\partial}(X)$ for every $\lambda \in [0, 1]$.

We write $f \approx g$.

Now, we can establish our main fixed point theorem.

Theorem 4.4. Let $f \in A_{\partial}(X)$, and let $\hat{x} \in pseudo-int(X)$. If $f \approx \hat{x}$, then f has a fixed point.

Proof. In using the Topological Transversality Theorem for upper semi-continuous compact map with convex values [6, section 5.11], we deduce as in the previous section that \mathbf{F}_n has a fixed point $z_n \in \overline{X_n}$.

In using Lemma 2.2, the compactness and upper semi-continuity of \mathbf{F}_n , and in arguing as in the proof of Theorem 3.4, we obtain the existence of $y \in X$ such that $\mu_n(y) \in \mathbf{F}_n(\mu_n(y))$ for every $n \in \mathbb{N}$.

We have to show that y = f(y). If this is false, there exists $n \in \mathbb{N}$ and $\alpha > 0$ such that $||y - f(y)||_n = \alpha$. Let $\varepsilon < \alpha/2$. By Definition 4.1(2), there exists $m \ge n$ such that $\operatorname{diam}_n(f(S_m(y))) < \varepsilon$. We have

$$\operatorname{diam}_n \Big(f(S_m(y)) \Big) = \operatorname{diam}_n \Big(\operatorname{co} \Big(f(S_m(y)) \Big) \Big).$$

On the other hand, since $\mu_m(y) \in \mathbf{F}_m(\mu_m(y))$, we can take $w \in \text{co}(f(S_m(y)))$ such that $||y-w||_m < \varepsilon$. Thus,

$$\alpha = \|y - f(y)\|_n \le \|y - w\|_n + \|w - f(y)\|_n < \|y - w\|_m + \varepsilon < 2\varepsilon < \alpha;$$

a contradiction.

Remark. It can be seen in the last proof that condition (2) of Definition 4.1 is not needed for $h(\cdot, \lambda)$, $\lambda \in (0, 1)$.

Corollary 4.5. Assume that $0 \in pseudo-int(X)$. If $f: X \to \mathbb{E}$ is an admissible compact map, then one of the following statements holds:

- (a) f has a fixed point;
- (b) there exist $n \in \mathbb{N}$, $\lambda \in (0,1]$, and $z \in \partial X_n$ such that $z \in \lambda \mathbf{F}_n(z)$.

5 Applications

5.1 First order differential equations

We consider the problem

$$x'(t) = g(t, x(t)), \quad t \in I,$$

 $x(0) = 0,$ (5.1)

with I a real interval which will be precised later.

5.1.1 Finite systems on $[0, \infty)$

We start with the following known result on finite systems of first order differential equations on the half line, see [12]. For sake of simplicity, we assume that g is continuous; we could have treated the Carathéodory case. Also, the following theorem can be generalized to differential equations in a Banach space, in the K-Carathéodory context, see [10].

Theorem 5.1. Let $g:[0,\infty)\times\mathbb{R}^N\to\mathbb{R}^N$ be a continuous function with $N\in\mathbb{N}$. Assume there exist $\theta\in L^1_{loc}[0,\infty)$ and $\psi:[0,\infty)\to(0,\infty)$ a continuous function such that $\|g(t,x)\|\leq \theta(t)\psi(\|x\|)$ for all $t\in[0,\infty)$, and $x\in\mathbb{R}^N$. Let

$$T = \sup \Big\{ t \ge 0 : \int_0^\infty \frac{dz}{\psi(z)} > \|\theta\|_{L^1[0,t]} \Big\}.$$

Then the problem (5.1) has a solution on [0, T).

Proof. For t < T, set M(t) > 0 such that

$$\int_0^{M(t)} \frac{dz}{\psi(z)} > \|\theta\|_{L^1[0,t]}.$$

Take $\mathbb{E} = C([0,T),\mathbb{R}^N)$, $X = \{x \in \mathbb{E} : ||x(t)|| \leq M(t) \text{ for every } t \in [0,T)\}$, and define $f: X \to \mathbb{E}$ by

$$f(x)(t) = \int_0^t g(s, x(s)) ds.$$

It is easy to show that f is a strongly admissible compact map. By standard arguments and the choice of M(t), we deduce that $\lambda f \in A^s_{\partial}(X)$ for every $\lambda \in [0,1]$, see [12]. Since $0 \in \text{pseudo-int}(X)$, the existence of a solutions follows from Corollary 3.5.

5.1.2 Infinite systems of differential equations

On $\mathbb{R}^{\mathbb{N}}$, let us define the family of semi-norms:

$$|||(x_1, x_2, \dots)|||_n = (|x_1|^2 + \dots + |x_n|^2)^{1/2}.$$

The first result of this paragraph is a generalization of Peano's Theorem to infinite systems of first order differential equations.

Theorem 5.2. Let r > 0 and $g : [0,T] \times [-r,r]^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ a continuous function such that

- (1) $\sup\{M_n : n \in \mathbb{N}\} < \infty$, where $M_n = \max\{|||g(t,x)|||_n : (t,x) \in [0,T] \times [-r,r]^{\mathbb{N}}\};$
- (2) for every $n \in \mathbb{N}$, there exists a sequence $(k_m^n)_{m \geq n}$ converging to 0 such that for every $m \geq n$,

$$|||q(t,x) - q(t,y)|||_n < k_m^n$$

for all $t \in [0, T], x, y \in [-r, r]^{\mathbb{N}}$ such that $|||x - y|||_m = 0$.

Then there exists $\tau \in (0,T]$ such that the system (5.1) has a solution on $[0,\tau]$.

Proof. Take $\tau \in (0,T]$ such that

$$\tau \sup_{n \in \mathbb{N}} M_n < r.$$

Consider the Fréchet space $\mathbb{E} = C([0,\tau],\mathbb{R}^{\mathbb{N}})$ endowed with the family of semi-norms:

$$||u||_n = \max_{t \in [0,\tau]} |||u(t)|||_n.$$

Set $X = \{u \in \mathbb{E} : |u_n(t)| \le r \text{ for every } t \in [0, \tau], n \in \mathbb{N} \}$. Define $f : X \to \mathbb{E}$ by

$$f(u)(t) = \int_0^t g(s, u(s)) ds.$$

It is easy to show that the function f is continuous and compact.

We have that for every $n \in \mathbb{N}$, $X_n = \overline{X_n}$, and the function $S_n^* : X_n \to X$ defined by $S_n^*(u) = \{u\} \times \Gamma_n$, where

$$\Gamma_n = \Big\{ \big(v_{n+1}, v_{n+2}, \dots \big) \in \prod_{i=n+1}^{\infty} C[0, \tau] : |v_m(t)| \le r \text{ for all } t \in [0, \tau] \text{ and } m > n \Big\},$$

is continuous, since it is the product of a continuous function with a constant multivalued map. It follows from Lemma 2.4 that $f \circ S_n^*$ is continuous, and hence $\overline{f \circ S_n^*}$ is continuous by Lemma 2.5.

To deduce that f is admissible, we want to show that for every $n \in \mathbb{N}$, $F_n = \mathbf{F}_n = \overline{f \circ S_n^*}$. To this end, observe that for $u \in X_n$,

$$\overline{f \circ S_n^*}(u) = \text{cl}\Big(\Big\{w \in C([0,\tau], \mathbb{R}^n) : w(t) = \int_0^t (g_1, \dots, g_n)(s, v(s)) \, ds$$
with $v \in X$ and $\|u - v\|_n = 0\Big\}\Big)$

$$= \Big\{w \in C([0,\tau], \mathbb{R}^n) : w(t) \in \int_0^t G_n(s, u(s)) \, ds\Big\},$$

where $G_n: [0,\tau] \times [-r,r]^n \to \mathbb{R}^n$ is defined by

$$G_n(t, (x_1, \dots, x_n)) = \{(g_1(t, y), \dots, g_n(t, y)) : y = (x_1, \dots, x_n, y_{n+1}, \dots) \in [-r, r]^{\mathbb{N}} \}.$$

From the continuity of g, we deduce that the multivalued map G_n has compact values, $t \mapsto G_n(t,x)$ is measurable, and $x \mapsto G_n(t,x)$ is continuous. It follows from Lemmas 2.6 and 2.8 that $\overline{f \circ S_n^*}$ has convex, compact values. Thus $\mathbf{F}_n = \overline{f \circ S_n^*}$.

It follows directly from assumption (2) that for every $n \in \mathbb{N}$, and every $m \geq n$,

$$\operatorname{diam}_n(f(S_m(u))) \le k_m^n T$$
 for every $u \in X$.

Hence, f is admissible.

The choice of τ with standard arguments permit to conclude that statement (b) of Corollary 4.5 does not hold. Therefore, the problem (5.1) has a solution on $[0, \tau]$.

Now, we present a generalization of Wintner's Theorem to infinite systems of differential equations, see [15] or [12] for finite systems.

Theorem 5.3. Let $g:[0,T]\times\mathbb{R}^{\mathbb{N}}\to\mathbb{R}^{\mathbb{N}}$ be a continuous function such that

(1) there exists $\hat{n} \in \mathbb{N}$ such that for every $m \geq \hat{n}$ there exist $M_m > 0$ and $\psi_m : [0, \infty) \to (0, \infty)$ continuous such that

$$\int_{0}^{M_{m}} \frac{ds}{\psi_{m}(s)} > T \quad and \quad |||g(t,x)|||_{m} \le \psi_{m}(|||x|||_{m}) \text{ for all } t \in [0,T], x \in \mathbb{R}^{\mathbb{N}};$$

(2) for every $n \geq \hat{n}$, there exists a sequence $(k_m^n)_{m \geq n}$ converging to 0 such that for every $m \geq n$,

$$|||g(t,x) - g(t,y)|||_n \le k_m^n$$

for all $t \in [0, T]$, $x, y \in \mathbb{R}^{\hat{n}-1} \times \prod_{i=\hat{n}}^{\infty} [-M_i, M_i]$ such that $|||x - y|||_m = 0$.

Then the system (5.1) has a solution on [0, T].

Proof. Without lost of generality, we may assume that $\hat{n} = 1$. Take $\mathbb{E} = C([0, T], \mathbb{R}^{\mathbb{N}})$, $X = \{u \in \mathbb{E} : |u_n(t)| \leq M_n \text{ for every } t \in [0, T], n \in \mathbb{N}\}$, and define $f : X \to \mathbb{E}$ by

$$f(u)(t) = \int_0^t g(s, u(s)) ds.$$

In arguing as in the proof of the previous theorem, we deduce that f is admissible. Assumption (1) with standard arguments (see for example [8]) permit to conclude that statement (b) of Corollary 4.5 does not hold. Therefore, the problem (5.1) has a solution on [0, T].

5.2 Integral equations

We consider the integral equation

$$x(t) = \int_{\mathbb{R}} g(t, s, u(s)) ds, \quad t \in \mathbb{R},$$
 (5.2)

where $g: \mathbb{R}^{N+2} \to \mathbb{R}^N$, $N \in \mathbb{N}$.

Denote $\mathbb{E} = C(\mathbb{R}, \mathbb{R}^N)$ the Fréchet space endowed with the family of semi-norms

$$||u||_n = \max_{t \in [-n,n]} ||u(t)||.$$

Let X be a closed subset of \mathbb{E} which will be determined later. Define $f: X \to \mathbb{E}$ by

$$f(u)(t) = \int_{\mathbb{R}} g(t, s, u(s)) ds.$$

We assume that the following conditions are satisfied:

- (H1) g is continuous;
- (H2) for every $t \in \mathbb{R}$, there exists $h_t \in L^1(\mathbb{R})$ such that

$$||g(t, s, u(s))|| \le h_t(s)$$
 for all $u \in X$ and all $s \in \mathbb{R}$;

(H3) for every $t \in \mathbb{R}$,

$$\sup_{u \in X} \left\| \int_{\mathbb{R}} g(t, s, u(s)) - g(r, s, u(s)) \, ds \right\| \to 0 \quad \text{as} \quad r \to t.$$

Lemma 5.4. Under (H1) – (H3), f is continuous and compact. Moreover, for every $\varepsilon > 0$ and every $n \in \mathbb{N}$, there exists $m \geq n$ such that for every $u \in X$, $diam_n(f(S_m(u))) < \varepsilon$.

Proof. It follows from (H1) - (H3) that f is well defined.

Let $n \in \mathbb{N}$, and $\varepsilon > 0$. Assumption (H3) implies that for every $t \in [-n, n]$, there exists $\delta_t > 0$ such that for every $t \in (t - \delta_t, t + \delta_t)$,

$$\left\| \int_{\mathbb{D}} g(t, s, u(s)) - g(r, s, u(s)) \, ds \right\| < \varepsilon, \quad \text{for every } u \in X.$$
 (5.3)

The open cover $\{(t-\delta_t, t+\delta_t)\}_{\{t\in[-n,n]\}}$ has a finite subcover $\{(t_i-\delta_i, t_i+\delta_i)\}_{\{i=1,\dots,l\}}$. Now, take (u_k) a sequence in X converging to u_0 . We have to show that $||f(u_k)-f(u_0)||_n \to 0$. From (H1) and (H2), we have that for every $i \in \{1,\dots,l\}$, there exists $K_i \in \mathbb{N}$ such that for every $k \geq K_i$,

$$||f(u_k)(t_i) - f(u_0)(t_i)|| < \varepsilon.$$

This inequality combined with (5.3) implies that for every $t \in [-n, n]$, and every $k \ge K = \max\{K_1, \ldots, K_l\}$,

$$||f(u_k)(t) - f(u_0)(t)|| \le ||f(u_k)(t) - f(u_k)(t_i)|| + ||f(u_k)(t_i) - f(u_0)(t_i)|| + ||f(u_0)(t_i) - f(u_0)(t)|| < 3\varepsilon,$$

with $t \in (t_i - \delta_i, t_i + \delta_i)$. Hence f is continuous.

On the other hand, let h_i be the function given by (H2) associated to t_i , $i \in \{1, ..., l\}$. Again, in using (5.3), we deduce that for every $u \in X$ and every $t \in [-n, n]$,

$$||f(u)(t)|| \le ||f(u)(t) - f(u)(t_i)|| + ||f(u)(t_i)||$$

$$\le \varepsilon + \max \Big\{ ||h_1||_{L^1}, \dots, ||h_l||_{L^1} \Big\}.$$

So that $f(X)|_{[-n,n]}$ is bounded in $C([-n,n],\mathbb{R}^N)$. It is equicontinuous by (H3). The compacity of f follows from Arzela-Ascoli's Theorem.

Finally, for every $i \in \{1, ..., l\}$, there exits $r_i > 0$ such that

$$||h_i||_{L^1(\mathbb{R}\setminus[-r_i,r_i])}<\varepsilon.$$

Take $m \in \mathbb{N}$ such that $m \ge \max\{r_1, \dots, r_l\}$. It follows that for every $t \in [-n, n]$, and every $u, v \in X$ such that $||u - v||_m = 0$,

$$||f(u)(t) - f(v)(t)|| \le ||f(u)(t) - f(u)(t_i)|| + ||f(u)(t_i) - f(v)(t_i)|| + ||f(v)(t_i) - f(v)(t)|| < 2\varepsilon + || \int_{\mathbb{R}\setminus[-m,m]} g(t_i, s, u(s)) - g(t_i, s, v(s)) ds || \le 2\varepsilon + 2||h_i||_{L^1(\mathbb{R}\setminus[-m,m])} < 4\varepsilon,$$

with $t \in (t_i - \delta_i, t_i + \delta_i)$. Thus,

$$\sup_{u \in X} \operatorname{diam}_n \left(f(S_m(u)) \right) < 4\varepsilon.$$

Proposition 5.5. Let $M : \mathbb{R} \to (0, \infty)$ be a continuous function, and g a function satisfying (H1)–(H3) with $X = \{u \in C(\mathbb{R}, \mathbb{R}^N) : ||u(t)|| \leq M(t) \ \forall t \in \mathbb{R}\}$. Then f is admissible.

Proof. For every $n \in \mathbb{N}$,

$$X_n = \overline{X_n} = \{ u \in C([-n, n], \mathbb{R}^N) : ||u(t)|| \le M(t) \ \forall t \in [-n, n] \},$$

and the function $S_n^*: X_n \to X$ defined by

$$S_n^*(u) = \{v \in X : v \text{ is a continuous extension of } u\}$$

is continuous. Therefore $f \circ S_n^*$ is continuous and compact by Lemmas 2.4 and 5.4, and hence $\overline{f \circ S_n^*}$ is continuous by Lemma 2.5.

On the other hand, for $u \in X_n$,

$$\overline{f \circ S_n^*}(u)(t) = \int_{\mathbb{R}} G_n(t, s, u(s)) \, ds,$$

where $G_n: [-n, n] \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is given by

$$G_n(t, s, x) = \begin{cases} g(t, s, x), & \text{if } |s| \le n, \\ \{g(t, s, y) : ||y|| \le M(s)\}, & \text{if } |s| > n. \end{cases}$$

From (H1) and (H2), we deduce that G_n has compact values, $s \mapsto G_n(t, s, x)$ is measurable, and $x \mapsto G_n(t, s, x)$ is continuous. So, it follows from Lemmas 2.6 and 2.8 that for every $u \in X_n$ and every $t \in [-n, n]$, $\overline{f} \circ S_n^*(u)(t)$ is convex, and hence $\overline{f} \circ S_n^*$ has convex, compact values. So, $F_n = \mathbf{F}_n = \overline{f} \circ S_n^*$.

If follows from Lemma 5.4 that f satisfies condition (2) of Definition 4.1. Thus, f is admissible.

Theorem 5.6. Let $g: \mathbb{R}^{N+2} \to \mathbb{R}^N$ be a continuous function. Assume that there exist $h, l \in C(\mathbb{R}^2, [0, \infty))$ such that for every $t \in \mathbb{R}$, $h(t, \cdot) \in L^1(\mathbb{R})$, $t \mapsto ||h(t, \cdot)||_{L^1}$ is continuous, l(t, s) = 0 for $|s| \ge |t|$ and

$$||g(t, s, u)|| \le h(t, s) + l(t, s)||u||.$$

Then the integral equation (5.2) has a solution.

Proof. Let $M \in C(\mathbb{R}, (0, \infty))$ be a function which will be determined later, and $X = \{u \in C(\mathbb{R}, \mathbb{R}^N) : ||u(t)|| \leq M(t) \text{ for every } t \in \mathbb{R}\}$. It is easy to verify that (H1)–(H3) are satisfied.

Let $n \in \mathbb{N}$, and $T \in [0, n]$. Assume that for some $u \in X_n$ and some $\lambda \in (0, 1]$, $u \in \lambda \mathbf{F}_n(u)$. Then, for all $t \in [-T, T]$,

$$||u(t)|| \leq \int_{-|t|}^{|t|} h(t,s) + l(t,s)||u(s)|| ds + \int_{[-|t|,|t|]^c} h(t,s) ds$$

$$\leq \int_{-|t|}^{|t|} m_T(s) + k_T ||u(s)|| ds + a_T,$$

where

$$m_T(s) = \max \{h(t, s) : t \in [-T, -|s|] \cup [|s|, T]\},\$$

 $k_T = \max \{l(t, s) : (t, s) \in [-T, T] \times \mathbb{R}\},\$

and

$$a_T = \sup \Big\{ \|h(t,\cdot)\|_{L^1([-|t|,|t|]^c)} : t \in [-T,T] \Big\}.$$

So, for all $t \in [0, T]$,

$$z(t) \le a_T + 2 \int_0^t m_T(s) + k_T z(s) \, ds,$$

with $z(t) = \max \{||u(t)||, ||u(-t)||\}$. By Gronwall's inequality, we deduce that for every $t \in [0, T]$,

$$z(t) \le a_T e^{2k_T t} + 2 \int_0^t m_T(s) e^{2k_T(t-s)} ds.$$

Fix $M \in C(\mathbb{R}, (0, \infty))$ an even function such that for $t \geq 0$

$$M(t) > a_t e^{2k_t t} + 2 \int_0^t m_t(s) e^{2k_t (t-s)} ds.$$

The conclusion follows from Corollary 4.5, Proposition 5.5, and the choice of M.

References

[1] P. M. Anselone and I. H. Sloan, *Integral equations on the half line*, J. Integral Equations 9 (1986), 3–23.

- [2] P. M. Anselone and J. W. Lee, Nonlinear integral equations on the half line, J. Integral Equations Appl. 4 (1992), 1–14.
- [3] Y. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, *Multivalued mappings*, Itogi Nauki i Tekhniki, Ser. Mat. Anal. **19** (1982), 127–230 (Russian); english translation: J. Soviet Math. **24** (1982), 719–791.
- [4] M. CECCHI, M. Furi, and M. Marini, On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals, Nonlinear Anal. 9 (1985), 171–180.
- [5] J. DUGUNDJI, Topology, Wm. C. Brown, Dubuque, 1989.
- [6] J. Dugundji and A. Granas, *Fixed point theory*, vol. 1, PWN, Warszawa, 1982.
- [7] M. FRIGON, Fixed point results for generalized contractions in gauge spaces and applications, Proc. Amer. Math. Soc. 128 (2000), 2957–2965.
- [8] M. Frigon Théorèmes d'existence de solutions d'inclusions différentielles, Topological Methods in Differential Equations and Inclusions, NATO ASI Series, Ser. C: Math. and Phy. Sci., **472**, Kluwer Academic Publ. Dordrecht, 1995, 51–87.
- [9] M. FRIGON AND A. GRANAS, Résultats de type Leray-Schauder pour des contractions sur des espaces de Fréchet, Ann. Sci. Math. Québec **22** (1998), 161–168.
- [10] M. FRIGON AND J. W. LEE, Existence principles for Carathéodory differential equations in Banach spaces, Topol. Methods Nonlinear Anal. 1 (1993), 95–111.
- [11] M. Furi and P. Pera, A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Anal. Polon. Math. 47 (1987), 331–346.
- [12] J. W. LEE AND D. O'REGAN, Existence principles for differential equations and systems of equations, Topological Methods in Differential Equations and Inclusions, NATO ASI Series, Ser. C: Math. and Phy. Sci. 472, Kluwer Academic Publ. Dordrecht, 1995, 239–290.
- [13] J. W. LEE AND D. O'REGAN, Existence principles for nonlinear integral equations on semi-infinite intervals and half-open intervals, Advance in nonlinear dynamics, Stability Control Theory Methods Appl. 5, Gordon and Breach, Amsterdam, 1997, 355–364.

- [14] M. NAGUMO, Degree of mappings in convex linear topological spaces, Amer. J. Math. **73** (1951), 497–511.
- [15] A. WINTNER, The nonlocal existence problem for ordinary differential equations, Amer. J. Math. 67 (1945), 277-284.

Département de Mathématiques et Statistique, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, H3C 3J7, Canada.

email: frigon@dms.umontreal.ca