Isotropie d'une forme quadratique sur le corps des fonctions d'une quadrique en caractéristique 2

Ahmed Laghribi Pasquale Mammone

Abstract

The aim of this note is to extend a theorem of D. W. Hoffmann [5, Theorem 1] to a field of characteristic 2.

Résumé

Le but de cette note est d'étendre un théorème de D. W. Hoffmann [5, Theorem 1] à un corps de caractéristique 2.

1 Introduction

Soit F un corps commutatif. Un problème important en théorie algébrique des formes quadratiques est le suivant :

Problème. Etant donné φ une F-forme quadratique anisotrope de dimension ≥ 2 , quelles sont les F-formes quadratiques ψ pour lesquelles $\varphi_{F(\psi)}$ est isotrope où $F(\psi)$ est le corps des fonctions de ψ (lorsqu'il existe)?

Sur ce problème Hoffmann a prouvé un résultat général [5, Theorem 1], à savoir : Si F est de caractéristique $\neq 2$ et φ , ψ deux F-formes quadratiques telles que φ soit

Received by the editors February 2001.

Communicated by M. Van den Bergh.

¹⁹⁹¹ Mathematics Subject Classification: 11E04, 11E81.

 $[\]it Key\ words\ and\ phrases$: Forme quadratique, Corps des fonctions d'une forme quadratique, Forme de Pfister, Forme voisine.

anisotrope et que dim $\varphi \leq 2^n < \dim \psi$ pour un certain entier $n \geq 0$, alors $\varphi_{F(\psi)}$ est anisotrope.

Dans cette note on va étendre ce résultat de Hoffmann lorsque F est de caractéristique 2. Plus exactement, on va prouver le théorème suivant.

Théorème 1. Soient F un corps commutatif de caractéristique 2, φ et ψ deux F-formes quadratiques anisotropes. On suppose que :

- (1) Si φ est non singulière, alors $\dim \varphi \leq 2^n < \dim \psi$ pour un certain entier n > 1.
- (2) Si φ est singulière de type (r, s), alors $\dim \psi > 2^n$ où n est le plus petit entier vérifiant $2r + 2s \leq 2^n$ (voir ce qui suit pour la définition du type d'une forme quadratique).

Alors, $\varphi_{F(\psi)}$ est anisotrope.

Pour prouver le théorème 1 on va suivre essentiellement l'idée de Hoffmann [5] qui consiste à voir qu'une forme quadratique devient une sous-forme d'une forme de Pfister après extension des scalaires à un corps convenable.

Dans la suite, on supposera F de caractéristique 2. Pour plus de détails sur la théorie algébrique des formes quadratiques en caractéristique 2 on renvoie aux livres [2], [9].

Une forme quadratique de dimension n est la donnée d'un couple (V, φ) où V est un F-espace vectoriel de dimension n et $\varphi: V \longrightarrow F$ une application vérifiant : $\varphi(\alpha v) = \alpha^2 \varphi(v)$ pour tout $\alpha \in F$ et $v \in V$, telle que l'application $B_{\varphi}: V \times V \longrightarrow F$ définie par : $B_{\varphi}(v, w) = \varphi(v + w) - \varphi(v) - \varphi(w)$ soit bilinéaire (symétrique).

Le radical de B_{φ} est rad $(B_{\varphi}) = \{ v \in V \mid B_{\varphi}(v, w) = 0 \, \forall \, w \in V \}$. Le radical de φ est rad $(\varphi) = \{ v \in \text{rad}(B_{\varphi}) \mid \varphi(v) = 0 \}$. Clairement, rad (B_{φ}) et rad (φ) sont des F-espaces vectoriels. On note rb (φ) (resp. r (φ)) la dimension de rad (B_{φ}) (resp. la dimension de rad (φ)). On a $0 \leq r(\varphi) \leq rb(\varphi)$. La forme bilinéaire B_{φ} est alternée, c'est-à-dire $B_{\varphi}(v,v) = 0$ pour tout $v \in V$, et par conséquent l'entier $n - rb(\varphi)$ est pair.

Soient r, s les entiers vérifiant $n - \operatorname{rb}(\varphi) = 2r$ et $\operatorname{rb}(\varphi) - \operatorname{r}(\varphi) = s$. Alors, on obtient à isométrie près :

$$\varphi \cong [a_1, b_1] \perp \cdots \perp [a_r, b_r] \perp [c_1] \perp \cdots \perp [c_s] \perp \underbrace{[0] \perp \cdots \perp [0]}_{r(\varphi) \text{ fois}}$$
(1)

avec $[c_1] \perp \cdots \perp [c_s]$ anisotrope, $[\alpha, \beta]$ (resp. $[\alpha]$) désigne la forme quadratique $\alpha X^2 + XY + \beta Y^2$ (resp. la forme quadratique αX^2), et \cong désigne l'isométrie des formes quadratiques.

Rappelons que pour φ comme dans l'équation (1), la forme quadratique $[c_1] \perp \ldots \perp [c_s] \perp \underbrace{[0] \perp \cdots \perp [0]}_{r(\varphi) \text{ fois}}$ est unique à isométrie près. On l'appelle la partie quasi-

linéaire de φ et on la note φ_{lp} . Ainsi, le couple (r,s) ne dépend que de la classe

d'isométrie de φ . Par contre, en général, la forme quadratique $[a_1, b_1] \perp \cdots \perp [a_r, b_r]$ n'est pas unique à isométrie près.

Avec les mêmes notations que dans l'équation (1) et si dim $\varphi = 2r + s$, alors on dit que φ est de type (r, s).

Une forme quadratique de type (r,0) (resp. de type (r,s) avec $s \ge 1$) est dite non singulière (resp. singulière). Une forme quadratique de type (0,s) est dite totalement singulière.

Si $r \geq 0$ un entier et φ une forme quadratique, on note $r \times \varphi = \underbrace{\varphi \perp \cdots \perp \varphi}_{r \text{ fois}}$.

Une forme quadratique φ non singulière est dite hyperbolique s'il existe un entier r tel que $\varphi \cong r \times \mathbb{H}$ où $\mathbb{H} = [0, 0]$ est le plan hyperbolique.

Si φ est non singulière, on désigne par $i_W(\varphi)$ son indice de Witt qui vérifie $\varphi \cong i_W(\varphi) \times \mathbb{H} \perp \varphi_{an}$ où φ_{an} est une forme quadratique anisotrope, appelée partie anisotrope de φ .

Deux formes quadratiques φ et ψ sont dites semblables lorsque $\varphi \cong a\psi$ pour un certain $a \in F^*$.

Pour une forme quadratique φ , on note $D_F(\varphi) = F^* \cap \varphi(V)$ et $G_F(\varphi) = \{ \alpha \in F^* \mid \varphi \cong \alpha \varphi \}$ où V est l'espace sous-jacent à φ .

Si K/F une extension et φ une F-forme quadratique, on désigne par φ_K la K-forme quadratique $\varphi \otimes K$.

On désigne par $W_q(F)$ (resp. W(F)) le groupe de Witt des formes quadratiques non singulières (resp. l'anneau de Witt des formes bilinéaires symétriques). On sait que le groupe $W_q(F)$ est muni d'une structure de W(F)-module [2].

Pour $a_1, \dots, a_n \in F^*$ et $b \in F$, on note $\langle a_1, \dots, a_n \rangle$ la forme bilinéaire $\sum_{i=1}^n a_i X_i Y_i$, et $\langle \langle a_1, \dots, a_n, b \rangle$ la forme quadratique $\langle 1, a_1 \rangle \otimes \dots \otimes \langle 1, a_n \rangle \otimes [1, b]$ qu'on appelle une n-forme de Pfister. La forme [1, b] est appelée une 0-forme de Pfister. L'ensemble des n-formes de Pfister est noté $P_n F$.

Si $\pi \in P_n F$, on a $D_F(\pi) = G_F(\pi)$ et que π est isotrope si et seulement si π est hyperbolique [2].

A une forme quadratique φ de dimension $n \geq 1$, on associe l'anneau quotient

$$A_{\varphi} = \frac{F\left[X_1, \cdots, X_n\right]}{I(\varphi)}$$

où $I(\varphi)$ est l'idéal de $F[X_1, \dots, X_n]$ engendré par le polynôme P_{φ} donné par la forme quadratique φ .

D'après [8, Proposition 3] et lorsque la forme φ n'est pas nulle, on a que P_{φ} est irréductible si et seulement si φ n'est ni de type $\mathbb{H} \perp k \times [0]$ ni de type $[a] \perp l \times [0]$ avec $a \in F^*$. Lorsque P_{φ} est irréductible, on note $F(\varphi)$ le corps des fractions de A_{φ} , qu'on appelle le corps des fonctions de φ (ce corps est aussi le corps des fonctions de la quadrique affine d'équation $\varphi = 0$). Lorsque φ est anisotrope de dimension ≥ 2 , alors le corps $F(\varphi)$ est bien défini.

2 Résultats préliminaires

Dans la preuve du théorème 1 on aura besoin de la notion d'une forme quadratique voisine qui a été étendue à la caractéristique 2 [7]. Pour rappeler ceci on commence par deux définitions.

Définition 1. Soient $c_1, \dots, c_s \in F$.

Un complété de la forme quadratique $\varphi := [c_1] \perp \cdots \perp [c_s]$ est une forme quadratique $\varphi_c = \xi_1 \perp \cdots \perp \xi_s$ telle que pour tout $i \in \{1, \cdots, s\}$ on ait $\xi_i = [c_i]$ ou $[c_i, d_i]$ pour un certain $d_i \in F$.

Définition 2. ([7, Définition 1.1]) Soient $\psi = \eta \perp \psi_{lp}$ avec $\eta \in W_q(F)$ et ψ_{lp} est la partie quasi-linéaire de ψ .

(1) On dit qu'une forme quadratique φ domine ψ (ou que ψ est dominée par φ) et on note $\psi \leq \varphi$ s'il existe une forme quadratique δ tel que

$$\varphi \cong \eta \perp (\psi_{\rm lp})_{\rm c} \perp \delta$$

pour un certain complété $(\psi_{lp})_c$ de ψ_{lp} .

(2) On dit que ψ est une sous-forme de φ et on note $\psi < \varphi$ s'il existe une forme quadratique μ tel que $\varphi \cong \psi \perp \mu$.

Remarquons que si φ et ψ sont deux formes quadratiques non singulières, alors ψ est dominée par φ est équivalent à dire que ψ est une sous-forme de φ .

Définition 3. ([7, Définition 1.2]) Une forme quadratique ψ est dite voisine s'il existe $a \in F^*$, $\pi \in P_nF$ tels que $\dim \psi > 2^n$ et que $\psi \preccurlyeq a\pi$. Dans ce cas, on dit que ψ est voisine de π .

Dans [7] le théorème de la sous-forme de Cassels-Pfister a été généralisé à la caractéristique 2, aussi des résultats sur les formes quadratiques voisines en caractéristique 2 ont été prouvés. Pour la commodité du lecteur on rappelle ces résultats avec leurs preuves.

Proposition 1. ([7, Proposition 3.4]) Soient $\varphi \in W_q(F)$ anisotrope et ψ une autre forme quadratique anisotrope (non nécessairement non singulière) telles $\varphi_{F(\psi)}$ soit hyperbolique. Alors, il existe $a \in F^*$ tel que $a\psi \preceq \varphi$.

Preuve. Modulo un scalaire, on peut supposer que $1 \in D_F(\varphi)$. Posons

$$\psi = [a_1, b_1] \perp \ldots \perp [a_r, b_r] \perp [c_1] \perp \cdots \perp [c_s],$$
$$\eta = [a_1, b_1] \perp \ldots \perp [a_r, b_r],$$

$$\psi_{\rm lp} = [c_1] \perp \cdots \perp [c_s]$$

et $X_1,Y_1,\cdots,X_r,Y_r,Z_1,\cdots,Z_s$ des variables sur F de sorte que

$$\psi(X_1, Y_1, \dots, X_r, Y_r, Z_1, \dots, Z_s) = \sum_{i=1}^r (a_i X_i^2 + X_i Y_i + b_i Y_i^2) + \sum_{i=1}^s c_j Z_j^2.$$

Posons $K = F(Z_1, \dots, Z_s)$ et $L = F(X_1, Y_1, \dots, X_r, Y_r)$. Sur \mathbb{N}^{2r+s} on peut choisir un ordre lexicographique de sorte que a_1 (resp. c_1) soit le cœfficient dominant du polynôme $\psi(X_1, Y_1, \dots, X_r, Y_r, Z_1, \dots, Z_s)$ lorsque $r \neq 0$ (resp. lorsque r = 0). Aussi, on peut supposer que ce cœfficient dominant est égal à 1. Puisque $\varphi_{F(\psi)}$ est hyperbolique, on déduit que le polynôme $\psi(X_1, Y_1, \dots, X_r, Y_r, Z_1, \dots, Z_s)$ est un facteur de similitude de φ_{KL} [2]. Puisque $1 \in D_F(\varphi)$, le polynôme $\psi(X_1, Y_1, \dots, X_r, Y_r, Z_1, \dots, Z_s)$ est représenté par φ_{KL} .

- (1) Si s = 0. Alors φ_L représente le polynôme $\psi(X_1, Y_1, \dots, X_r, Y_r)$. D'après [1, Satz 3.5] on déduit que ψ est une sous-forme de φ .
- (2) Si r=0. Alors, φ_K représente le polynôme $\psi(Z_1,\cdots,Z_s)$. D'après [1, Satz 3.4] on déduit que $\psi \preccurlyeq \varphi$.
- (3) Si $r \neq 0$ et $s \neq 0$. Alors dim $\psi \geq 3$. Puisque $\psi_{F(\eta)}$ est isotrope, on déduit que $F(\eta)(\psi)/F(\eta)$ est transcendante pure [7, Corollaire 3.3]. Ainsi, $\varphi_{F(\eta)}$ est hyperbolique. Comme dans le cas (1), le polynôme $\sum_{i=1}^{r} (a_i X_i^2 + X_i Y_i + b_i Y_i^2)$ est représenté par φ_L . Par conséquent

$$\varphi \cong \eta \perp \mu$$

pour une certaine forme quadratique μ [1, Satz 3.5]. Puisque

$$\sum_{i=1}^{r} (a_i X_i^2 + X_i Y_i + b_i Y_i^2) + \sum_{j=1}^{s} c_j Z_j^2$$

est représenté par $\varphi \cong \eta \perp \mu$ sur KL, on déduit que le polynôme $\sum_{j=1}^{s} c_j Z_j^2$ est représenté par μ sur K [1, Lemma 3.7]. Par conséquent, la forme quadratique ψ_{lp} est dominée par μ [1, Satz 3.4]. D'où ψ est dominée par φ .

Proposition 2. ([7, Proposition 3.1]) Soit F un corps commutatif de caractéristique 2. Alors, on a les assertions suivantes :

- (1) Une forme quadratique qui est totalement singulière ne peut être une voisine.
- (2) $Si \psi$ est voisine de π , alors ψ est isotrope si et seulement si π est isotrope.
- (3) Si ψ est voisine de π et si $F(\pi)$ existe, alors $\psi_{F(\pi)}$ est isotrope.
- (4) $Si \ \psi$ est voisine de π , alors π est unique à isométrie près.
- (5) Si $\pi \in P_n F$ et ψ sont anisotropes, alors ψ est voisine de π si et seulement si dim $\psi > 2^n$ et $\pi_{F(\psi)}$ est isotrope..

Preuve. (1) Supposons que $\psi = [c_1] \perp \cdots \perp [c_s]$ soit voisine d'une forme $\pi \in P_n F$. Il existe $a \in F^*$ tel que $a\pi \cong [c_1, d_1] \perp \cdots \perp [c_s, d_s] \perp \delta$ pour certains $d_1, \cdots, d_s \in F$ et $\delta \in W_q(F)$. On a $2 \dim \psi > \dim \pi = 2 \dim \psi + \dim \delta$, et donc $\dim \delta < 0$, une contradiction.

- (2) Si ψ est isotrope, alors π l'est aussi. Réciproquement, si π est isotrope alors π est hyperbolique et donc l'espace sous-jacent à π contient un sous-espace totalement isotrope de dimension 2^n [2, Theorem 4.6, Page 17]. Puisque dim $\psi > 2^n$ et que ψ est faiblement dominée par π , on déduit que ψ est isotrope.
- (3) Puisque $\psi_{F(\pi)}$ est voisine de $\pi_{F(\pi)}$ qui est isotrope, on déduit par l'assertion (2) que $\psi_{F(\pi)}$ est isotrope.
- (4) D'après l'assertion (2) il suffit de traiter le cas où ψ est anisotrope. Supposons que ψ soit anisotrope et voisine de π_1 et π_2 . Lorsque dim $\psi = 2$, on a que ψ est semblable à π_1 et π_2 . Par conséquent, π_1 et π_2 sont semblables et donc $\pi_1 \cong \pi_2$. Supposons que dim $\psi \geq 3$. Par l'assertion (3) $\psi_{F(\pi_2)}$ est isotrope et donc l'extension $F(\pi_2)(\psi)/F(\pi_2)$ est transcendante pure [7, Corollaire 3.3]. Puisque $(\pi_1)_{F(\psi)}$ est isotrope, on a $(\pi_1)_{F(\pi_2)}$ isotrope et donc hyperbolique. De la même manière on a $(\pi_2)_{F(\pi_1)}$ hyperbolique. Par la proposition 1 on déduit que π_1 est semblable à π_2 et donc $\pi_1 \cong \pi_2$.
- (5) C'est une simple conséquence de la proposition 1 et de la définition d'une forme voisine.

Dans sa preuve du [5, Main Lemma] Hoffmann a utilisé le fait que si φ et ψ sont deux formes quadratiques telles que $i_W(\varphi \perp -\psi) = m$, alors φ et ψ contiennent en commun une sous-forme de dimension m. Ce résultat n'est pas toujours vrai en caractéristique 2. On va prouver deux lemmes (Lemmes 1 et 2) qui vont nous permettre d'éviter cette difficulté en caractéristique 2.

Lemme 1. Soient $\varphi, \psi \in W_q(F)$. On suppose que $\dim \psi < \dim \varphi$ et que φ est anisotrope. Alors, $D_F(\varphi) \cap D_F((\varphi \perp \psi)_{an}) \neq \emptyset$.

Preuve. Puisque φ est anisotrope et que $\dim \varphi > \dim \psi$, on ne peut avoir $\varphi \perp \psi$ hyperbolique. Posons $n = \dim \psi$, $\eta = (\varphi \perp \psi)_{an}$ et $m = \dim \eta$.

- (1) Si $\varphi \perp \psi$ est anisotrope, alors $\varphi \perp \psi = (\varphi \perp \psi)_{an}$ et le lemme est évident.
- (2) Si $\varphi \perp \psi$ est isotrope, alors $r := i_W(\varphi \perp \psi) \geq 1$. Puisque $\psi \perp \psi = n \times \mathbb{H}$, $\eta \perp \eta = m \times \mathbb{H}$ et $\varphi \perp \psi \cong \eta \perp r \times \mathbb{H}$, on obtient

$$\varphi \perp \eta \perp n \times \mathbb{H} \cong \psi \perp (r+m) \times \mathbb{H} \tag{2}$$

On a r+m>n, car sinon $r+m\leq n$ et donc $m+2r\leq n+r$. Or $\dim \varphi+n=m+2r$ et $\dim \varphi>\dim \psi$, par conséquent m+2r>2n. Ainsi, n+r>2n, c'est-à-dire, r>n. Or $\varphi\perp\psi\cong\eta\perp r\times\mathbb{H}$ implique $\varphi\perp n\times\mathbb{H}\cong\eta\perp\psi\perp r\times\mathbb{H}$. Par la simplification de Witt [6, Proposition 3], on déduit que $\varphi\cong\eta\perp\psi\perp (r-n)\times\mathbb{H}$ et donc φ est isotrope, une contradiction. Ainsi, m+r>n. La simplification de Witt dans l'équation (2) implique que

$$\varphi \perp \eta \cong \psi \perp (r + m - n) \times \mathbb{H} \tag{3}$$

Ainsi, $\varphi \perp \eta$ est isotrope et donc φ et η représentent un scalaire en commun. Puisque φ est anisotrope, on déduit que $D_F(\varphi) \cap D_F(\eta) \neq \emptyset$. **Lemme 2.** Soient $\pi \in P_nF$ anisotrope, $\varphi \in W_q(F)$ et $\eta = (\pi \perp \varphi)_{an}$. On suppose que $2^n > i_W(\pi \perp \varphi)$. Alors, $\eta_{F(\pi)}$ est isotrope.

Preuve. Posons $m = i_W(\pi \perp \varphi)$. On a $\pi \perp \varphi \cong \eta \perp m \times \mathbb{H}$. En passant au corps des fonctions de π , on obtient $2^n \times \mathbb{H} \perp \varphi_{F(\pi)} \cong \eta_{F(\pi)} \perp m \times \mathbb{H}$. Par hypothèse on a $2^n > m$, et donc par la simplification de Witt $\eta_{F(\pi)}$ est isotrope.

Lemme 3. Soient φ , η deux formes quadratiques (non nécessairement non singulières) et $\psi \in W_q(F)$. On suppose que $\varphi \perp \psi \cong (\dim \psi) \times \mathbb{H} \perp \eta$. Alors, ψ est une sous-forme de φ .

Preuve. Puisque $\psi \perp \psi \cong (\dim \psi) \times \mathbb{H}$, on obtient par la simplification de Witt [6, Proposition 1.2] que $\varphi \cong \psi \perp \eta$.

3 Démonstration du théorème 1

Maintenant, on est en mesure d'étendre [5, Main Lemma] à la caractéristique 2. Notre démonstration suivra l'idée de Hoffmann [5].

Proposition 3. Soient F un corps commutatif de caractéristique 2, $\varphi \in W_q(F)$ anisotrope et $n \geq 1$ un entier tels que $\dim \varphi \leq 2^n$. Alors, il existe une extension K/F et une forme quadratique $\pi \in P_nK$ anisotrope telles que :

- (1) φ_K soit une sous-forme de π ;
- (2) Une F-forme quadratique anisotrope (non nécessairement non singulière) reste anisotrope sur $K(\pi)$.

Preuve. Soit φ une F-forme quadratique comme dans la proposition. Soit $L = F(X_1, \dots, X_{n+1})$ le corps des fractions rationnelles en les variables X_1, \dots, X_{n+1} sur F, et soit $\pi = \langle \langle X_1, \dots, X_n, X_{n+1} \rangle$. Puisque π est isotrope sur $L(\langle 1, X_1 \rangle)$ et que dim $\pi > 2$, on déduit que $L(\langle 1, X_1 \rangle)(\pi)$ existe et que $L(\langle 1, X_1 \rangle)(\pi)/L(\langle 1, X_1 \rangle)$ est transcendante pure [8, Lemma 1]. Clairement l'extension $L(\langle 1, X_1 \rangle)/F$ est aussi transcendante pure. Ainsi, une F-forme quadratique anisotrope reste anisotrope sur $L(\pi)$.

Soit E/L une extension qui vérifie les deux conditions suivantes :

- (C1) π_E est anisotrope;
- (C2) Une F-forme quadratique anisotrope (non nécessairement non singulière) reste anisotrope sur $E(\pi)$.

Le corps L vérifie les conditions (C1) et (C2). Pour une extension E/L qui vérifie les conditions (C1) et (C2), on note $m(E) = i_W(\pi_E \perp \varphi_E)$. Prenons

$$m = \text{Max}\{ m(E) \mid E/L \text{ satisfait (C1) et (C2)} \}.$$

Soit K/L une extension pour laquelle m(K) = m. On a $m \leq \dim \varphi$. Si on montre que $m = \dim \varphi$, on déduit par le lemme 3 que φ_K est une sous-forme de π_K .

Supposons $m < \dim \varphi$ et posons

$$\pi_K \perp \varphi_K \cong \alpha \perp m \times \mathbb{H} \tag{4}$$

pour une certaine K-forme quadratique anisotrope α . En prenant les dimensions dans les deux membres de l'équation (4), on obtient $2^{n+1} + \dim \varphi = \dim \alpha + 2m$. Puisque $2^n \ge \dim \varphi > m$, on déduit que $\dim \alpha + 2m > 2^{n+1} + m$, c'est-à-dire, $\dim \alpha > 2^{n+1} - m > 2^n \ge 2$ (en particulier, $\dim \alpha \ge 4$). Ainsi, $i_W(\alpha_{K(\alpha)}) \ge 1$ et $m(K(\alpha)) = m(K) + i_W(\alpha_{K(\alpha)}) \ge m + 1 > m$.

Si on montre que $K(\alpha)$ vérifie les conditions (C1) et (C2), on déduit une contradiction avec la maximalité de m. En effet :

(1) Si $\pi_{K(\alpha)}$ est isotrope, alors $\pi_{K(\alpha)}$ est hyperbolique. Par la proposition 1 il existe $r \in K^*$ tel que

$$\pi_K \cong r\alpha \perp \mu \tag{5}$$

pour une certaine K-forme quadratique μ . D'après le lemme 1 et l'équation (4) il existe $e \in D_K(\pi_K) \cap D_K(\alpha)$ (ici est l'unique endroit où on utilise le lemme 1). Ainsi, $re, e \in D_K(\pi_K) = G_K(\pi_K)$. Par conséquent, $r \in D_K(\pi_K) = G_K(\pi_K)$. Ainsi, on obtient par l'équation (5) que

$$\pi_K \cong \alpha \perp r\mu \tag{6}$$

En combinant les équations (4) et (6) et après simplification, on déduit que

$$m \times \mathbb{H} \cong \varphi_K \perp r\mu \tag{7}$$

Par conséquent, $2m = \dim \varphi + \dim \mu > m + \dim \mu$, c'est-à-dire, $\dim \varphi > m > \dim \mu$. Par l'équation (7) on a φ_K isotrope et donc $\varphi_{K(\pi)}$ l'est aussi, ceci contredit la condition (C2). Ainsi, $\pi_{K(\alpha)}$ est anisotrope.

(2) Soit ψ une F-forme quadratique anisotrope. Puisque $2^n \geq \dim \varphi > m$, on obtient par le lemme 2 et l'équation (4) que $\alpha_{K(\pi)}$ est isotrope. Puisque $\dim \alpha \geq 4$, on obtient par [8, Lemma 1] que $K(\pi)(\alpha)$ existe et que $K(\pi)(\alpha)/K(\pi)$ est transcendante pure. Si $\psi_{K(\alpha)(\pi)}$ est isotrope, alors $\psi_{K(\pi)}$ l'est aussi, ce qui contredit la condition (C2). Ainsi, $\psi_{K(\alpha)(\pi)}$ est anisotrope.

Par conséquent, $K(\alpha)$ vérifie les conditions (C1) et (C2), et donc on a une contradiction avec la maximalité de m. D'où $m = \dim \varphi$.

Maintenant on va donner la démonstration du théorème 1. Soient φ et ψ comme dans le théorème 1.

I- Supposons que φ soit non singulière :

Dans ce cas on suppose qu'il existe un entier $n \geq 1$ tel que dim $\varphi \leq 2^n < \dim \psi$. Par la proposition 3, il existe une extension K/F et une forme quadratique $\pi \in P_n K$ anisotrope telles que $\varphi_K < \pi$ et que toute F-forme quadratique anisotrope (non nécessairement non singulière) reste anisotrope sur $K(\pi)$. Si $\varphi_{F(\psi)}$ est isotrope, alors $\pi_{K(\psi)}$ l'est aussi. Puisque dim $\psi > 2^n$ on obtient par la proposition 2 (5) que ψ_K est voisine de π . Par la proposition 2 (3) on obtient que $\psi_{K(\pi)}$ est isotrope, une contradiction. Ainsi, $\varphi_{F(\psi)}$ est anisotrope.

II- Supposons que φ soit singulière :

Dans ce cas notre démonstration consiste à se ramener au cas d'une forme quadratique non singulière en utilisant un argument générique. En effet, le lemme suivant va nous permettre ceci.

Lemme 4. (Baeza [3]) Soient φ une forme quadratique non singulière et $c_1, \dots, c_s \in F^*$ tels que $\varphi \perp [c_1] \perp \dots \perp [c_s]$ soit anisotrope. Alors, la forme quadratique $\varphi \perp [c_1, c_1t^{-1}] \perp \dots \perp [c_s, c_st^{-1}]$ est anisotrope sur F(t) le corps des fractions rationnelles en la variable t sur F.

Preuve. Dans [3, Pages 109-111], Baeza montre plus généralement que la forme quadratique $\varphi \perp t^{-1}\varphi \perp [c_1, c_1t^{-1}] \perp \cdots \perp [c_s, c_st^{-1}]$ est anisotrope sur F((t)) le corps des séries formelles en la variable t sur F.

Pour finir la preuve du théorème 1, considérons $\eta \in W_q(F)$ tel que $\varphi \cong \eta \perp \varphi_{lp}$ où φ_{lp} est la partie quasi-linéaire de φ . On a $\varphi_{lp} = [c_1] \perp \cdots \perp [c_s]$ pour certains $c_i \in F^*$. Par le lemme 4 la forme quadratique

$$\varphi' := \eta_{F(t)} \perp \left[c_1, c_1 t^{-1} \right] \perp \cdots \perp \left[c_s, c_s t^{-1} \right]$$

est anisotrope sur F(t). L'assertion (1) du théorème 1 implique que φ' est anisotrope sur $F(t)(\psi)$. Puisque $\varphi_{F(t)} \preccurlyeq \varphi'$ et $F(\psi) \subset F(t)(\psi)$, on obtient que φ est anisotrope sur $F(\psi)$.

Lorsque φ est non singulière, le théorème 1 donne la bonne borne sur la dimension des formes ψ pour lesquelles $\varphi_{F(\psi)}$ est isotrope, ce qui prouve que le théorème de Hoffmann se généralise à la caractéristique 2 pour les formes non singulières. Dans le cas d'une forme quadratique φ singulière de type (r, s), on a obtenu que la borne sur la dimension des formes ψ vérifiant $\varphi_{F(\psi)}$ isotrope, est au plus 2^n où n est le plus petit entier vérifiant $2r + 2s \leq 2^n$.

On finit cette note par la question générale suivante :

Question. Soient φ une F-forme quadratique anisotrope singulière, 2^n est la plus petite puissance de 2 vérifiant dim $\varphi \leq 2^n$ et ψ une F-forme quadratique anisotrope de dimension $> 2^n$. Est-t-il vrai que $\varphi_{F(\psi)}$ est anisotrope?

Références

- [1] R. Baeza, Ein Teilformensatz für quadratische Formen in Charakteristik 2, Math. Z. **135**, 175–184 (1974).
- [2] R. Baeza, Quadratic forms over semilocal rings, Lect. Notes Math. vol. 655, Berlin, Heidelberg, New York: Springer 1978.
- [3] R. Baeza, Comparing u-invariants of fields of characteristic 2, Bol. Soc. Bras. Mat. 13 (1), 105–114 (1982).
- [4] R. Baeza, The norm theorem for quadratic forms over a field of characteristic 2, Comm. Algebra 18 (5), 1337–1348 (1990).
- [5] D. W. Hoffmann, Isotropy of quadratic forms over the function field of a quadric, Math. Z. **220**, 461–476 (1995).
- [6] M. Knebusch, Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arithmetica XXIV, 279–299 (1973).
- [7] A. Laghribi, Certaines formes quadratiques de dimension au plus 6 et corps des fonctions en caractéristique 2, Israel J. Math. 2002 (à paraître)
- [8] P. Mammone, J.-P. Tignol, A. Wadsworth, Fields of characteristic 2 with prescribed u-invariant, Math. Ann. 290, 109–128 (1991).
- [9] W. Scharlau, *Quadratic and Hemitian forms*, (Grundlehren Math. Wiss. Bd. 270) Berlin, Heidelberg, New York, Tokyo: Springer 1985.

Faculté des Sciences Jean Perrin Rue Jean Souvraz - SP 18 62307 Lens Cedex France laghribi, mammone@euler.univ-artois.fr