Quelques remarques sur l'opérateur de Schrödinger avec un potentiel complexe singulier particulier

Tocka Diagana

Résumé

Le but dans cet article est l'étude de l'opérateur de Schrödinger à potentiel complexe singulier. Un potentiel V choisi de telle sorte que l'on ne puisse définir la somme algébrique $S=-\Delta+V$. En effet en supposant que V vérifie : $V\in L^1(\mathbb{R}^N),\ V\not\in L^2_{loc}(\mathbb{R}^N)$ et $\Re eV>0$ et si N<4, alors S n'a pas de sens. Ainsi on montre qu'il existe une somme $(-\Delta\oplus V)$, étendant la somme algébrique telle que l'on puisse résoudre les équations du type $\lambda u+(-\Delta\oplus V)u=v$ dans $L^2(\mathbb{R}^N)$.

Introduction

Le problème que l'on aborde dans ce papier est très classique. Il a été étudié par plusieurs mathématiciens par le passé, Brézis, Kato, Lapidus, Nelson, Simon ... Ces auteurs ont étudié l'opérateur de Schrödinger à potentiels singuliers complexes, singuliers positifs, singuliers imaginaires dans (cf [12], [5], [11], [13])... La nouveauté dans cet article c'est le choix d'un potentiel singulier complexe de sorte que l'on ne puisse définir la somme algébrique $S = -\Delta + V$, de façon précise on choisit le potentiel V de telle façon que $D(\Delta) \cap D(V) = \{0\}$. Dans ces conditions, il est tout a fait naturel de chercher à définir des extensions maximales de S. On peut définir une somme étendant la somme algébrique, la forme somme généralisée d'opérateurs

Received by the editors June 1999.

Communicated by J. Mawhin.

¹⁹⁹¹ Mathematics Subject Classification: 47B44, 35J10, 49R20, 81Q05.

 $[\]it Key\ words\ and\ phrases$: Forme somme, potentiel singulier, opérateur de Schrödinger, théorème du point fixe.

T. Diagana

maximaux accrétifs (cf [7]). A l'aide du théorème du point fixe, on montre que les équations du type $\lambda u + (-\Delta \oplus V)u = v$, admettent une unique solution $u_0 \in H^1(\mathbb{R}^N)$, pour $\Re e \lambda \geq \lambda_0$, pour cela on donnera une méthode directe permettant de montrer l'existence d'une solution, lorsque N=1 et lorsque N>1, on peut faire le même travail. Il est a noter que le choix de V dépend, dans le cas présent de la dimension N. En effet lorsque N<4, on sait que l'opérateur somme S n'est pas défini mais lorsque $N\geq 4$, on ne sait pas si $D(\Delta)\cap D(V)$ est trop petit ou s'il est dense dans $L^2(\mathbb{R}^N)$. Ce fait est donné par les injections de Sobolev.

1 Préliminaires

1.1 Opérateur de Schrödinger

Dans la suite on se place dans l'espace de Hilbert complexe des fonctions mesurables de carrés sommables, $L^2(\mathbb{R}^N)$. Dans cet espace on considère les opérateurs

$$Au = -\Delta u, \quad D(A) = \mathbb{H}^2(\mathbb{R}^N),$$

$$B_V u = V u, \ D(B_V) = \{ u \in L^2(\mathbb{R}^N) : \ V u \in L^2(\mathbb{R}^N) \}.$$

L'opérateur A est autoadjoint monotone et (-A) engendre un c_o semi-groupe $\exp(-At)_{t>0}$ et l'on a $\exp(-At)u = K_t \star u, \quad t>0, \quad K_t = (4\pi t)^{-\frac{N}{2}} \exp{(-\frac{\|x\|^2}{4t})}.$ Ainsi on a $(-\Delta + \lambda)^{-1}u = G_\lambda \star u$ ($\Re e \lambda > 0$) avec :

$$G_{\lambda}(x) = \int_{0}^{+\infty} (4\pi t)^{-\frac{N}{2}} \exp\left(-\frac{\|x\|^{2}}{4t}\right) \exp\left(-t\lambda\right) dt.$$

L'opérateur B_V est linéaire m-sectoriel ($\Re eV > 0$).

Théorème 0 (Sobolev). Soient k un entier naturel et $s > k + \frac{N}{2}$; alors l'espace $\mathbb{H}^s(\mathbb{R}^N)$ est continûment plongé dans l'espace $B^k(\mathbb{R}^N)$, des fonctions continues bornées sur \mathbb{R}^N ainsi que leurs dérivées d'ordre inférieur à k (Muni de sa norme naturelle). De plus on a

$$\lim_{\|x\|\to +\infty} |D^{\alpha}u(x)| = 0 \quad \forall u \in \mathbb{H}^s(\mathbb{R}^N) \text{ et } |\alpha| \le k.$$

1.2 Hypothèse sur V

On suppose dans la suite que le potentiel V vérifie :

$$H_V \Re e(V) > 0, \ V \in L^1(\mathbb{R}^N) \text{ et } V \notin L^2_{loc}(\mathbb{R}^N).$$

2 Principaux résultats

Proposition 1. Sous l'hypothèse H_V et si N < 4, on a $D(A) \cap D(B_V) = \{0\}$.

Preuve. Soit $u \in D(A) \cap D(B_V)$. On suppose que $u \not\equiv 0$. Mais puisque u est continue (selon le théorème 0 de Sobolev, N < 4), il existe alors un ouvert Ω de \mathbb{R}^N et $\mu > 0$ tels que $|u(x)| > \mu$ sur Ω . Soit Ω' une partie compacte de Ω , muni de la topologie

induite par celle de Ω , donc par celle de \mathbb{R}^N . Ainsi Ω' est aussi une partie compacte de \mathbb{R}^N . On a $(|V|)|_{\Omega'} = \frac{(|Vu|)|_{\Omega'}}{(|u|)|_{\Omega'}} \notin L^2(\Omega')$. Mais $(|Vu|)|_{\Omega'} \in L^2(\Omega')$ et $\frac{1}{(|u|)|_{\Omega'}} \in L^{\infty}(\Omega')$ ce qui entraı̂ne que $V \mid_{\Omega'} \in L^2(\Omega')$. D'où la contradiction.

Question. La Proposition 1 est-elle vraie lorsque $N \geq 4$?

Proposition 2. Sous l'hypothèse H_V , on a :

- 1. $D(A^{\frac{1}{2}}) \hookrightarrow D(B_{\frac{1}{2}})$, lorsque N=1
- 2. $D(A^{\frac{1}{2}}) \cap D(B_V^{\frac{1}{2}}) \supset C_c^{\infty}(\mathbb{R}^N)$ lorsque l'entier N < 4.

Preuve. Soit $u \in D(A^{\frac{1}{2}}) = \mathbb{H}^1(\mathbb{R}) \hookrightarrow L^{\infty}(\mathbb{R})$. On a $D(B_V^{\frac{1}{2}}) = \{u \in L^2(\mathbb{R}) : V|u|^2 \in L^1(\mathbb{R})\}$. Mais $u \in L^{\infty}(\mathbb{R})$, $V^{\frac{1}{2}} \in L^2(\mathbb{R})$, alors $V^{\frac{1}{2}}u \in L^2(\mathbb{R})$, c'est à dire $u \in D(B_V^{\frac{1}{2}})$. Ainsi on a $D(A^{\frac{1}{2}}) \cap D(B_V^{\frac{1}{2}}) = \mathbb{H}^1(\mathbb{R})$ est dense dans $L^2(\mathbb{R})$. De la même façon $D(A^{\frac{1}{2}}) \cap D(B_V^{\frac{1}{2}}) \supset C_c^{\infty}(\mathbb{R}^N)$ lorsque l'entier N < 4. ce qui veut dire que $D(A^{\frac{1}{2}}) \cap D(B_V^{\frac{1}{2}})$ est dense dans l'espace $L^2(\mathbb{R}^N)$.

2.1 Exemple de potentiel vérifiant H_V

Soit $\Omega \subset \mathbb{R}^N$ une partie compacte. Soit $g \in L^1(\Omega)$ telle que $g \notin L^2(\Omega)$, $\Re e(g) > 0$ et $g \equiv 0$ sur Ω^c .

Soit $\mu_n = (\mu_n^1, ..., \mu_n^N) \in \mathbb{Q}^N$, une N - énumération rationnelle. On pose alors

$$V(x) = \sum_{k=1}^{+\infty} \frac{g(x - \mu_k)}{k^2}.$$

Ainsi le potentiel V donné ci-dessus vérifie l'hypothèse H_V .

2.2 Forme somme généralisée

Les opérateurs A et B_V étant respectivement, auto-adjoint monotone et m-sectoriel. Si l'on considère les formes sesquilinéaires associées à ces deux opérateurs :

$$\Phi(u,v) = \int_{\mathbb{R}^N} \nabla u \overline{\nabla} v dx \ u \ , \ v \in D(\Phi) = \mathbb{H}^1(\mathbb{R}^N),$$

$$\Psi(u,v) = \int_{\mathbb{R}^N} V u \overline{v} dx \ u \ , \ v \in D(\Psi) = D(B_2^{\frac{1}{2}}),$$

et soit
$$\Xi(u,v) = \int_{\mathbb{R}^N} \nabla u \overline{\nabla} v dx + \int_{\mathbb{R}^N} V u \overline{v} dx \quad \forall u,v \in D(\Xi) = \mathbb{H}^1(\mathbb{R}^N) \cap D(B_V^{\frac{1}{2}}).$$

Alors la forme sesquilinéaire Ξ est strictement accrétive (Elle est sectorielle) fermée, de domaine $D(\Xi) = \mathbb{H}^1(\mathbb{R}^N) \cap D(B_V^{\frac{1}{2}})$ dense dans $L^2(\mathbb{R}^N)$, selon la proposition 2. Selon le premier théorème de représentation de Kato (cf [10] ou [7]), il existe alors un unique opérateur m-sectoriel $(-\Delta \oplus V)$ tel que : $\Xi(u,v) = <(-\Delta \oplus V)u,v> \forall u \in D((-\Delta \oplus V)), v \in D(\Xi)$.

Par ailleurs selon l'auteur dans ([7]), l'opérateur $(-\Delta \oplus V)$ vérifie la condition de Kato : $D((-\Delta \oplus V)^{\frac{1}{2}}) = D(\Xi) = D((-\Delta \oplus V)^{*\frac{1}{2}})$.

T. Diagana

2.3 Méthode de résolution directe

On se limitera au cas N=1. On sait selon ce qui précède que $D(\Delta) \cap D(V) = \{0\}$. La somme algébrique $S=-\Delta+V$ n'est donc pas définie. Le but est ici d'utiliser le théorème du point fixe pour montrer l'existence d'une solution pour les équations :

$$(E)$$
 $\lambda u + (-u'' \oplus Vu) = f$ dans $L^2(\mathbb{R})$.

En effet soit $T_{\lambda}: u \longrightarrow G_{\lambda} \star (f - Vu)$, une application de $L^{2}(\mathbb{R})$ dans $L^{2}(\mathbb{R})$, où $G_{\lambda}(x) = \frac{1}{2\lambda^{\frac{1}{2}}} e^{-\lambda^{\frac{1}{2}}|x|}$ (On peut supposer que $\lambda > 0$, le cas complexe se traite de la même facon).

Théorème 1. L'application T_{λ} applique $\mathbb{H}^1(\mathbb{R})$ dans $\mathbb{H}^1(\mathbb{R})$ et admet un unique point fixe, solution de l'équation (E) si λ est assez grand ($\lambda \geq \lambda_0$).

Preuve. soit $T_{\lambda}(u) = G_{\lambda} \star f - G_{\lambda} \star (Vu)$. Montrons que $G_{\lambda} \star f$ et $G_{\lambda} \star (Vu) \in \mathbb{H}^{1}(\mathbb{R})$ si $u \in \mathbb{H}^{1}(\mathbb{R})$. En effet $G_{\lambda} \star f \in L^{2}(\mathbb{R})$ du fait que $G_{\lambda} \in L^{1}(\mathbb{R})$ et $f \in L^{2}(\mathbb{R})$ et en plus $\|G_{\lambda} \star f\|_{2} \leq \|G_{\lambda}\|_{1} \|f\|_{2} = \frac{\|f\|_{2}}{\lambda}$. De même $(G_{\lambda} \star f)' = G'_{\lambda} \star f \in L^{2}(\mathbb{R})$, car $G'_{\lambda} \in L^{1}(\mathbb{R})$ et $f \in L^{2}(\mathbb{R})$. De plus, $\|G'_{\lambda} \star (f)\|_{2} \leq \|G'_{\lambda}\|_{1} \|f\|_{2} = \frac{\|f\|_{2}}{\lambda^{\frac{1}{2}}}$. It vient que : $\|G_{\lambda} \star f\|_{\mathbb{H}^{1}(\mathbb{R})} \leq (\frac{1}{\lambda^{2}} + \frac{1}{\lambda})^{\frac{1}{2}} \|f\|_{2}$. Par ailleurs $G_{\lambda} \star (Vu) \in L^{2}(\mathbb{R})$ car $G_{\lambda} \in L^{2}(\mathbb{R})$ et $Vu \in L^{1}(\mathbb{R})$. Ainsi on a

$$||G_{\lambda} \star (Vu)||_{2} \le ||G_{\lambda}||_{2} ||QV||_{1} \le \frac{C||V||_{1} ||u||_{\mathbb{H}^{1}(\mathbb{R})}}{2\lambda^{\frac{3}{4}}}.$$

De la même manière, $\|G'_{\lambda} \star (Vu)\|_2 \leq \frac{C'\|V\|_1\|u\|_{\mathbb{H}^1(R)}}{\lambda^{\frac{1}{4}}}$. L'application T_{λ} applique donc $\mathbb{H}^1(\mathbb{R})$ dans $\mathbb{H}^1(\mathbb{R})$. Par ailleurs, cette application est affine en u, on ne s'intéresse qu'à l'expression en u, c'est à dire $G_{\lambda} \star (Vu)$. selon ce qui précède, on a : $\|G_{\lambda} \star (Vu)\|_{\mathbb{H}^1(\mathbb{R})} \leq a(\frac{1}{\lambda^{1/2}} + \frac{1}{\lambda^{3/2}})^{\frac{1}{2}} \|V\|_1 \|u\|_{\mathbb{H}^1(\mathbb{R})}$.

Si on pose $C(\lambda) = a(\frac{1}{\lambda^{1/2}} + \frac{1}{\lambda^{3/2}})^{\frac{1}{2}} ||V||_1$ alors $C(\lambda) \ll 1$ si $\lambda \geq \lambda_0$. Il vient donc que si $\lambda \geq \lambda_0$ l'application T_{λ} est une contraction stricte, par le théorème du point fixe il existe un unique point fixe $u_0 \in \mathbb{H}^1(\mathbb{R})$ pour T_{λ} . Ainsi u_0 est l'unique solution de (E) pourvu que λ soit assez grand.

On pose $Mu = (-\Delta \oplus V)u$, avec $u = G_{\lambda} \star f - G_{\lambda} \star (Vu)$ dans $\mathbb{H}^1(\mathbb{R})$.

Théorème 2. L'opérateur M défini ci-dessus est monotone si et seulement si $J_{\lambda}^{M} = (I + \lambda M)^{-1}$ est une contraction pour $\lambda \leq \frac{1}{\lambda_0}$.

Théorème 3. Soit $u \in \mathbb{H}^{-1}(\mathbb{R}) \cap L^2(\mathbb{R}), \ v \in \mathbb{H}^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Alors on a

$$\langle u, v \rangle_{\mathbb{H}^{-1}(\mathbb{R}) \times \mathbb{H}^{1}(\mathbb{R})} = \int_{-\infty}^{+\infty} u \overline{v} dx.$$

Théorème 4. Si $V \in L^1(\mathbb{R}), \ u \in L^2(\mathbb{R}), \ v \in \mathbb{H}^1(\mathbb{R})$ et si $uv \in L^{\infty}(\mathbb{R})$. Alors

$$< Vu, v>_{\mathbb{H}^{-1}(\mathbb{R})\times\mathbb{H}^{1}(\mathbb{R})} = \int_{-\infty}^{+\infty} Vu\overline{v}dx.$$

Preuve du théorème 4.

Première étape:

On suppose que $V \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, d'après le Théorème 3, on a :

$$< Vu, v>_{\mathbb{H}^{-1}(\mathbb{R})\times\mathbb{H}^{1}(\mathbb{R})} = \int_{-\infty}^{+\infty} Vu\overline{v}dx.$$

Deuxième étape:

On suppose que V > 0 car $V = \Re eV + i\Im mV$, $\Re eV > 0$ et $\Im mV = (\Im mV)^+ - (\Im mV)^-$.

Troisième étape:

On pose $V_n = V \vee \{n\} \in L^{\infty}(\mathbb{R})$ et on a $\lim_{n \to \infty} ||V_n u - V u||_1 = 0$. Donc

$$\lim_{n\to\infty} ||V_n u - V u||_{\mathbb{H}^{-1}(\mathbb{R})} = 0.$$

$$\langle V_n u, u \rangle_{\mathbb{H}^{-1}(\mathbb{R}) \times \mathbb{H}^1(\mathbb{R})} = \int_{-\infty}^{+\infty} V_n |u|^2 dx \longrightarrow \int_{-\infty}^{+\infty} V|u|^2 dx = \langle Vu, v \rangle_{\mathbb{H}^{-1}(\mathbb{R}) \times \mathbb{H}^1(\mathbb{R})},$$

par le Théorème de convergence dominée.

Preuve du théorème 2. Par hypothèse, $u + \lambda Mu = f$ dans $\mathbb{H}^{-1}(\mathbb{R})$. On a : $\langle u, u \rangle_{\mathbb{H}^{-1}(\mathbb{R}) \times \mathbb{H}^{1}(\mathbb{R})} + \lambda [\langle -u'', u \rangle_{\mathbb{H}^{-1}(\mathbb{R}) \times \mathbb{H}^{1}(\mathbb{R})} + \langle Vu, u \rangle_{\mathbb{H}^{-1}(\mathbb{R}) \times \mathbb{H}^{1}(\mathbb{R})}] = \langle f, u \rangle$. Selon ce qui précède, on a :

$$\int_{-\infty}^{+\infty} |u|^2 dx + \lambda \left[\int_{-\infty}^{+\infty} |u'|^2 dx + \int_{-\infty}^{+\infty} V|u|^2 dx \right] = \int_{-\infty}^{+\infty} fu dx.$$

M est supposé monotone donc si λ est assez petit $(\lambda \leq \frac{1}{\lambda_0})$. Alors on a $||u||_{\mathbb{H}^1(\mathbb{R})} \leq ||f||_2$, ce qui entraı̂ne que $(I + \lambda M)^{-1}$ est une contraction et réciproquement.

Remarque. On peut faire la même chose lorsque N > 1.

Remerciements. On remercie le professeur J-B. BAILLON pour toutes les discussions que nous avons eues sur le sujet.

Références

- [1] ADAMS, R.A: Sobolev spaces (Pure and applied. math., vol 65) New York: Academic Press. (1975).
- [2] BIVAR-WEINHOLTZ, A and PIRAUX, R : Formule de Trotter pour l'opérateur $-\Delta + Q^+ Q^- + iQ'$. Ann. Fac. Sci. Toulouse Math. 5 (1983), 15-37.
- [3] BREZIS, H: Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert, North-Holland, Amsterdam. (1973).
- [4] BREZIS, H: Analyse fonctionnelle. Théorie et applications. Coll. Math. Appliquées Masson. (1983).
- [5] BREZIS, H and KATO, T: Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures et Appl. 58 (1979), 137-151.

T. Diagana

[6] CHERNOFF, P-R: Product formulas, nonlinear semigroups and addition of unbounded operators. Memoirs. Amer. Math. Soc. 140 (1974).

- [7] DIAGANA, T : Sommes d'opérateurs et conjecture de Kato-McIntosh. Thèse de spécialité, Lyon 1 (1999).
- [8] KATO, T: On some schrödinger operators with a singular complex potential, Ann. Scuola Norm. Sup. Pisa (4) 5 (1978), 105-114.
- [9] KATO, T: A second look at the essential selfadjointness of the Schrödinger operators, physical reality and Mathematical description, D. Reidel Publishing Co., 1974, pp. 193 201.
- [10] KATO, T: Perturbation theory for linear operators, springer, 1966.
- [11] LAPIDUS, M : Formule de Trotter et calcul opérationnel de Feynman, Thèse de Doctorat d'État. Université Paris VI, (1986)
- [12] NELSON, E : Feynman integrals and the Schrödinger equation. J. Math. Phys., Vol 5, 1964, pp. 332 343.
- [13] SIMON, B: Essential selfadjointness of Schrödinger operators with positive potentials. Math. Ann., Vol. 201, 1973, pp. 211 220.

Howard University Department of Mathematics 2441 6th Street, N.W Washington, DC 20059. USA. E-Mail: tdiagana@howard.edu