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Abstract

In this paper, we establish fixed point results for compact maps f : X → E

defined on arbitrary closed subsets X of a Fréchet space E. In particular,
we obtain a continuation principle for suitable compact homotopy h : X ×
[0, 1] → E. Afterwards, those results are applied to differential equations and
to Fredholm integral equations on the real line.

1 Introduction

It is well known (see [14]) that if h : X × [0, 1] → E is a compact map defined on X
the closure of an open set of a locally convex space E, and if h(x, 0) ≡ x̂ ∈ int(X),
then one of the following statements holds:

(a) h(·, 1) has a fixed point;

(b) there exist λ ∈ (0, 1) and x ∈ ∂X such that x = h(x, λ).

In the particular case where E is a Banach space, this important result was
widely applied, notably to nonlinear differential equations. Unfortunately, very few
applications were given in the case where E is a locally convex space which is not
normable. The problem is that in many potential applications, the appropriate set
X to work with has empty interior, see for example [4].
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Furi and Pera [11] were the first to obtain a continuation principle for compact
maps defined on closed convex subsets with possibly empty interior of a locally
convex space. Instead of statement (b), it was required that each (x, λ) ∈ ∂X×[0, 1)
with x = h(x, λ), has a neighborhood sent in X by h.

In this paper, fixed point results for compact maps f : X → E are established
for arbitrary closed subsets X (possibly non-convex and with empty interior). Our
approach, different from Furi and Pera’s one, is in the spirit of results on contractions
obtained in [7, 9], where E is regarded as a projective limit. Of course, in allowing
X to have empty interior, the statement (b) must be changed, and the point x̂ has
to be chosen in a different way. To this aim, we consider an appropriate class of
compact maps and we introduce the notion of pseudo-interior of X.

In order to simplify the notations, we consider a Fréchet space (E, {‖ · ‖n}n∈N).
It is worthwhile to mention that our results are also true in a locally convex space
(E, {‖ · ‖α}α∈Λ), where Λ is a directed set, and ‖u‖α ≤ cα,β ‖u‖β when α ≤ β; see [5]
for definitions.

In the last section, we present applications of our fixed point results to differential
and integral equations. The first one is a result of Lee and O’Regan [12] on first
order differential equations on the half line.

The second application concerns infinite systems of first order differential equa-
tions. A generalization of Peano’s Theorem, and a nonlocal existence result are
established.

Finally, we study Fredholm integral equations on the real line. In the very
interesting papers of Anselone with Sloan [1] and with Lee [2], integral equations
on the half line are treated in considering a sequence of integral equations on finite
intervals. This kind of technics was also used by Lee and O’Regan [13]. Our approach
is different since we always take into account the behavior of the function on the
whole real line.

2 Preliminaries

2.1 Spaces

Let E be a Fréchet space with the topology generated by a family of semi-norms
{‖ · ‖n}n∈N. For sake of simplicity, we will assume that the following condition is
satisfied:

‖x‖1 ≤ ‖x‖2 ≤ · · · for every x ∈ E. (?)

To E, we associate for every n ∈ N, a normed space En as follows: For each
n ∈ N, we write

x ∼n y if and only if ‖x− y‖n = 0. (2.1)

This defines an equivalence relation on E. We denote by En = E/∼n the quotient
space, and by En the completion of En with respect to ‖·‖n (the norm on En induced
by ‖·‖n and its extension to En are still denoted by ‖·‖n). This construction defines
a continuous map µn : E → En.

For each subset X ⊂ E, and each n ∈ N, we set Xn = µn(X), and we denote Xn,
and ∂Xn, respectively the closure and the boundary of Xn with respect to ‖ · ‖n in
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En. We denote by diamn, the n-diameter induced by ‖ · ‖n; that is, for X ⊂ E,

diamn(X) = sup{‖x− y‖n : x, y ∈ X}.

Since the set X that we will consider can have empty interior, we introduce the
notion of pseudo-interior of X that we define by

pseudo-int(X) = {x ∈ X : µn(x) ∈ Xn\∂Xn for every n ∈ N}.

Example. (1) Let E be the Fréchet space C[0,∞), and let X = {u ∈ C[0,∞) :
|u(t)| ≤ M for every t ∈ [0,∞) }. Then

pseudo-int(X) = {u ∈ C[0,∞) : |u(t)| < M for every t ∈ [0,∞) }.

(2) Let X = [−1, 1]N be in the Fréchet space R
N. Then

pseudo-int(X) = (−1, 1)N.

The following result establishes that the pseudo-int(X) is independent of the
choice of the family of semi-norms.

Proposition 2.1. Let X be a subset of E. Then x ∈ pseudo-int(X) if and only if
for every neighborhood of the origin U , there exists V a neighborhood of x such that

V ⊂ X +
⋂

λ>0

λU. (2.2)

Proof. If x ∈ X is such that for every neighborhood of 0 there exists a neighborhood
satisfying (2.2), then this holds in particular with Un = {y ∈ E : ‖y‖n < 1} for
n ∈ N. So,

x ∈ V ⊂ X +
⋂

λ>0

λUn,

and hence

µn(x) ∈ µn(V ) ⊂ µn

(

X +
⋂

λ>0

λUn

)

= Xn.

Since µn(V ) is open in En, there exists δ > 0 such that

{w ∈ En : ‖w − µn(x)‖n < δ} ⊂ µn(V ).

Therefore, µn(x) ∈ Xn\∂Xn.
On the other hand, let x ∈ pseudo-int(X) and U a neighborhood of the origin.

There exist n ∈ N and λ > 0 such that

λUn = {y ∈ E : ‖y‖n < λ} ⊂ U.

Since x ∈ pseudo-interior(X), there exists δ > 0 such that

W = {w ∈ En : ‖w − µn(x)‖n < δ} ⊂ Xn.

Therefore,
x ∈ V = µ−1

n (W ) ⊂ X +
⋂

λ>0

λUn ⊂ X +
⋂

λ>0

λU.

�
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Now, observe that, since the condition (?) is satisfied, the semi-norm ‖·‖n induces
a semi-norm on Em for every m ≥ n. For simplicity, this semi-norm is still denoted
by ‖ · ‖n. Again, the relation (2.1) defines an equivalence relation on Em from which
we obtain a continuous map µn,m : Em → En since Em/∼n can be regarded as a
subset of En. Observe that E is the projective limit of (En)n∈N.

The following lemma gives an important property of closed subsets of E.

Lemma 2.2. Assume that the condition (?) is satisfied, and let X be a closed sub-
set of E. Then, for every sequence (zn)n∈N with zn ∈ Xn, such that for every
n ∈ N, (µn,m(zm) )m≥n is a Cauchy sequence in Xn, there exists x ∈ X such that
(µn,m(zm) )m≥n converges to µn(x) ∈ Xn for every n ∈ N.

The family of semi-norms {‖ · ‖n}n∈N obviously induces a family of semi-norms
on E×R that we still denote by {‖·‖n}n∈N. Also, the continuous functions obtained
from the relation (2.1) on E × R are still denoted µn : E × R → En × R. Similarly
for the other notations.

In what follows, X is always a closed subset of E, and Y is a closed subset of E

or E× R. By a compact map f : Y → E, we mean a continuous map such that
f(Y ) is relatively compact in E.

2.2 Multivalued maps

We recall some definitions and results concerning multivalued mappings. For more
details, the reader is referred to [3] and the references therein. Let Z1, Z2, Z3 be
three metrizable spaces, and I ⊂ R a measurable set.

Definition 2.3. A multivalued mapping F : Z1 → Z2 is upper semi-continuous
(u.s.c.) if {z : F (z) ∩K 6= ∅} is closed for every closed subset K of Z2. It is lower
semi-continuous (l.s.c.) if {z : F (z) ∩ U 6= ∅} is open for every open subset U
of Z2. It is continuous if it is lower and upper semi-continuous. A multivalued map
F : I → Z2 is measurable if {t : F (t)∩K 6= ∅} is measurable for every closed subset
K of Z2.

Lemma 2.4. If F0 : Z1 → Z2 and F1 : Z2 → Z3 are two continuous multivalued
mappings, then F1 ◦ F0 : Z1 → Z3 is continuous.

Lemma 2.5. Let F : Z1 → Z2 be a continuous multivalued map with relatively
compact values. Then the map F : Z1 → Z2 defined by F (z) = F (z) is continuous.

Lemma 2.6. Let F : I ×R
m → R

n be a multivalued map with compact values such
that F is measurable in t ∈ I, and continuous in x ∈ R

m. Then for every measurable
(single-valued) function t 7→ x(t), the multivalued map t 7→ F (t, x(t)) is measurable.

Definition 2.7. Let F : I → R
n be a multivalued map. The integral of F is defined

by
∫

I
F (t) dt =

{

z =
∫

I
f(t) dt : f ∈ L1(I), f(t) ∈ F (t) ∀t ∈ I

}

.

Lemma 2.8. Let F : I → R
n be a multivalued map with compact values such that

there exists h ∈ L1(I) satisfying

‖F (t)‖ = sup{‖y‖ : y ∈ F (t)} ≤ h(t) a.e. t ∈ I.

Then,
∫

I F (t) dt is non-empty, convex and compact.
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3 Strongly admissible compact functions

In this section, we consider a particular case of the main result of this paper. The
presentation is simpler and helps to a better understanding of the more general
case. More precisely, we establish fixed point results for strongly admissible compact
functions that we define as follows. Let X be a closed subset of E, and Y a closed
subset of E or E× R.

Definition 3.1. A compact map f : Y → E is called strongly admissible if for every
n ∈ N,

(1) ‖f(x)− f(y)‖n = 0 when ‖x− y‖n = 0;

(2) the function fn : Yn → En defined by fn(µn(x)) = µn◦f(x) admits a continuous
extension fffn : Yn → En.

Obviously, if f is strongly admissible then fffn : Yn → En is compact for every
n ∈ N.

Definition 3.2. Let f : X → E. We say that f is in the class As
∂(X), if f is strongly

admissible, and for every n ∈ N, z 6= fffn(z) for every z ∈ ∂Xn.

Remark. Let x̂ ∈ X then the constant function associated to x̂ (still denoted x̂) is
strongly admissible. Moreover, if x̂ ∈ pseudo-int(X) then x̂ ∈ As

∂(X).

In the class As
∂(X), we introduce a notion of homotopy.

Definition 3.3. Let f, g ∈ As
∂(X). We say that f and g are homotopic in As

∂(X) if
there exists a strongly admissible compact map h : X × [0, 1] → E such that

(1) h(·, 0) = f , h(·, 1) = g;

(2) h(·, λ) ∈ As
∂(X) for every λ ∈ [0, 1].

We write f ≈s g.

Clearly, ≈s is an equivalence relation in As
∂(X). Now, we can establish the main

fixed point result of this section.

Theorem 3.4. Let f ∈ As
∂(X), and let x̂ ∈ pseudo-int(X). If f ≈s x̂, then f has a

fixed point.

Proof. Let h : X×[0, 1] → E be an homotopy between f and x̂ in As
∂(X). Therefore,

for every n ∈ N,

hhhn : Xn × [0, 1] → En,

is a compact homotopy between fffn and the constant function µn(x̂), without fixed
point on the boundary of Xn. By the Topological Transversality Theorem [6, theo-
rem 4.4.7], fffn has a fixed point zn ∈ Xn.

Obviously µn,m(zm) = fffn(µn,m(zm)) for every m ≥ n. By compactness, the
sequence (µ1,m(zm))m≥1 has a subsequence (µ1,m(zm))m∈N1

converging to y1 ∈ X1.
It follows from the continuity of fff 1 that y1 = fff 1(y1).
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Again, the sequence (µ2,m(zm))m∈N1
has a subsequence (µ2,m(zm))m∈N2

converg-
ing to y2 ∈ X2, with y2 = fff 2(y2). By uniqueness of the limit, µ1,2(y2) = y1.

In repeating this argument, we obtain for every n ∈ N, yn ∈ Xn such that
yn = fffn(yn); and µn,m(ym) = yn for every m ≥ n. It follows from Lemma 2.2 the
existence of y ∈ X such that y = f(y). �

Corollary 3.5. Let f : X → E be a strongly admissible compact map. If 0 ∈
pseudo-int(X), then one of the following statements holds:

(a) f has a fixed point;

(b) there exist n ∈ N, λ ∈ (0, 1], and z ∈ ∂Xn such that z = λfffn(z).

Proof. Since co({0}∪f(X)) is compact, h : X×[0, 1] → E defined by h(x, λ) = λf(x)
is compact and obviously strongly admissible. The conclusion follows directly from
Definition 3.3 and Theorem 3.4. �

4 Admissible compact functions

As we have seen in the previous section, strongly admissible compact functions must
satisfy a very restrictive condition, namely:

‖f(x)− f(y)‖n = 0 whenever ‖x− y‖n = 0.

In this section, compact functions which may not satisfy this condition are consid-
ered. In this case, fn(µn(x)) = µn ◦ f(x) is not well defined, and hence we can not
proceed as in the previous section. We define for every n ∈ N, the multivalued map
Sn : Y → Y by

Sn(x) = {y ∈ Y : ‖x− y‖n = 0}.

Definition 4.1. A compact map f : Y → E is called admissible if for every n ∈ N,

(1) the multivalued map Fn : Yn → En defined by

Fn(µn(x)) = co
(

µn ◦ f ◦ Sn(x)
)

admits an upper semi-continuous extension FFF n : Yn → En with convex, com-
pact values;

(2) for every ε > 0, there exists m ≥ n such that for every x ∈ Y ,

diamn

(

f(Sm(x))
)

< ε.

Definition 4.2. Let f : X → E be a compact map. We say that f is in the class
A∂(X), if f is admissible, and for every n ∈ N, z 6∈ FFF n(z) for every z ∈ ∂Xn.

Clearly, a strongly admissible function is admissible, and As
∂(X) ⊂ A∂(X). As

before, we introduce a notion of homotopy in the class A∂(X).
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Definition 4.3. Let f, g ∈ A∂(X). We say that f and g are homotopic in A∂(X) if
there exists an admissible compact map h : X × [0, 1] → E such that

(1) h(·, 0) = f , h(·, 1) = g;

(2) h(·, λ) ∈ A∂(X) for every λ ∈ [0, 1].

We write f ≈ g.

Now, we can establish our main fixed point theorem.

Theorem 4.4. Let f ∈ A∂(X), and let x̂ ∈ pseudo-int(X). If f ≈ x̂, then f has a
fixed point.

Proof. In using the Topological Transversality Theorem for upper semi-continuous
compact map with convex values [6, section 5.11], we deduce as in the previous
section that FFF n has a fixed point zn ∈ Xn.

In using Lemma 2.2, the compactness and upper semi-continuity of FFF n, and in
arguing as in the proof of Theorem 3.4, we obtain the existence of y ∈ X such that
µn(y) ∈ FFF n(µn(y)) for every n ∈ N.

We have to show that y = f(y). If this is false, there exists n ∈ N and α > 0
such that ‖y − f(y)‖n = α. Let ε < α/2. By Definition 4.1(2), there exists m ≥ n

such that diamn

(

f(Sm(y))
)

< ε. We have

diamn

(

f(Sm(y))
)

= diamn

(

co
(

f(Sm(y))
)

)

.

On the other hand, since µm(y) ∈ FFFm(µm(y)), we can take w ∈ co
(

f(Sm(y))
)

such

that ‖y − w‖m < ε. Thus,

α = ‖y − f(y)‖n ≤ ‖y − w‖n + ‖w − f(y)‖n < ‖y − w‖m + ε < 2ε < α;

a contradiction. �

Remark. It can be seen in the last proof that condition (2) of Definition 4.1 is not
needed for h(·, λ), λ ∈ (0, 1).

Corollary 4.5. Assume that 0 ∈ pseudo-int(X). If f : X → E is an admissible
compact map, then one of the following statements holds:

(a) f has a fixed point;

(b) there exist n ∈ N, λ ∈ (0, 1], and z ∈ ∂Xn such that z ∈ λFFF n(z).
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5 Applications

5.1 First order differential equations

We consider the problem

x′(t) = g(t, x(t)), t ∈ I,

x(0) = 0,
(5.1)

with I a real interval which will be precised later.

5.1.1 Finite systems on [0,∞)

We start with the following known result on finite systems of first order differential
equations on the half line, see [12]. For sake of simplicity, we assume that g is contin-
uous; we could have treated the Carathéodory case. Also, the following theorem can
be generalized to differential equations in a Banach space, in the K-Carathéodory
context, see [10].

Theorem 5.1. Let g : [0,∞) × R
N → R

N be a continuous function with N ∈ N.
Assume there exist θ ∈ L1

loc[0,∞) and ψ : [0,∞) → (0,∞) a continuous function
such that ‖g(t, x)‖ ≤ θ(t)ψ(‖x‖) for all t ∈ [0,∞), and x ∈ R

N . Let

T = sup
{

t ≥ 0 :
∫ ∞

0

dz

ψ(z)
> ‖θ‖L1[0,t]

}

.

Then the problem (5.1) has a solution on [0, T ).

Proof. For t < T , set M(t) > 0 such that

∫ M(t)

0

dz

ψ(z)
> ‖θ‖L1[0,t].

Take E = C([0, T ),RN), X = {x ∈ E : ‖x(t)‖ ≤ M(t) for every t ∈ [0, T )}, and
define f : X → E by

f(x)(t) =
∫ t

0
g(s, x(s)) ds.

It is easy to show that f is a strongly admissible compact map. By standard
arguments and the choice of M(t), we deduce that λf ∈ As

∂(X) for every λ ∈
[0, 1], see [12]. Since 0 ∈ pseudo-int(X), the existence of a solutions follows from
Corollary 3.5. �

5.1.2 Infinite systems of differential equations

On R
N, let us define the family of semi-norms:

|||(x1, x2, . . . )|||n =
(

|x1|
2 + · · ·+ |xn|

2
)1/2

.

The first result of this paragraph is a generalization of Peano’s Theorem to
infinite systems of first order differential equations.
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Theorem 5.2. Let r > 0 and g : [0, T ]× [−r, r]N → R
N a continuous function such

that

(1) sup{Mn : n ∈ N} < ∞, where Mn = max
{

|||g(t, x)|||n : (t, x) ∈ [0, T ] ×

[−r, r]N
}

;

(2) for every n ∈ N, there exists a sequence (kn
m)m≥n converging to 0 such that for

every m ≥ n,
|||g(t, x)− g(t, y)|||n ≤ kn

m

for all t ∈ [0, T ], x, y ∈ [−r, r]N such that |||x− y|||m = 0.

Then there exists τ ∈ (0, T ] such that the system (5.1) has a solution on [0, τ ].

Proof. Take τ ∈ (0, T ] such that

τ sup
n∈N

Mn < r.

Consider the Fréchet space E = C([0, τ ],RN) endowed with the family of semi-norms:

‖u‖n = max
t∈[0,τ ]

|||u(t)|||n.

Set X = {u ∈ E : |un(t)| ≤ r for every t ∈ [0, τ ], n ∈ N}. Define f : X → E by

f(u)(t) =
∫ t

0
g(s, u(s)) ds.

It is easy to show that the function f is continuous and compact.
We have that for every n ∈ N, Xn = Xn, and the function S∗n : Xn → X defined

by S∗n(u) = {u} × Γn, where

Γn =
{

(vn+1, vn+2, . . . ) ∈
∞
∏

i=n+1

C[0, τ ] : |vm(t)| ≤ r for all t ∈ [0, τ ] and m > n
}

,

is continuous, since it is the product of a continuous function with a constant multi-
valued map. It follows from Lemma 2.4 that f ◦ S∗

n is continuous, and hence f ◦ S∗
n

is continuous by Lemma 2.5.
To deduce that f is admissible, we want to show that for every n ∈ N,

Fn = FFF n = f ◦ S∗n. To this end, observe that for u ∈ Xn,

f ◦ S∗n(u) = cl
(

{

w ∈ C([0, τ ],Rn) : w(t) =
∫ t

0
(g1, . . . , gn)(s, v(s)) ds

with v ∈ X and ‖u− v‖n = 0
}

)

=
{

w ∈ C([0, τ ],Rn) : w(t) ∈
∫ t

0
Gn(s, u(s)) ds

}

,

where Gn : [0, τ ]× [−r, r]n → R
n is defined by

Gn(t, (x1, . . . , xn)) =
{

(g1(t, y), . . . , gn(t, y)) :

y = (x1, . . . , xn, yn+1, . . . ) ∈ [−r, r]N
}

.
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From the continuity of g, we deduce that the multivalued map Gn has compact
values, t 7→ Gn(t, x) is measurable, and x 7→ Gn(t, x) is continuous. It follows from
Lemmas 2.6 and 2.8 that f ◦ S∗

n has convex, compact values. Thus FFF n = f ◦ S∗n.
It follows directly from assumption (2) that for every n ∈ N, and every m ≥ n,

diamn

(

f(Sm(u))
)

≤ kn
mT for every u ∈ X.

Hence, f is admissible.
The choice of τ with standard arguments permit to conclude that statement (b)

of Corollary 4.5 does not hold. Therefore, the problem (5.1) has a solution on [0, τ ].
�

Now, we present a generalization of Wintner’s Theorem to infinite systems of
differential equations, see [15] or [12] for finite systems.

Theorem 5.3. Let g : [0, T ]× R
N → R

N be a continuous function such that

(1) there exists n̂ ∈ N such that for every m ≥ n̂ there exist Mm > 0 and
ψm : [0,∞) → (0,∞) continuous such that

∫ Mm

0

ds

ψm(s)
> T and |||g(t, x)|||m ≤ ψm(|||x|||m) for all t ∈ [0, T ], x ∈ R

N;

(2) for every n ≥ n̂, there exists a sequence (kn
m)m≥n converging to 0 such that for

every m ≥ n,
|||g(t, x)− g(t, y)|||n ≤ kn

m

for all t ∈ [0, T ], x, y ∈ R
n̂−1 ×

∏∞
i=n̂[−Mi,Mi] such that |||x− y|||m = 0.

Then the system (5.1) has a solution on [0, T ].

Proof. Without lost of generality, we may assume that n̂ = 1. Take E = C([0, T ],RN),
X = {u ∈ E : |un(t)| ≤Mn for every t ∈ [0, T ], n ∈ N}, and define f : X → E by

f(u)(t) =
∫ t

0
g(s, u(s)) ds.

In arguing as in the proof of the previous theorem, we deduce that f is admissible.
Assumption (1) with standard arguments (see for example [8]) permit to conclude

that statement (b) of Corollary 4.5 does not hold. Therefore, the problem (5.1) has
a solution on [0, T ]. �

5.2 Integral equations

We consider the integral equation

x(t) =
∫

R

g(t, s, u(s)) ds, t ∈ R, (5.2)

where g : R
N+2 → R

N , N ∈ N.
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Denote E = C(R,RN) the Fréchet space endowed with the family of semi-norms

‖u‖n = max
t∈[−n,n]

‖u(t)‖.

Let X be a closed subset of E which will be determined later. Define f : X → E by

f(u)(t) =
∫

R

g(t, s, u(s)) ds.

We assume that the following conditions are satisfied:

(H1) g is continuous;

(H2) for every t ∈ R, there exists ht ∈ L
1(R) such that

‖g(t, s, u(s))‖ ≤ ht(s) for all u ∈ X and all s ∈ R;

(H3) for every t ∈ R,

sup
u∈X

∥

∥

∥

∥

∫

R

g(t, s, u(s))− g(r, s, u(s)) ds

∥

∥

∥

∥

→ 0 as r → t.

Lemma 5.4. Under (H1) – (H3), f is continuous and compact. Moreover, for
every ε > 0 and every n ∈ N, there exists m ≥ n such that for every u ∈ X,
diamn

(

f(Sm(u))
)

< ε.

Proof. It follows from (H1) – (H3) that f is well defined.
Let n ∈ N, and ε > 0. Assumption (H3) implies that for every t ∈ [−n, n], there

exists δt > 0 such that for every r ∈ (t− δt, t+ δt),

∥

∥

∥

∥

∫

R

g(t, s, u(s))− g(r, s, u(s)) ds
∥

∥

∥

∥

< ε, for every u ∈ X. (5.3)

The open cover {(t−δt, t+δt)}{t∈[−n,n]} has a finite subcover {(ti−δi, ti+δi)}{i=1,...,l}.
Now, take (uk) a sequence in X converging to u0. We have to show that ‖f(uk)−

f(u0)‖n → 0. From (H1) and (H2), we have that for every i ∈ {1, . . . , l}, there exists
Ki ∈ N such that for every k ≥ Ki,

‖f(uk)(ti)− f(u0)(ti)‖ < ε.

This inequality combined with (5.3) implies that for every t ∈ [−n, n], and every
k ≥ K = max{K1, . . . , Kl},

‖f(uk)(t)− f(u0)(t)‖ ≤ ‖f(uk)(t)− f(uk)(ti)‖+ ‖f(uk)(ti)− f(u0)(ti)‖

+ ‖f(u0)(ti)− f(u0)(t)‖

< 3ε,

with t ∈ (ti − δi, ti + δi). Hence f is continuous.
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On the other hand, let hi be the function given by (H2) associated to ti, i ∈
{1, . . . , l}. Again, in using (5.3), we deduce that for every u ∈ X and every t ∈
[−n, n],

‖f(u)(t)‖ ≤ ‖f(u)(t)− f(u)(ti)‖+ ‖f(u)(ti)‖

≤ ε+ max
{

‖h1‖L1, . . . , ‖hl‖L1

}

.

So that f(X)|[−n,n] is bounded in C([−n, n],RN). It is equicontinuous by (H3). The
compacity of f follows from Arzela-Ascoli’s Theorem.

Finally, for every i ∈ {1, . . . , l}, there exits ri > 0 such that

‖hi‖L1(R\[−ri,ri]) < ε.

Take m ∈ N such that m ≥ max{r1, . . . , rl}. It follows that for every t ∈ [−n, n],
and every u, v ∈ X such that ‖u− v‖m = 0,

‖f(u)(t)− f(v)(t)‖ ≤ ‖f(u)(t)− f(u)(ti)‖+ ‖f(u)(ti)− f(v)(ti)‖

+ ‖f(v)(ti)− f(v)(t)‖

< 2ε+

∥

∥

∥

∥

∫

R\[−m,m]
g(ti, s, u(s))− g(ti, s, v(s)) ds

∥

∥

∥

∥

≤ 2ε+ 2‖hi‖L1(R\[−m,m])

< 4ε,

with t ∈ (ti − δi, ti + δi). Thus,

sup
u∈X

diamn

(

f(Sm(u))
)

< 4ε.

�

Proposition 5.5. Let M : R → (0,∞) be a continuous function, and g a function
satisfying (H1)–(H3) with X = {u ∈ C(R,RN) : ‖u(t)‖ ≤ M(t) ∀t ∈ R}. Then f
is admissible.

Proof. For every n ∈ N,

Xn = Xn = {u ∈ C([−n, n],RN ) : ‖u(t)‖ ≤M(t) ∀t ∈ [−n, n] },

and the function S∗n : Xn → X defined by

S∗n(u) = {v ∈ X : v is a continuous extension of u}

is continuous. Therefore f ◦ S∗
n is continuous and compact by Lemmas 2.4 and 5.4,

and hence f ◦ S∗n is continuous by Lemma 2.5.
On the other hand, for u ∈ Xn,

f ◦ S∗n(u)(t) =
∫

R

Gn(t, s, u(s)) ds,
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where Gn : [−n, n]× R× R
N → R

N is given by

Gn(t, s, x) =







g(t, s, x), if |s| ≤ n,

{g(t, s, y) : ‖y‖ ≤M(s)}, if |s| > n.

From (H1) and (H2), we deduce that Gn has compact values, s 7→ Gn(t, s, x) is
measurable, and x 7→ Gn(t, s, x) is continuous. So, it follows from Lemmas 2.6
and 2.8 that for every u ∈ Xn and every t ∈ [−n, n], f ◦ S∗

n(u)(t) is convex, and
hence f ◦ S∗n has convex, compact values. So, Fn = FFF n = f ◦ S∗n.

If follows from Lemma 5.4 that f satisfies condition (2) of Definition 4.1. Thus,
f is admissible. �

Theorem 5.6. Let g : R
N+2 → R

N be a continuous function. Assume that there
exist h, l ∈ C(R2, [0,∞) ) such that for every t ∈ R, h(t, ·) ∈ L1(R), t 7→ ‖h(t, ·)‖L1

is continuous, l(t, s) = 0 for |s| ≥ |t| and

‖g(t, s, u)‖ ≤ h(t, s) + l(t, s)‖u‖.

Then the integral equation (5.2) has a solution.

Proof. Let M ∈ C(R, (0,∞) ) be a function which will be determined later, and
X = {u ∈ C(R,RN) : ‖u(t)‖ ≤ M(t) for every t ∈ R}. It is easy to verify that
(H1)–(H3) are satisfied.

Let n ∈ N, and T ∈ [0, n]. Assume that for some u ∈ Xn and some λ ∈ (0, 1],
u ∈ λFFF n(u). Then, for all t ∈ [−T, T ],

‖u(t)‖ ≤
∫ |t|

−|t|
h(t, s) + l(t, s)‖u(s)‖ ds+

∫

[−|t|,|t|]c
h(t, s) ds

≤
∫ |t|

−|t|
mT (s) + kT‖u(s)‖ ds+ aT ,

where

mT (s) = max
{

h(t, s) : t ∈ [−T,−|s|] ∪ [|s|, T ]
}

,

kT = max
{

l(t, s) : (t, s) ∈ [−T, T ]× R

}

,

and

aT = sup
{

‖h(t, ·)‖L1([−|t|,|t|]c) : t ∈ [−T, T ]
}

.

So, for all t ∈ [0, T ],

z(t) ≤ aT + 2
∫ t

0
mT (s) + kT z(s) ds,

with z(t) = max
{

‖u(t)‖, ‖u(−t)‖}. By Gronwall’s inequality, we deduce that for

every t ∈ [0, T ],

z(t) ≤ aT e
2kT t + 2

∫ t

0
mT (s)e2kT (t−s) ds.

Fix M ∈ C(R, (0,∞) ) an even function such that for t ≥ 0

M(t) > ate
2ktt + 2

∫ t

0
mt(s)e

2kt(t−s) ds.

The conclusion follows from Corollary 4.5, Proposition 5.5, and the choice of M . �



36 M. Frigon

References

[1] P. M. Anselone and I. H. Sloan, Integral equations on the half line, J. In-
tegral Equations 9 (1986), 3–23.

[2] P. M. Anselone and J. W. Lee, Nonlinear integral equations on the half
line, J. Integral Equations Appl. 4 (1992), 1–14.

[3] Y. G. Borisovich, B. D. Gel’man, A. D. Myshkis, and

V. V. Obukhovskii, Multivalued mappings, Itogi Nauki i Tekhniki, Ser. Mat.
Anal. 19 (1982), 127–230 (Russian); english translation: J. Soviet Math. 24

(1982), 719–791.

[4] M. Cecchi, M. Furi, and M. Marini, On continuity and compactness of
some nonlinear operators associated with differential equations in noncompact
intervals, Nonlinear Anal. 9 (1985), 171–180.

[5] J. Dugundji, Topology, Wm. C. Brown, Dubuque, 1989.

[6] J. Dugundji and A. Granas, Fixed point theory, vol. 1, PWN, Warszawa,
1982.

[7] M. Frigon, Fixed point results for generalized contractions in gauge spaces
and applications, Proc. Amer. Math. Soc. 128 (2000), 2957–2965.
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C. P. 6128, Succ. Centre-ville,
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