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Leszek Gasiński Nikolaos S. Papageorgiou

Abstract

In this paper we study a quasilinear scalar periodic problem with a non-
differentiable potential function. We only assume that, as a function of the
state variable, the potential is locally Lipschitz. So the gradient is replaced
by the generalized subdifferential in the sense of Clarke. Using a variational
approach, based on the nonsmooth critical point theory of Chang (see [1]), we
prove the existence of at least three distinct solutions for the periodic prob-
lem. An example is also presented, illustrating that our hypotheses on the
potential function are realistic.

1 Introduction

Recently there have been some works dealing with the quasilinear scalar peri-

odic problems driven by the one-dimensional p-Laplacian ∆px
df
= (|x′|p−2x′)

′
. We

refer to the papers of Del Pino-Manasevich-Murua [5], Fabry-Fayyad [6], Dang-
Oppenheimer [3] and Guo [8]. The study of the vector problem is less detailed and
we refer to the papers of Halidias-Papageorgiou [10], Manasevich-Mawhin [14] and
Papageorgiou-Yannakakis [17]. It should be mentioned, that from the above work,
Dang-Oppenheimer [3] and Manasevich-Mawhin [14] use a more general nonlinear
differential operator than the p-Laplacian, which is of the form (φp(x

′))′, with φp a
strictly monotone, coercive function. In all these work the approach is based either
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on degree theoretic techniques or the theory of nonlinear operators and fixed point
arguments and deal with the existence problems. With the problem of existence of
multiple periodic solutions, deal only the work of Del Pino-Manasevich-Murua [5],
who assume a continuous right hand side function f(t, ζ) and their methods of proof
is based on the interaction between the Fučik spectrum of the p-Laplacian and the
nonlinearity of f(t, ζ). To our knowledge no other work addressed the problem of
multiple periodic solutions. In this paper we study this problem for scalar equations
with a nonsmooth, nonconvex potential, which incorporate equations with discon-
tinuous right hand side. Since the potential is nondifferentiable, the gradient is
replaced by the subdifferential and the resulting problem is a quasilinear second
order periodic differential inclusion, known as hemivariational inequality. Hemivari-
ational inequalities are a new kind of variational inequalities, which were motivated
by problems in mechanics, in order to formulate variational principles for nons-
mooth and nonconvex energy problems. The hemivariational inequalities formalism
has been proved to be an efficient tool in the analysis of several complex mechanical
structures, such as multilayered plates, von Karman plates in adhesive contact with
rigid support, composite structures etc. For details in these mechanical and engi-
neering applications we refer to the books of Naniewicz-Panagiotopoulos [15] and
Panagiotopoulos [16].

2 Preliminaries

Our approach is variational and is based on the critical point theory of Chang [1]
for locally Lipschitz energy functionals. The work of Chang uses the subdifferential
theory of Clarke [2]. In this section we recall some basic definitions and facts from
the theory, which we will use in the sequel. For details we refer to the books of
Clarke [2] and Hu-Papageorgiou [10] and to the paper of Chang [1].

Let X be a Banach space and X∗ its topological dual. By || · || we will denote
the norm of X, by || · ||∗ the norm of X∗ and by 〈·, ·〉 the duality brackets for the
pair (X,X∗). A function φ : X 7−→ R is said to be locally Lipschitz, if for every
bounded set U ⊆ X, there exists kU > 0, such that |φ(x) − φ(y)| ≤ kU ||x − y|| for
all x, y ∈ U .

Recall that, if ψ : X −→ R
df
= R ∪ {+∞} is proper, convex and lower semicon-

tinuous (i.e. ψ ∈ Γ0(X)), then ψ is locally Lipschitz in the interior of its effective

domain domψ
df
= {x ∈ X : ψ(x) < +∞}. So, a coercive R-valued function on X is

locally Lipschitz. The function φ0 : X ×X −→ R, defined by

φ0(x; h)
df
= lim sup

y → x

t ↘ 0

φ(y + th)− φ(y)

t
,

is called the generalized directional derivative of φ. For every x ∈ X, the function
R 3 h −→ φ0(x; h) ∈ R is sublinear continuous and so by the Hahn-Banach theorem
is the support function of a nonempty, convex and w∗-compact convex set

∂φ(x)
df
= {x∗ ∈ X∗ : 〈x∗, h〉 ≤ φ0(x; h) ∀h ∈ X}.
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So φ0(x; h) = sup{〈x∗, h〉 : x∗ ∈ ∂φ(x)} and the set-valued function ∂φ : X −→
2X∗

\ {∅} is known as the subdifferential (or Clarke subdifferential) of φ. This
multifunction is sequentially closed in X×X∗

w∗, i.e. if xn → x in X, x∗n → x∗ weakly
star in X∗ and x∗n ∈ ∂φ(xn) for n ≥ 1, then x∗ ∈ ∂φ(x). Also, if φ, ψ : X 7−→ R are
locally Lipschitz, then ∂(φ + ψ)(x) ⊆ ∂φ(x) + ∂ψ(x) and ∂(tφ)(x) = t∂φ(x) for all
x ∈ X and t ∈ R. If φ is also convex, then the subdifferential ∂φ coincides with the
subdifferential in the sense of convex analysis (see Hu-Papageorgiou [10]). Finally,
if φ is continuously Gateoux differentiable at x, then ∂φ(x) = {φ′(x)}.

Let φ : X 7−→ R be a given locally Lipschitz function. A point x ∈ X is said to

be a critical point of φ, if 0 ∈ ∂φ(x). Then c
df
= φ(x) is a critical value of φ. It is

easy to check that, if x ∈ X is a local extremum of φ, then x is a critical point of φ.
It is well-known that the smooth critical point theory uses a compactness condition,
known as the Palais-Smale condition (PS-condition). In the present nonsmooth
setting, this condition takes the following form:

A locally Lipschitz function φ : X 7−→ R satisfies the nonsmooth Palais-
Smale condition at level c (nonsmooth PSc-condition), if any sequence

{xn}n≥1 ⊆ X such that φ(xn) −→ c and m(xn)
df
= inf{||x∗||∗ : x∗ ∈

∂φ(xn)} −→ 0 as n→ +∞ has a strongly convergent subsequence.

If φ ∈ C1(X), then since ∂φ(x) = {φ′(x)} for all x ∈ X, we see that the above
definition of the nonsmooth PSc-condition coincides with the classical one. Using
this notion, we have the following nonsmooth version of the well-known Saddle Point
Theorem, due to Rabinowith [18].

Theorem 2.1. If

(i) X is a reflexive Banach space;

(ii) φ : X 7−→ R is a locally Lipschitz function;

(iii) X = Y ⊕ V , where dimY < +∞;

(iv) there exists R > 0 such that

max{φ(y) : y ∈ Y, ||y|| = R} ≤ inf{φ(v) : v ∈ V };

(v) φ satisfies the nonsmooth PSc0-condition, where

c0
df
= inf

γ∈Γ
max
y∈D

φ(γ(y)),

where D
df
= {y ∈ Y : ||y|| ≤ R} and Γ

df
= {γ ∈ C(D;X) : γ(y) =

y whenever ||y|| = R},

then c0 ≥ inf
v∈V

φ(v) and c0 is a critical value of φ. Moreover, if c0 = inf
v∈V

φ(v), then

there exists a critical point x ∈ V of φ such that c0 = φ(x).

Remark 2.2. Usually hypothesis (iv) is stated with a strict inequality. However, the
result is true with more general condition (relaxed boundary condition, see Ghous-
soub [8] and Kourogenis-Papageorgiou [12]).
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In our hypotheses, we will use the first nonzero eigenvalue λ1 of the negative p-

Laplacian −∆px
df
= − (||x′||p−2x′)

′
with periodic boundary condition on the interval

[0, b]. So we consider the following quasilinear eigenvalue problem:

(EP )





− (||x′(t)||p−2x′(t))
′
= λ||x(t)||p−2x(t)

almost everywhere on (0,b)
x(0) = x(b), x′(0) = x′(b).

It is well-known that λ0 = 0 is an eigenvalue of (EP ) and is simple and isolated.

So, if λ1
df
= inf{λ > 0 : λ is an eigenvalue of (EP )}, then λ1 > 0 and

||v′||pp ≥ λ1||v||
p
p ∀v ∈ V (1)

where V
df
= {v ∈ W 1,p([0, b]; RN) :

∫ b
0 v(t) dt = 0}.

Finally let us recall the Ekeland variational principle (compare De Figueiredo [4],
Hu-Papageorgiou [10], p. 519 or Clarke [2], Chapter 7.5).

Theorem 2.3. If (Y, d) is a complete metric space and φ : Y 7−→ R = R ∪ {+∞}
is lower semicontinuous and bounded from below,
then for any ε > 0 there exists yε ∈ Y such that




φ(yε) ≤ inf

y∈Y
φ(y) + ε,

φ(yε) < φ(y) + εd(y, yε) ∀y ∈ Y, y 6= yε.

3 Auxiliary results

Let 2 ≤ p < +∞. We consider the following problem

(HV I)

{
(|x′(t)|p−2x′(t))

′
∈ ∂j(t, x(t)) almost everywhere on [0, b]

x(0) = x(b) x′(0) = x′(b).

Here j : [0, b]× R 7−→ R is a potential function measurable in the first variable and
locally Lipschitz in the second one. So ∂j(t, ζ) represents the Clarke subdifferential
of j(t, ·). Our precise hypotheses on j are the following.

H(j) j : [0, b]× R −→ R is a functional, such that

(i) for every ζ ∈ R, the functional R 3 t 7−→ j(t, ζ) ∈ R is measurable and
j(·, 0) ∈ Lp′([0, b]) (where 1

p
+ 1

p′
= 1);

(ii) for almost all t ∈ [0, b], the functional R 3 ζ 7−→ j(t, ζ) ∈ R is locally
Lipschitz with L1-locally Lipschitz constant;

(iii) for almost all t ∈ [0, b], all ζ ∈ R and all u∗ ∈ ∂j(t, ζ), we have |u∗| ≤
a(t) + c1|ζ|

r−1 with a ∈ Lp′([0, b]), c1 > 0 and 1 ≤ r < p;

(iv) there exist two functions j± ∈ L1([0, b]), such that lim
ζ→±∞

j(t, ζ) = j±(t)

uniformly for almost all t ∈ [0, b];

(v) for almost all t ∈ [0, b] and all ζ ∈ R, we have pj(t, ζ) ≥ −λ1|ζ|
p;
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(vi) there exist two constants c± > 0, such that
∫ b
0 j(t, c±) dt <

∫ b
0 j±(t) dt < 0.

Let W 1,p
per([0, b])

df
= {x ∈ W 1,p([0, b]) : x(0) = x(b)}. Since W 1,p([0, b]) ⊆ C([0, b]),

we see that the pointwise evaluation at t = 0 and t = b make sense. Let φ :
W 1,p

per([0, b]) 7−→ R be defined by

φ(x)
df
=

1

p
||x′||pp +

∫ b

0
j(t, x(t)) dt.

By virtue of Lemma III.6.24, p. 313 of Hu-Papageorgiou [10], φ is locally Lipschitz.

Proposition 3.1. If hypotheses H(j) hold,
then φ satisfies the nonsmooth PSc-condition for any c 6=

∫ b
0 j±(t) dt.

Proof : Let {xn}n≥1 ⊆ W 1,p
per([0, b]) be a sequence, such that φ(xn) −→ c (with some

c 6=
∫ b
0 j±(t) dt) and m(xn) −→ 0 as n → +∞. We will show that {xn}n≥1 ⊆

W 1,p
per([0, b]) is bounded. Suppose that this is not the case. By passing to a subse-

quence if necessary, we may assume that ||xn|| −→ +∞ as n → +∞. Let us set

yn
df
= xn

||xn||
for n ≥ 1. Again, by passing to a further subsequence if necessary, we may

assume that yn −→ y weakly in W 1,p
per([0, b]) and yn −→ y in C([0, b]) as n → +∞

(recall that the embedding W 1,p
per([0, b]) ⊆ C([0, b]) is compact). From the choice of

the sequence {xn}n≥1, we know that there exists M1 > 0, such that |φ(xn)| ≤ M1

for all n ≥ 1 and so ∣∣∣∣∣
1

p
||x′n||

p
p +

∫ b

0
j(t, xn(t)) dt

∣∣∣∣∣ ≤M1.

We divide last inequality by ||xn||
p and obtain

∣∣∣∣∣
1

p
||y′n||

p
p +

∫ b

0

j(t, xn(t))

||xn||p
dt

∣∣∣∣∣ ≤
M1

||xn||p
. (2)

Invoking Lebourg mean value theorem (see Lebourg [13] or Clarke [2], p. 41) and
using hypothesis H(j)(iii), we see that for almost all t ∈ [0, b] and all ζ ∈ R, we
have

|j(t, ζ)| ≤ |j(t, 0)|+ a(t)||ζ||+ c1||ζ||
r.

So it follows that
∣∣∣∣∣

∫ b

0

j(t, xn(t))

||xn||p
dt

∣∣∣∣∣

≤
∫ b

0

|j(t, 0)|

||xn||p
+
∫ b

0

|a(t)|

||xn||p−1
|yn(t)| dt+

∫ b

0

c1

||xn||p−r
|yn(t)|

r dt,

and thus ∫ b

0

j(t, xn(t))

||xn||p
dt −→ 0 as n→ +∞.

Also from the weak lower semicontinuity of the norm functional in a Banach space,
we have ||y′||pp ≤ lim infn→+∞ ||y

′
n||

p
p. Thus, by passing to the limit in (2) as n→ +∞,

we obtain that ||y′||p = 0, hence y(t) = c for all t ∈ R, with some c ∈ R (i.e. y is con-

stant). Recall thatW 1,p
per([0, b]) = R⊕V , where V

df
=
{
v ∈ W 1,p

per([0, b]) :
∫ b
0 v(t) dt = 0

}
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(see Hu-Papageorgiou [10], p. 502). Set xn = xn + x̂n with xn ∈ R and x̂n ∈ V for

n ≥ 1. Then yn = xn

||xn||
and ŷn = x̂n

||xn||
for n ≥ 1. Since yn −→ c weakly in W 1,p

per([0, b]),

we must have yn −→ c in R and ŷn −→ 0 weakly in W 1,p
per([0, b]) as n→ +∞.

We will show that c 6= 0. Suppose that this is not true, i.e. c = 0. We have

1 = ||yn|| =
||xn + x̂n||

||xn||
≤
||xn||

||xn||
+
||x̂n||

||xn||

so, we obtain

1 ≤ lim inf
n→+∞

||x̂n||

||xn||
≤ lim sup

n→+∞

||xn − xn||

||xn||
≤ lim sup

n→+∞

(
1 +

||xn||

||xn||

)
= 1,

thus
||x̂n||

||xn||
−→ 1 as n→ +∞.

Hence, we can find n0 ≥ 1, such that for all n ≥ n0, we have

1

2
||xn|| ≤ ||x̂n|| ≤ 2||xn||.

Recall that for all n ≥ 1, we have

||x′n||
p
p ≤ pM1 +

∫ b

0
p |j(t, xn(t))| dt

≤ pM1 +
∫ b

0
(p|j(t, 0)|+ p|a(t)||xn(t)|+ pc1|xn(t)|r) dt

≤ β1 + β2||x̂n||
r,

with some β1, β2 > 0. Using the Poincaré-Wirtinger inequality (see Hu-Papageorgiou [10],
p. 866), we obtain

||x̂′n||
p
p ≤ β3

(
1 + ||x̂′n||

r
p

)
,

for some β3 > 0. So we see that the sequence {x̂′n}n≥1 ⊆ Lp([0, b]) is bounded (recall
that r < p). Using once more the Poincaré-Wirtinger inequality, we obtain that
{x̂n}n≥1 ⊆ W 1,p

per([0, b]) is bounded.

From this, it follows that x̂n

||xn||
−→ 0 in W 1,p

per([0, b]), hence yn = xn

||xn||
−→ 0 in

W 1,p
per([0, b]). So we obtain a contradiction, since ||yn|| = 1 for all n ≥ 1. So c 6= 0.

This means in particular that for all t ∈ [0, b], we have |xn(t)| −→ +∞ as n→ +∞.
Assume that xn(t) −→ +∞ (the proof is similar when xn(t) −→ −∞).

Let J : Lp([0, b]; R) 7−→ R be defined by J(x)
df
=
∫ b
0 j(t, x(t)) dt. From Propo-

sition III.6.28, p. 315 of Hu-Papageorgiou [10] (see also Chang [1], Theorem 2.2),

we have that ∂
(
J |

W
1,p
per([0,b])

)
(x) ⊆ Lp′([0, b]), while from Theorem 2.7.5, p. 83 of

Clarke [2], we have that if u ∈ ∂
(
J |W 1,p

per([0,b])

)
(x), then u(t) ∈ ∂j(t, x(t)) for al-

most all t ∈ [0, b]. Let x∗n ∈ ∂φ(xn) be such that ||x∗n||∗ = m(xn) for n ≥ 1. Its
existence follows from the weak compactness of ∂φ(xn) and the weak lower semi-
continuity of the norm functional. We have x∗n = A xn + u∗n for n ≥ 1, where

u∗n ∈ ∂
(
J |

W
1,p
per([0,b])

)
(xn), hence u∗n(t) ∈ ∂j(t, xn(t)) for almost all t ∈ [0, b] and
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A : W 1,p
per([0, b]) 7−→

(
W 1,p

per([0, b])
)∗

is the nonlinear operator defined by 〈Ax, y〉
df
=

∫ b
0 |x

′(t)|p−2x′(t)y′(t) dt for all x, y ∈ W 1,p
per([0, b]) (by 〈·, ·〉 we denote the duality

brackets for the pair
(
W 1,p

per([0, b]),
(
W 1,p

per([0, b])
)∗)

). From the choice of the sequence

{xn}n≥1 ⊆ W 1,p
per([0, b]), passing to a subsequence if necessary, we have

〈A xn, x̂n〉+ (u∗n, x̂n)pp′ ≤
1

n
||x̂n||,

(by (·, ·)pp′ we denote the duality brackets for the pair
(
Lp([0, b]), Lp′([0, b])

)
). Recall

that 〈·, ·〉|
W

1,p
per([0,b])×Lp′ ([0,b]) = (·, ·)pp′. So, we obtain

||x̂′n||
p
p +

∫ b

0
u∗n(t)x̂n(t) dt ≤

1

n
||x̂n||. (3)

Using also hypothesis H(j)(iii) and Poincaré-Wirtinger inequality, we obtain

||x̂′n||
p
p ≤ β4

(
1 + ||x̂′n||

r
p

)
,

with some β4 > 0 and so the sequence {x̂n}n≥1 ⊆ W 1,p
per([0, b]) is bounded.

Since xn(t) −→ +∞, we must have xn −→ +∞ as n → +∞. By definition, we
have

u∗n(t)x̂n(t) ≤ j0(t, xn(t); x̂n(t)) = lim sup
zn → xn(t)

ε ↘ 0

j(t, zn + εx̂n(t))− j(t, zn)

ε
(4)

Because xn(t) −→ +∞ as n → +∞, we must have that zn −→ +∞ as n → +∞.
Let N1 ⊆ [0, b] be a Lebesgue-nul set outside which hypothesis H(j)(vi) holds. Now
for all t ∈ [0, b] \ N1 and for any ε > 0, we can find n0(ε) ≥ 1, such that for all
n ≥ n0, we have

j+(t)− ε2 ≤ j (t, zn + εx̂n(t)) ≤ j+(t) + ε2

and
j+(t)− ε2 ≤ j (t, zn) ≤ j+(t) + ε2.

Using these estimates in (4), we see that for all n ≥ n0, we have

|u∗n(t)x̂n(t)| ≤
2ε2

ε
= 2ε.

Thus, we have that u∗n(t)x̂n(t) −→ 0 uniformly for almost all t ∈ [0, b] and also∫ b
0 u

∗
n(t)x̂n(t) dt −→ 0 as n → +∞. Then, from (3), it follows that ||x̂′n||p −→ 0

as n→ +∞ and so invoking once more the Poincaré-Wirtinger inequality, we have
that x̂n −→ 0 in W 1,p

per([0, b]) as n→ +∞.
Let

Γn(t)
df
= {(v, λ) ∈ R× (0, 1) :

v ∈ ∂j (t, xn + λx̂n(t)) , j (t, xn + x̂n(t))− j (t, xn) = vx̂n(t)} .
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From Lebourg mean value theorem, we have that Γn(t) 6= ∅ almost everywhere on
[0, b]. By redefining Γn on the exceptional Lebesgue null set, we may assume that
Γn(t) 6= ∅ for all t ∈ [0, b]. We claim that for every direction h ∈ R, the function
(t, λ) 7−→ j0 (t, xn + λx̂n(t); h) is measurable. Indeed from the definition of the
directional derivative, we have

j0 (t, xn + λx̂n(t); h)

= inf
m≥1

sup
r,s∈Q∩(− 1

m
, 1
m)

j (t, xn + λx̂n(t) + r + sh)− j (t, xn + λx̂n(t) + r)

s
.

Since j is jointly measurable (see Hu-Papageorgiou [10], p. 142), it follows that the

function (t, λ) 7−→ j0 (t, xn + λx̂n(t); h) is measurable. Let Sn(t, λ)
df
= ∂j (t, xn + λx̂n(t))

and {hm}m≥1 ⊆ R be a countable dense set. Because j0(t, xn + λx̂n(t); ·) is contin-
uous, we have

GrSn = {(t, λ, u) ∈ [0, b]× (0, 1)× R : u ∈ Sn(t, λ)}

=
⋂

m≥1

{(t, λ, u) ∈ [0, b]× (0, 1)× R :

(u, hm)RN ≤ j0 (t, xn + λx̂n(t); hm)
}

and so GrSn ∈ L([0, b]) × B(0, 1) × B(R), with L([0, b]) being the Lebesgue σ-field
of [0, b] and B(0, 1), B(R) being the Borel σ-field of (0, 1) and R respectively. Hence
GrΓn = {(t, v, λ) ∈ [0, b]× R× (0, 1) : (v, λ) ∈ Γn(t)} ∈ L([0, b]) × B(R) × B(0, 1).
So we can apply the Yankov-von Neumann-Aumann selection theorem (see Hu-
Papageorgiou [10], Theorem II.2.14, p. 158), to obtain measurable functions vn :
[0, b] 7−→ R and λn : [0, b] 7−→ (0, 1) such that (vn(t), λn(t)) ∈ Γn(t) for all t ∈ [0, b].
We have j (t, xn + x̂n(t)) − j (t, xn) = vn(t)x̂n(t) and vn(t) ∈ ∂j (t, xn + λn(t)x̂n(t))
almost everywhere on [0, b]. Thus we can write that

φ(xn) =
1

p
||x′n||

p
p +

∫ b

0
vn(t)x̂n(t) dt+

∫ b

0
j (t, xn) dt. (5)

As before, we can check that
∫ b
0 vn(t)x̂n(t) dt −→ 0 as n → +∞. Also we know

that ||x′n|| −→ 0. So by passing to the limit in (5) as n → +∞, we obtain, that
c =

∫ b
0 j+(t) dt, what is a contradiction. This proves that the sequence {xn}n≥1 ⊆

W 1,p
per([0, b]) is bounded and so we may assume that xn −→ x weakly in W 1,p

per([0, b])
and xn −→ x in C([0, b]) as n → +∞. From the choice of the sequence {xn}n≥1 ⊆
W 1,p

per([0, b]), at least for a subsequence, we have

〈Axn, xn − x〉 + (u∗n, xn − x)pp′ ≤
1

n
||xn − x||

and thus
lim sup
n→+∞

〈Axn, xn − x〉 ≤ 0.

But it is easy to see that A is demicontinuous, monotone, thus maximal mono-
tone and so generalized monotone too (see Hu-Papageorgiou [10], p. 365). Hence
〈Axn, xn〉 −→ 〈Ax, x〉 and so ||x′n||p −→ ||x′||p as n → +∞. Since x′n −→ x′ weakly
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in Lp([0, b]) as n → +∞ and the space Lp([0, b]), being uniformly convex, has the
Kadec-Klee property (see Hu-Papageorgiou [10], p. 28), we infer that x′n −→ x′ in
Lp([0, b]) and so xn −→ x in W 1,p

per([0, b]) as n→ +∞.
Q.E.D.

Proposition 3.2. If hypotheses H(j) hold,
then φ is bounded below and φ|V ≥ 0.

Proof : By virtue of hypothesis H(j)(iv), we can find Lebesgue-null set N2 ⊆ [0, b]
and M2 > 0, such that for all t ∈ [0, b] \N2, we have

{
|j(t, ζ)− j+(t)| ≤ 1 for ζ ≥M2

|j(t, ζ)− j−(t)| ≤ 1 for ζ ≤ −M2.

Also from hypothesis H(j)(iii) and Lebourg mean value theorem, we see that for
almost all t ∈ [0, b] and all |ζ| < M2, we have that |j(t, ζ)| ≤ k(t) with some
k ∈ Lp′([0, b]). Then for all x ∈ W 1,p

per([0, b]), we have

φ(x) =
1

p
||x′||pp +

∫ b

0
j(t, x(x)) dt

=
∫

{x≥M2}
j(t, x(t)) dt+

∫

{x<−M2}
j(t, x(t)) dt+

∫

{|x|≤M2}
j(t, x(t)) dt

≥ −||j+||1 − ||j−||1 − 2− ||k||1.

Hence φ is bounded below.
Also using hypothesis H(j)(v) and (1), we have for all v ∈ V , that

φ(v) =
1

p
||v′||pp +

∫ b

0
j(t, v(t)) dt ≥

1

p
||v′||pp −

λ1

p
||v||pp ≥ 0.

Q.E.D.

4 Multiplicity theorem

Using the auxiliary results of the previous section, we can prove the following mul-
tiplicity result for (HV I).

Theorem 4.1. If hypotheses H(j) hold,
then problem (HV I) has at least three distinct solutions.

Proof : Consider the open sets U± df
= {x = ±ζ + v : ζ > 0, v ∈ V }. Let m±

df
=

inf {φ(x) : x ∈ U±}. From Proposition 3.2 we know that m± > −∞. We set

φ+(x)
df
=

{
φ(x) if x ∈ U+

+∞ otherwise.

Evidently φ+ is lower semicontinuous and bounded below (see Proposition 3.2).
Thus we can apply the Ekeland variational principle (see Theorem 2.3) and produce
a sequence {xn}n≥1 ⊆ U+, such that φ+(xn) = φ(xn) ↘ m+ and

φ+(xn) ≤ φ+(y) + εn||xn − y|| for all y ∈ W 1,p
per([0, b]), with εn ↘ 0
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and so also
φ(xn) ≤ φ(y) + εn||xn − y|| for all y ∈ U+.

So xn ∈ U+ minimizes the functional y 7−→ φ(y) + εn||xn − y|| on U+. Because
xn ∈ U+ and U+ is an open set, we have that

0 ∈ ∂ (φ+ εn|| · ||) (xn) ⊆ ∂φ(xn) + εnB
∗
1 ,

where B∗
1

df
=
{
u∗ ∈

(
W 1,p

per([0, b])
)∗

: ||u∗||∗ ≤ 1
}

(see Clarke [2], p. 38). Thus we can

find x∗n ∈ ∂φ(xn), such that ||x∗n||∗ ≤ εn ↘ 0. Since m(xn) ≤ ||x∗n||∗ for n ≥ 1, we
have that m(xn) −→ 0 as n → +∞. Also from hypothesis H(j)(vi), we see that
m+ ≤ φ(c+) =

∫ b
0 j(t, c+) dt <

∫ b
0 j±(t) dt and so we can apply Proposition 3.1

and deduce that there exists a subsequence of {xn}n≥1 (still denoted with the same
index), such that xn −→ u1 in W 1,p

per([0, b]) as n→ +∞, with some u1 ∈ W
1,p
per([0, b]).

Then φ(u1) = m+. If u1 ∈ ∂U+, then u1 ∈ V and so by Proposition 3.2, we have
that φ(u1) ≥ 0 > m+ (see hypothesis H(j)(vi)), what is a contradiction. Hence
u1 ∈ U

+ and so, it follows that u1 6= 0 and 0 ∈ ∂φ(u1).
In a similar fashion, working with the open set U− and the corresponding function

φ−, we obtain u2 ∈ U
−, such that φ(u2) = m− and 0 ∈ ∂φ(u2). Evidently u1 6= u2.

From Proposition 3.2, we know that φ|V ≥ 0 > φ(c±), with c− < 0 < c+. Also,
if c0 is the minimax quantity of Theorem 2.1, then

c0 ≥ inf
V
φ = 0 >

∫ b

0
j±(t) dt.

So φ satisfies the nonsmooth PSc0-condition (see Proposition 3.1). Applying The-
orem 2.1, we obtain u0 ∈ W 1,p

per([0, b]), such that φ(u0) = c0 and 0 ∈ ∂φ(u0). Since
m± < 0 ≤ c0, it follows that u0 6= u1 and u0 6= u2. Also, if c0 = 0, then u0 ∈ V .

Therefore, for every i ∈ {0, 1, 2}, we have that 0 ∈ ∂φ(ui). For every ϑ ∈
C∞

0 (0, b), we have

〈Aui, ϑ〉+
∫ b

0
v(t)ϑ(t) dt = 0,

with v ∈ Lp′([0, b]) and v(t) ∈ ∂j(t, ui(t)) almost everywhere on [0, b]. So, we also
have ∫ b

0
|u′i(t)|

p−2u′i(t)ϑ
′(t) dt+

∫ b

0
v(t)ϑ(t) dt = 0.

Since |u′i|
p−2u′i ∈ L

p′([0, b]), we have that (|u′i|
p−2u′i)

′
∈ W−1,p′([0, b]) =

(
W

1,p
0 ([0, b])

)∗

(see e.g. Hu-Papageorgiou [10], p. 866). Using integration by parts, we obtain

〈
(
|u′i|

p−2u′i

)′
, ϑ〉 = 〈v, ϑ〉.

Because C∞
0 ([0, b]) is dense in W

1,p
0 ([0, b]), so we obtain





(|u′i(t)|
p−2u′i(t))

′
= v(t) ∈ ∂j(t, ui(t))

almost everywhere on [0, b]
ui(0) = ui(b).

On the other hand, if ϑ ∈ C1
per([0, b]), by Green’s identity, we have

|u′i(b)|
p−2u′i(b)ϑ

′(b)− |u′i(0)|p−2u′i(0)ϑ′(0) + 〈
(
|u′i|

p−2u′i

)′
, ϑ〉 = 〈v, ϑ〉
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and so

|u′i(b)|
p−2u′i(b)ϑ

′(b) = |u′i(0)|p−2u′i(0)ϑ′(0) for all ϑ ∈ C1
per([0, b])

and
|u′i(b)|

p−2u′i(b) = |u′i(0)|p−2u′i(0).

As the map ξ 7−→ |ξ|p−2ξ is homeomorphism, so we have that u′i(0) = u′i(b). There-
fore, we conclude that u0, u1 and u2 are three distinct solutions of (HV I).

Q.E.D.

Remark 4.2. Note that u1 and u2 are also nontrivial. In general, we can not
guarantee the nontriviality of u0. However, if we know that for all t ∈ T0 ⊆ [0, b],
with |T0| > 0, we have 0 6∈ ∂j(t, 0), then we can conclude that u0 is also nontrivial.
It will be very interesting to extend Theorem 4.1 to systems. It seems that our
approach encounters serious technical difficulties, when we try to extend it to vector
problems, since we cannot say anymore that ∂U+ = V . We do not know if there are
reasonable hypotheses on j, which will allow us to overcome this difficulty.

We will end this section with a simple example illustrating the applicability of
our result. The example is in the spirit of those of Panagiotopoulos [16], analyzed
there in the context of mechanical systems.

First, let us consider function f : R 7−→ R, defined by

f(ζ)
df
=





− c
2ζ2 if ζ < −c

2r|ζ|r−1

cr−1
if −c ≤ ζ < −1

−r̂|ζ|r̂−1 if −1 ≤ ζ < 0

r̂ζ r̂−1 if 0 ≤ ζ < 1

−2rζr−1

cr−1
if 1 ≤ ζ < c

c
2ζ2 if c ≤ ζ,

(6)

where 1 < r < p, 1 < r̂ < p and c > 1 is sufficiently large (so as to guarantee

that hypothesis H(j)(v) holds, e.g. c ≥
(
2
(

p
λ1

) 1
p − 1

) 1
r

is a sufficient condition; see

Fig. 1).

Let j : R 7−→ R be defined by j(ζ)
df
=
∫ ζ
0 f(ξ) dξ (see Fig. 2). Then

j(ζ) =





−1
2

(
1 + c

|ζ|

)
if c < |ζ|

−2|ζ|r+cr+1

cr−1
if 1 < |ζ| ≤ c

|ζ|r̂ if |ζ| ≤ 1.

Note that j is not differentiable at −c, −1, 1 and c. At these points f exhibits jump
discontinuities. Let us define multifunction f̂ : R 7−→ 2R, by ”filling in the gaps” at
the discontinuity points of f (see Fig. 3). From Clarke [2] (p. 34), we know that j
is locally Lipschitz and ∂j(ζ) = f̂(ζ) for all ζ ∈ R.

Now we can consider the following problem
{

(|x′(t)|p−2x′(t))
′
= f(x(t)) almost everywhere on (0, b)

x(0) = x(b), x′(0) = x′(b),
(7)
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-
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−
1

c
2

−r

r

1

c
2

−c −11 c ζ

∂j(ζ) = f̂(ζ)

which we can easily transform into a multivalued problem (elliptic inclusion), namely

{
(|x′(t)|p−2x′(t))

′
∈ ∂j(x(t)) almost everywhere on (0, b)

x(0) = x(b), x′(0) = x′(b).
(8)

It is easy to verify that j satisfies hypotheses H(j) and so by Theorem 4.1, prob-
lem (8) admits at least three distinct solutions.

We can also have another example, by replacing function f in the right hand

side of (7), by function g : [0, b] × R 7−→ R, defined by g(t, ζ)
df
= h(t)f(ζ), where

h ∈ L1([0, b]), with 0 < h(t) ≤ 1 for almost all t ∈ [0, b] and f is defined by (6). Then
we can also produce function j(t, ζ) in an analogous way and check that hypotheses
H(j) are satisfied. Again from Theorem 4.1, we obtain the existence of three distinct
solutions of (8).
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