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Abstract

The paper investigates the finite nonabelian p-groups G of nilpotency class

2, with the property that every normal subgroup of G either contains the

commutator subgroup G′, or is contained in the center of G.

1 Introduction

Let G be a finite group. Denote by S(G) the set of all the subgroups of G, by N (G)
the set of the normal subgroups of G, by (H] the principal ideal generated by the
element H in the lattice (S(G),⊆), and by [H) the principal co-ideal generated by
the element H in the same lattice. Then:

(Z(G)] ∪ [G′) ⊆ N (G) ⊆ S(G). (1)

Both inclusions are becoming equalities if G is an abelian group. It is natural to
ask whether there exist finite nonabelian groups for which at least one inclusion is
actually an equality. In the case of the right inclusion, the answer to this question
is well-known: the Dedekindian groups. So, we are left with the case of the left
inclusion.

Definition 1.1. A nonabelian group G is called FNS-group (”Few Normal Sub-
groups”) if:

H � G ⇔ H ≥ G′ or H ≤ Z(G) ∀H ∈ S(G) . (2)
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In contrast to the Dedekindian groups, the finite FNS-groups have as few normal
subgroups as possible. In particular, all the finite simple groups are FNS-groups.
This remark shows that the study of all the finite FNS-groups is extremely difficult.
Therefore, we will consider here only the family of the finite FNS-p-groups for any
prime p.

In a recent article [4], we proved same results about FNS-p-groups.

Proposition 1.2. Let p be a prime. Every nonabelian group of order p3 or p4 is an
FNS-group.

Proof. This is Proposition 2.1 from [4]. �

Proposition 1.3. The nilpotency class of each finite nonabelian FNS-p-group is at
most 3.

Proof. This is Proposition 2.3 from [4]. �

In the same article, a complete description of the FNS-p-groups of class 3 was
given.

Theorem 1.4. Let p be a prime. The only FNS-p-groups of class 3 are:
a) D16, SD16 and Q16, if p = 2.
b) The 4 groups of order p4 and class 3, and the p+7 direct descendants of order p5

of the nonabelian group of order p3 and exponent p in M. F. Newman’s graph Kp, if
p 6= 2.

Proof. This is Theorem 3.4 from [4]. �

A complete classification of all finite FNS-p-groups of class 2 is still open. In
the present paper we treat the case where the group has order p5 (see below for
motivation).

All the notation is standard.

2 Preliminary Results

In this section we formulate some necessary and/or sufficient conditions for a finite
(p-)group of nilpotency class 2 to be an FNS-group.

Proposition 2.1. Let G be a finite group. Then G is an FNS-group if and only if:

G′ ≤ 〈xG〉 for every x ∈ G \ Z(G) . (3)

Proof. Suppose G is an FNS-group, and let x ∈ G \Z(G). Then H = 〈xG〉 is a
normal subgroup of G, and it is not contained in Z(G). It follows that G′ ≤ H.

Conversely, suppose G satisfies relation (3). Let H be a normal subgroup of G,
not contained in the center of G. For any x ∈ H \ Z(G) we have G′ ≤ 〈xG〉 ≤ H,
hence G is an FNS-group. �
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It is not easy to verify condition (3) in an arbitrary group. Therefore, the utility
of Proposition 2.1 is not very high. Anyway, it can be used for proving the next
statement.

Proposition 2.2. Let G be a finite group of nilpotency class 2, which satisfies:

Z(G/M) = Z(G)/M for every maximal subgroup M of G′ . (4)

Then G is an FNS-group .

Proof. Let x be an arbitrary element in G \ Z(G). Suppose G′ 6≤ 〈xG〉. Then
[x, G] < G′, thus there exists a maximal subgroup M of G′ such that [x, G] ≤ M .
Obviously,

〈x, M〉/M ≤ Z(G/M) = Z(G)/M .

Hence 〈x, M〉 ≤ Z(G), in contradiction with the choice of x.
Therefore G′ ≤ 〈xG〉 and, by Proposition 2.1, G is an FNS-group. �

Although neither condition (4) is easy to verify in general, it has a remarkable
particular case.

Corollary 2.3. Every finite p-group whose commutator subgroup has order p, is an
FNS-group.

Proof. Let us observe that any group which satisfies the hypothesis has class 2
and that the unique maximal subgroup of its commutator is trivial. The conclusion
follows from Proposition 2.2. �

Corollary 2.3 offers many examples of finite FNS-p-groups of class 2. But what
about the finite FNS-p-groups whose commutator subgroup has an order bigger
than p? If G is such a group, then p2 ≤ |G′| ≤ |Z(G)| ≤ |G|

p3 , hence |G| ≥ p5.
The complete classification of these groups seems to be very difficult to achieve.
Therefore we restrict ourselves to the groups of this type, having order p5. In this
case, the commutator subgroup must have order p2 and G′ = Z(G).

3 The Case p = 2

We will prove that there exists a unique group with the above mentioned properties.

Theorem 3.1. The unique FNS-group of order 32, of class 2, whose commutator
has order 4, is:

〈a, b, c|a4 = b4 = c2 = [a, b] = 1, [a, c] = b2, [b, c] = a2b2〉 .

Proof. Let G be an FNS-group of order 32, of class 2, with |G′| = 4. At the
end of the previous section we derived G′ = Z(G).

The group G/Z(G) is an abelian group of order 8. It cannot be isomorphic either
to Z8, or to Z4 × Z2 (see [2], Lemma 3.1, p. 13). Hence G/Z(G) ∼= Z2 × Z2 × Z2,
which implies G′ = Φ(G) = Z(G). By Proposition 2.13, p. 266, from [3], we get
exp(G′) ≤ exp(G/G′) = 2, thus G′ ∼= Z2 ×Z2. Furthermore, exp(Φ(G)) = 2 implies
exp(G) = 4.



188 G. Silberberg

We know that every normal subgroup of G must be comparable (with respect
to inclusion) to G′. In particular, G′ is the unique normal subgroup of order 4 in
G. If x is a nontrivial element in G′, then G′/〈x〉 is the unique normal subgroup
of order 2 in the group G/〈x〉, hence the center of G/〈x〉 is cyclic and it contains
G′/〈x〉 = (G/〈x〉)′. By [3], Proposition 13.7, p. 353, Z(G/〈x〉) ∼= Z4. Consequently,
there exists an element b ∈ G such that [b, G] ≤ 〈x〉, b4 ∈ 〈x〉, b2 6∈ 〈x〉. We obtain:

|b| = 4 = exp(G) , [b, G] = 〈x〉 , |CG(b)| = |G : [b, G]| = 16 .

Furthermore, Z(CG(b)) ≥ 〈b, Z(G)〉, thus CG(b) is abelian.
We repeat now the entire argument, replacing x with b2. We deduce that there

exists an element a ∈ G such that |a| = 4, [a, G] = 〈b2〉, a2 6∈ [a, G] (otherwise 〈a〉
would be a normal subgroup in G, which is not contained in Z(G) and which does
not contain G′). One obtains:

〈a2〉 ∩ 〈b2〉 = {1}, G′ = Φ(G) = 〈a2, b2〉 ∼= Z2 × Z2, |CG(a)| = 16, CG(a) abelian .

If CG(a) 6= CG(b), then CG(a)∩CG(b) would have order 8 and each element in this
intersection would commute with all elements in the subgroup CG(a) · CG(b) = G.
This would imply CG(a)∩CG(b) ≤ Z(G), a contradiction. Hence, CG(a) = CG(b) ∼=
Z4 × Z4.

The subgroup [b, G] is a subgroup of order 2 in G′. It must coincide either with
〈a2〉, or with 〈b2〉, or with 〈a2b2〉.
If [b, G] = 〈b2〉, then 〈b〉� G, 〈b〉 6≤ Z(G), 〈b〉 6≥ G′, a contradiction.
If [b, G] = 〈a2〉, then [ab, G] = 〈a2b2〉, and 〈ab〉 � G, 〈ab〉 6≤ Z(G), 〈ab〉 6≥ G′, a
contradiction.
We are left with [b, G] = 〈a2b2〉.

Let c be an element in G \ CG(a). Then:

G = 〈a, b, c〉 , [a, c] = 〈b2〉 , [b, c] = 〈a2b2〉 , c2 ∈ G′ .

If c2 = a2, then (bc)2 = b2c2[b, c] = 1.
If c2 = b2, then (abc)2 = a2b2c2[ab, c] = 1.
If c2 = a2b2, then (ac)2 = a2c2[a, c] = 1.

Thus we can choose c such that c2 = 1. We have actually proved that:

G = 〈a, b, c|a4 = b4 = c2 = [a, b] = 1, [a, c] = b2, [b, c] = a2b2〉 .

Conversely, let G be the group which has the above presentation, and let M be
the subgroup of G generated by elements a and b. Obviously, M ∼= Z4 × Z4. Since
c−1ac = a · [a, c] = ab2 ∈ M and c−1bc = b · [b, c] = ba2b2 ∈ M , it follows that M is a
normal subgroup in G. Moreover, G/M is generated by the coset c ·M , which has
order 2. Hence |G| = |M | · |G/M | = 16 · 2 = 32.

We may write:

c−1a2c = (c−1ac)2 = (ab2)2 = a2 , c−1b2c = (c−1bc)2 = (ba2b2)2 = b2 .

Thus the subgroup K = 〈a2, b2〉 is contained in Z(G). Moreover, K = 〈a2b2, b2〉 =
〈[b, c], [a, c]〉 ≤ G′. Hence, Z(G) = K. Let us observe that the group G/K is abelian,
because all its generators commute. Hence G′ ≤ K, thus G′ = Z(G) = K ∼= Z2×Z2.
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Let x be a noncentral element of G. We will prove that G′ ≤ 〈x, [x, G]〉.
Suppose x 6∈ M . Then |CG(x)| ∈ {8, 16}. Anyway, Z(CG(x)) ≥ 〈x, Z(G)〉 > Z(G),
thus CG(x) is abelian. If |CG(x)| = 16, then from:

M · CG(x) = G , |M ∩ CG(x)| = 8 , M ∩ CG(x) ≤ Z(G) ,

we would get a contradiction. Hence |CG(x)| = 8 and |[x, G]| = 4. Then [x, G] = G′

and so G′ ≤ 〈x, [x, G]〉.
Suppose x ∈ M . We have 3 possibilities:

1. x ∈ a·Z(G) ⇒ [x, G] = 〈[a, c]〉 = 〈b2〉, 〈x, [x, G]〉 ≥ 〈x2, [x, G]〉 = 〈a2, b2〉 = G′,

2. x ∈ b·Z(G) ⇒ [x, G] = 〈[b, c]〉 = 〈a2b2〉, 〈x, [x, G]〉 ≥ 〈x2, [x, G]〉 = 〈b2, a2b2〉 =
G′,

3. x ∈ (ab) · Z(G) ⇒ [x, G] = 〈[ab, c]〉 = 〈a2〉, 〈x, [x, G]〉 ≥ 〈x2, [x, G]〉 =
〈a2b2, a2〉 = G′.

We actually proved that:

G′ ≤ 〈x, [x, G]〉 for every x ∈ G \ Z(G) ,

which leads, by Proposition 2.1, to the conclusion that G is an FNS-group of order
32, of class 2, whose commutator subgroup has order 4. �

4 The Case p 6= 2

Here we have a similar result to the previous one, but the structure of the FNS-group
is not uniquely determined by the hypothesis.

Theorem 4.1. Let p be an odd prime, and let G be a group of order p5, of class 2,
with the commutator subgroup of order p2. The following statements are equivalent:
a) G is an FNS-group.
b) There exist k, l ∈ Zp, where l2 + 4k is not a square in Zp, such that

G ∼= G(k,l)
p = 〈a, b, c|ap2

= bp2

= cp = [a, b] = 1, [a, c] = bp, [b, c] = akpblp〉 .

Proof. Suppose first that G is an FNS-group. As in the proof of Theorem 3.1,
we get:

G′ = Φ(G) = Z(G) ∼= Zp × Zp , G/G′ ∼= Zp × Zp × Zp ,

and there exist elements a, b ∈ G such that:

|a| = |b| = p2 , [a, b] = 1 , M = 〈a, b〉 ∼= Zp2 × Zp2 ,

G′ = 0(G) = 〈ap, bp〉 ∼= Zp × Zp , [a, b] = 〈bp〉 .

Since the nilpotency index of G is less than p, we know that G is a regular group,
thus |Ω(G)| = |G : 0(G)| = p3 (see [3], Proposition 10.2, p. 322, and Proposition
10.7, p. 327). Since |Ω(G) : Z(Ω(G))| ≤ |Ω(G) : Z(G)| = p, we get that Ω(G) is an
elementary abelian p-group.
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Let c be an arbitrary element in Ω(G)\Z(G). Then |c| = p and [a, c] ∈ 〈bp〉\{1}.
We may assume (replacing, if necessary, c with a power of itself) that [a, c] =
bp. Since [b, c] ∈ G′, there exist k, l ∈ Zp such that [b, c] = akpblp. One obtains
[aibj, c] = [a, c]i · [b, c]j = ajkp · b(i+jl)p for every i, j ∈ Zp. If there would exist
(i, j) ∈ Zp × Zp \ {(0̂, 0̂)} such that [aibj, c] ∈ 〈aibj〉, then the subgroup generated
in G by the element aibj would be normal, would be not contained in Z(G), and
would not contain G′, a contradiction. Hence, ajkp · b(i+jl)p 6∈ 〈aibj〉 for every (i, j) ∈
Zp × Zp \ {(0̂, 0̂)}. In other words, each nonzero vector (i, j) in the linear space
Zp × Zp is linearly independent, over Zp, from the vector (jk, i + jl). This yields:

∣∣∣∣∣
i j

jk i + jl

∣∣∣∣∣ 6= 0̂ ∀(i, j) ∈ Zp × Zp \ {(0̂, 0̂)} ,

or i2 + ijl − j2k 6= 0̂ ∀(i, j) ∈ Zp × Zp \ {(0̂, 0̂)}. According to [1], Theorem 10, ch.
6.1, the discriminant l2 + 4k of this quadratic form is not a square.

Conversely, let G = G(k,l)
p , where l2 + 4k is not a square in Zp. As in the proof

of Theorem 3.1, we get:

M = 〈a, b〉 ∼= Zp2 × Zp2 , |G| = p5 , G′ = Z(G) = 〈ap, bp〉 ∼= Zp × Zp ,

[x, G] = G′ ∀x ∈ G \M .

If x ∈ M\Z(G), then |x| = p2 and there exist (i, j) ∈ Zp×Zp\{(0̂, 0̂)}, z ∈ Z(G),
such that x = aibjz. Obviously, CG(x) = M and |[x, G]| = p. Furthermore,

[x, G] = 〈[x, c]〉 = 〈[aibjz, c]〉 = 〈[a, c]i · [b, c]j〉 = 〈ajkp · b(i+jl)p〉 .

Since l2 + 4k is not a square in Zp, it follows, by Theorem 10, ch. 6.1, from [1], that
i2 + ijl − j2k 6= 0̂, i. e.: ∣∣∣∣∣

i j
jk i + jl

∣∣∣∣∣ 6= 0̂ .

This last relation says that [x, c] 6∈ 〈xp〉, which implies 〈x, [x, G]〉 ≥ 〈xp, [x, c]〉 = G′.
Using Proposition 2.1, we get that G is an FNS-group with the desired properties.

�

Thus we got a large family of FNS-groups of order p5, of class 2, with the com-
mutator subgroup of order p2. But some groups in this list may be isomorphic.
Therefore, we will eliminate all the repetitions from the list, obtaining thus a com-
plete set of pairwise nonisomorphic groups of this type.

Lemma 4.2. If p is an odd prime, and k, l are elements in Zp such that l2 + 4k is
not a square, then in the group

G(k,l)
p = 〈a, b, c|ap2

= bp2

= cp = [a, b] = 1, [a, c] = bp, [b, c] = akpblp〉 ,

the subgroup M = 〈a, b〉 is the only abelian subgroup of order p4, and the subgroup
N = Ω(G(k,l)

p ) = 〈ap, bp, c〉 is the only elementary abelian subgroup of order p3.

Proof. Suppose M1 is an abelian subgroup of order p4 of G(k,l)
p , M1 6= M . Then

M ·M1 = G(k,l)
p , |M ∩M1| = p3, and M ∩M1 ≤ Z(G(k,l)

p ), a contradiction.

Suppose N1 is an elementary abelian subgroup of order p3 of G(k,l)
p . Then N1 ≤

Ω(G(k,l)
p ) = N , thus N1 = N . �
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Proposition 4.3. Let k1, l1, k2, l2 ∈ Zp such that l21+4k1 and l22+4k2 are not squares
in Zp. The following statements are equivalent:
a) G(k1,l1)

p
∼= G(k2,l2)

p .

b) There exists w ∈ Zp \ {0̂} such that l1 = wl2 and k1 = w2k2.

Proof. Suppose a) is true and let ϕ : G(k1,l1)
p → G(k2,l2)

p be an isomorphism.
By Lemma 4.1, we get ϕ(M1) = M2 and ϕ(N1) = N2, where M1, M2, N1, N2 have
obvious meanings. There exist

x, y, u, v, w ∈ Zp , w 6= 0̂ ,

∣∣∣∣∣
x y
u v

∣∣∣∣∣ 6= 0̂

and z, z′, z′′ ∈ Z(G(k2,l2)
p ) such that





ϕ(a1) = ax
2 · b

y
2 · z ,

ϕ(b1) = au
2 · b

v
2 · z

′ ,
ϕ(c1) = cw

2 · z
′′ .

The equalities [a1, c1] = bp
1, [b1, c1] = ak1p

1 · bl1p
1 imply:

(S)





k2yw = u
xw + l2yw = v

k2vw = k1x + l1u
uw + l2vw = k1y + l1v

If x, y, u, v are unknowns and w is a parameter, the system (S) must have non-
trivial solutions. Hence, its determinant must be zero. The equality:

∣∣∣∣∣∣∣∣∣∣

0̂ k2w −̂1 0̂

w l2w 0̂ −̂1

k1 0̂ l1 −k2w

0̂ k1 −w l1 − l2w

∣∣∣∣∣∣∣∣∣∣

= 0̂

becomes:

(k1 − k2w
2)2 + l2w(k1 − k2w

2)(l1 − l2w)− k2w
2(l1 − l2w)2 = 0̂ .

The discriminant of this quadratic form,

(l2w)2 + 4k2w
2 = w2(l22 + 4k2) ,

is not a square. By Theorem 10, ch. 6.1, from [1], we have k1−k2w
2 = l1− l2w = 0̂.

Conversely, let k2, l2, w be three elements in Zp such that l22 +4k2 is not a square,
and w is nonzero. We define an isomorphism ϕ : G(k1,l1)

p → G(k2,l2)
p , where k1 = w2k2

and l1 = wl2.
Put ϕ(a1) = a2, ϕ(b1) = bw

2 , ϕ(c1) = cw
2 , and extend ϕ on G(k1,l1)

p by multiplica-

tion. While {a1, b1, c1} is a generating set for G(k1,l1)
p , it is sufficient to show that

{ϕ(a1), ϕ(b1), ϕ(c1)} is a generating set for G(k2,l2)
p which satisfies the same relations

in G(k2,l2)
p as a1, b1, c1 satisfy in G(k1,l1)

p .
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The condition that {ϕ(a1), ϕ(b1), ϕ(c1)} is a generating set in G(k2,l2)
p is obviously

true.
(ϕ(a1))

p2

= ap2

2 = 1 ;

(ϕ(b1))
p2

= (bw
2 )p2

= (bp2

2 )w = 1 ;
(ϕ(c1))

p = (cw
2 )p = (cw

2 )p = 1 ;
[ϕ(a1), ϕ(b1)] = [a2, b

w
2 ] = [a2, b2]

w = 1 ;
[ϕ(a1), ϕ(c1)] = [a2, c

w
2 ] = [a2, c2]

w = (bp
2)

w = (bw
2 )p = (ϕ(b1))

p ;

[ϕ(b1), ϕ(c1)] = [bw
2 , cw

2 ] = [b2, c2]
w2

= aw2k2p
2 · bw2l2p

2 = (ϕ(a1))
w2k2p · (ϕ(b1))

wl2p =
(ϕ(a1))

k1p · (ϕ(b1))
l1p .

It follows that ϕ is indeed a group isomorphism. �

We may now eliminate all the repetitions from the list of groups given in Theorem
4.1.

Theorem 4.4. Let p be an odd prime. There exist exactly p+1
2

pairwise non-
isomorphic FNS-groups of order p5, of class 2, with the commutator subgroup of
order p2, namely:
G(q,0̂)

p , where q is a fixed non-square in Zp ;

G(r,1̂)
p , where r runs through the set of all elements of Zp with the property that 4r+1̂

is non-square.

Proof. By Theorem 4.1 all these groups are FNS-groups and have the required
properties, and by Proposition 4.3 they are pairwise non-isomorphic. It remains to
prove that every group in Theorem 4.1 is isomorphic to a group in our list, but this
is easy to check. �
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