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Abstract

The rational Lusternik-Schirelmann category, cat0(S), of an elliptic space
S has been characterized in terms of its Sullivan minimal model (ΛV, d) as
cat0(S) = sup{k | ∃w ∈ Λ≥kV, [w] is a top class}. We combine a method for
computing a representative of the fundamental class of any elliptic space with
a Groebner basis approach so that, for S a pure elliptic space, reduction of
this representative provides one that achieves the cat0(ΛV, d) upper bound.

Introduction

The Lusternik-Schirelmann category [9, 13], cat S, of a topological space S is the
least integer m such that S is the union of m + 1 open sets, each contractible in
S. For S a simply connected CW complex, the rational L.-S. category, cat0(S),
introduced by Felix and Halperin in [5] is given by cat0(S) = cat(SQ) ≤ cat (S).

Recently [6], the rational L.-S. category of an elliptic space S has been character-
ized in terms of its minimal model (ΛV, d) as cat0(S) = sup{k | ∃w ∈ Λ≥kV, [w] is a
top class}. We combine a method [12] for computing a representative of the fun-
damental class of any elliptic space with a Groebner basis approach so that, for
a pure elliptic space, reduction of this representative yields one that achieves the
cat0(ΛV, d) upper bound.

In this paper, all spaces are CW-complexes that are simply connected and whose
rational homology is finite dimensional in each degree.
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This paper is organized as follows, first in §1 we recall some notions and basic
facts in Sullivan’s theory of minimal models, then in §2 we give an algorithm for the
rational category of spaces with vanishing Euler homotopy characteristic, finally in
§3 we generalizes our algorithm to pure elliptic spaces.

1 Basic facts

We recall here some basic facts and notation we shall need from Sullivan’s theory of
minimal models, for which [8, 16] are standard references.

A simply connected space S such that dimH∗(S) <∞ is called rationally elliptic
if dim π∗(S) ⊗ Q < ∞, otherwise S is called rationally hyperbolic. A commutative
graded algebraH is said to have formal dimensionN ifHp = 0, p > N , and HN 6= 0.
An element 0 6= w ∈ HN is called a fundamental or top class.

For S a simply connected elliptic space, by [6, Lemma 10.1] the rational Toomer’s
invariant e0(ΛV, d) is the largest integer k such that the top class can be represented
by a cocycle in Λ≥kV .

In [6, Th.3] is proven that for (rationally) elliptic spaces cat0(S) = e0(S). Hence
cat0(S) = sup{k | ∃w ∈ Λ≥kV, [w] is a top class}.

1.1 Pure spaces

Henceforth, if S is a space with minimal model (ΛV, d) we shall denote X = V even,
Y = V odd, n = dim V even, m = dimV odd. The integer χπ = n − m is called the
Euler homotopy characteristic of S, and

∑
i(−1)i dim(H i(S;Q)) is called the Euler

characteristic of S.
A pure space S is a space whose minimal model (ΛV, d) = ΛX ⊗ ΛY satisfies

dX = 0 and d Y ⊂ ΛX. Spheres and compact homogeneous spaces are examples of
pure spaces. If dimV <∞ then it is called a finite pure space.

A bigradation on (ΛV, d) is given by ΛV =
∑

n,j≥0(ΛjV )n where (ΛjV )n = (ΛX⊗
ΛjY )n. Since d(ΛjV )n ⊂ (Λj−1V )n+1, the differential d has bidegree (1,−1) and this
induces a bigradation in cohomology.

If (ΛV, d) is pure and elliptic then H(ΛV, d) is a Poincare duality algebra and for
k = −χπ it is verified that Hk(ΛV ) 6= 0 and Hk+p(ΛV ) = 0, p ≥ 1. Hence, if n = m
then H(ΛV, d) = H0(ΛV, d). As an immediate consequence of theses properties we
obtain:

Lemma 1. Let (ΛV, d) be a pure elliptic space. Then there is a cocycle w1 in Λm−nV
that represents the top class and lives in Λ≥kV with k = cat0(ΛV, d).

In [14] is given a formula for computing a cocycle representing the fundamental
class of a pure elliptic space (ΛX⊗ΛY, d). A slight modification [12] of this formula
gives the following algorithm.

Let {x1, . . . , xn} and {y1, . . . , ym} be homogeneous basis of X and Y respectively
and X̄ = sX the suspension of X with dx̄i = xi. Choose elements Ψj ∈ ΛX ⊗ Λ1X̄
for which dΨj = dyj, j = 1, . . . , m. Then
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Proposition 2.

w = coefficient of
n∏

i=1

x̄i in the development of
m∏

j=1

(yj − Ψj)

is a cocycle in Λm−nV that represents the fundamental class of (ΛV, d).

Observe that to construct Ψj it suffices to replace in each term of dyj one xk ∈
{x1, . . . , xn} by its suspension x̄k.

Proposition 2 provides a lower bound for cat0 (S). We shall apply a modification
of standard Groebner basis (as in [1]). We begin by giving the necessary definitions
and the modifications required in the proofs. Then we will show that reduction of w
with respect to a certain Groebner basis provides a presentative w0 that achieves the
upper bound cat0(ΛV, d). We start with a special case, spaces with positive Euler
characteristic and Groebner basis for ideals. Then we proceed to the general case,
that is, pure elliptic spaces and Groebner basis for modules.

2 cat0 S for elliptic spaces with positive Euler characteristic

We will denote by K a field of characteristic 0. In [7] is proven that, for an elliptic
space S, the three conditions: positive Euler characteristic, χπ = 0 and Hodd = 0
are equivalent. Furthermore, for an elliptic space, χπ = 0 implies that, up to
isomorphism, the model of S is a pure model. Hence, if the pure model associated
to S is (ΛV, d) and I is the ideal < dy1, . . . , dyn > in K[x1, . . . , xn] then H(ΛV, d) =
K[x1, . . . , xn]/I.

2.1 Groebner basis for ideals and the ≤opglex order

We have in mind an audience more expert in rational homotopy than in Groebner
basis theory, so we will recall some standard facts and definitions on Groebner basis
for which [1, 4] are standard references.

First, we recall that the set of power products in K[x1, . . . , xn] is denoted by
Tn = {xβ = xβ1

1 · · ·xβn
n | βi ∈ N, i = 1, . . . , n}.

Definition 3. By a term order on Tn we mean a total order ≤ on Tn satisfying the
following conditions:

1. 1 ≤ xα for all α ∈ Nn.

2. if xα ≤ xβ then xα · xγ ≤ xβ · xγ , for all γ ∈ Nn

Theorem 4. Every term order on Tn is a well-ordering, that is, for every subset
A ⊂ Tn, there exists xα ∈ A such that for all xβ ∈ A, xα ≤ xβ.

Definition 5. Let f =
∑

α∈A aαx
α ∈ K[x1, . . . , xn], with ∀α ∈ A, aα 6= 0, and let ≤

be a total order on Nn. Then

1. The total degree of xβ ∈ Tn is ||β|| =
∑n

i=1 βi.

2. The total degree of f , denoted tdeg(f), is max(||α||, α ∈ A).
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3. The multidegree of f is multideg(f) = max(α, α ∈ A).

4. The leading coefficient of f is lc(f) = amultideg(f) ∈ K.

5. The leading power product of f is lp(f) = xmultideg(f).

6. The leading term of f is lt(f) = lc(f) · lp(f).

We will write hdeg(f) for the homological degree of a homogeneous element
f ∈ (ΛV, d).

Definition 6. The lexicographical order ≤lex on Tn with x1 > x2 > · · · > xn is
defined by

xα ≤lex x
β ⇔ α = β or α1 < β1 or ∃k |αi = βi for 1 ≤ i < k and αk < βk.

Definition 7. The opposite of the graded lexicographic order on Tn, that we denote
by ≤opglex, is given by

xα ≤opglex x
β ⇐⇒ α = β or ||α|| > ||β|| or ||α|| = ||β|| and xβ ≤ lex x

α.

Clearly, the ≤opglex order is not a well-ordering. But it is a total order and
verifies that if xα ≤opglex x

β then xα · xγ ≤opglex x
β · xγ for all γ ∈ Nn. This is a key

property in Groebner basis theory. Since ≤opglex is not a well-ordering, we will have
to modify the proof of some of the following theorems. The key idea is that since
I is homogeneous (w.r.t homological degree) and finite dimensional in each degree,
we will prove that the the division algorithm and Buchberger’s algorithm terminate
in a finite number of steps without applying the well-order property.

Definition 8. Given f, g, h in K[x1, . . . , xn] with g 6= 0, we say that f reduces to h

modulo g in one step, written f
g
−→ h, if and only if lp(g) divides a non zero term

X that appears in f and h = f −
X

lt(g)
g.

Let f, h, and f1, . . . , fs be polynomials in K[x1, . . . , xn], with fi 6= 0, and let

F = {f1, . . . , fs}. We say that f reduces to h modulo F , denoted f
F
→ +h, if and

only if there exist a sequence of indices i1, i2, . . . , it ∈ {1, . . . , s} and a sequence of
polynomials h1, . . . , ht−1 such that

f
fi1−→ h1

fi2−→ h2

fi3−→ · · ·
fit−1

−→ ht−1

fit−→ h.

A polynomial r is called reduced with respect to a set of non zero polynomials
F = {f1, . . . , fs} if r = 0 or no power product that appears in r is divisible by any
one of the lp(fi), i = 1, . . . , s.

If f
F
−→+ r and r is reduced with respect to F , then we call r a remainder for

f with respect to F . Note that r is not unique in general. The reduction process
allow us to define a division algorithm that mimics the Division Algorithm in one
variable. Given f and a family of non zero polynomials {gi ∈ K[x1, . . . , xn] : gi 6=
0}s

i=1, this algorithm returns quotients u1, . . . , us ∈ K[x1, . . . , xn] and a remainder
r ∈ K[x1, . . . , xn], such that f = u1g1 + · · ·+ usgs + r.
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The division algorithm

INPUT:An order on T n and f, g1, . . . , gs ∈ K[x1, . . . , xn] with gi 6= 0(1 ≤ i ≤ s)
OUTPUT: u1, . . . , us, r such that f = u1g1 + · · ·+ usgs + r and
r is reduced with respect to {g1, . . . , gs} and
max(lp(u1) lp(g1), . . . , lp(us) lp(gs), lp(r)) = lp(f).
INITIALIZATION: u1 = 0, u2 := 0, . . . , us := 0, r := 0, h := f
WHILE h 6= 0 DO
IF there exists i such that lp(gi) divides lp(h) THEN
choose i least such that lp(gi) divides lp(h)

ui := ui + lt(h)
lt(gi)

h := h− lt(h)
lt(gi)

gi

ELSE
r := r + lt(h)
h := h− lt(h)
ENDIF
ENDWHILE

Theorem 9 (Finiteness of the division algorithm). If f and gi are homoge-
neous element of I (with respect to the homological degree) then the division algo-
rithm with respect to ≤opglex terminates in a finite number of steps.

Proof. Write f0 = f , at each step the reduction fk

gj

−→ fk+1 with fk and gj ho-
mogeneous (w.r.t. homological degree) gives fk+1 homogeneous with hdeg(fk+1) =
hdeg(fk) and lp(fk+1) ≤opglex lp(fk). Then || lp(fk)|| ≤ || lp(fk+1)||. Obviously, there
are only a finite number of power products X in the same homological degree as f .
Hence the algorithm terminates in a finite number of steps. With the same proof
as in [1, Theorem 1.5.9] we conclude that f = u1g1+· · ·+usgs+r, where r is reduced
with respect to {g1, . . . , gs} and that lp(f) = max (lp(u1) lp(g1), . . . , lp(us) lp(gs), lp(r)).

�

Definition 10. Let f, g ∈ K[x1, . . . , xn] be non zero polynomials. Let L = lcm(lp(f),

lp(g)). The polynomial S(f, g) =
L

lt(f)
f −

L

lt(g)
g is called the S-polynomial of f

and g.

Definition 11. For a subset S of K[x1, . . . , xn], we define the leading term ideal of
S to be the ideal lt(S) =< lt(s) | s ∈ S >.

Definition 12. A set of non zero polynomials G = {g1, . . . , gt} contained in an ideal
I, is called a Groebner (or standard) basis for I if and only if lt(G) = lt(I).

In other words, for all f ∈ I such that f 6= 0, there exists i ∈ {1, . . . , t} such
that lp(gi) divides lp(f). A set G of non zero polynomials it is called a Groebner
basis if it is a Groebner basis of < G >.

Theorem 13 (Buchberger’s Criterion). Let G = {gi}
s
i=1 be a set of non zero

polynomials in K[x1, . . . , xn]. Then G is a Groebner basis with respect to ≤opglex if

and only if for all i 6= j, S(gi, gj)
G
−→+ 0.
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Proof. The classical proof [1, Theorem 1.7.4] use the well-ordering property to es-

tablish that we can choose an expression f =
t∑

i=1

higi with X = max
1≤i≤s

(lp(hi) lp(gi))

least. Observe that lp(f) ≤opglex X ⇒ ||X|| ≤ || lp(f)||. And clearly, {Z ∈
Tn such that ||Z|| ≤ || lp(f)||} is a finite set, hence it has a least element. So
we have established the existence of such an expression. The rest of the proof is the
same as in the classical proof. This proves the theorem. �

2.2 Buchberger’s algorithm for computing Groebner basis

Let F = {f1, . . . , fr} ⊂ K[x1, . . . , xn] with fi 6= 0. The following algorithm will
produce a Groebner basis G = {g1, . . . , gs} for the ideal < f1, . . . , fr >.

Buchberger’s Algorithm

Initialization: G := F , G := {{fi, fj} | fi 6= fj and (fi, fj) ∈ G×G}
While G 6= ∅ Do
Choose any {f, g} ∈ G
G := G \ {{f, g}}

S(f, g)
G
−→+ h, where h is reduced with respect to G.

If h 6= 0 then
G := G ∪ {{u, h} | for all u ∈ G}
G := G ∪ {h}

Theorem 14 (Finiteness of Buchberger Algorithm for the ≤opglex order).
Buchberger’s Algorithm with the ≤opglex order terminates in a finite number of steps
and provides a Groebner basis of I with respect to the ≤opglex order.

Proof. At each stage, if there is h 6= 0, the ideal lt(G ∪ h) is strictly larger that
lt(G), so by the noetherian property of K[x1, . . . , xn] after finitely many steps it has
to be all h = 0, and at this stage, by Buchberger’s criterion G is a Groebner Basis.

�

The following theorem provides a usefull characterization of a Groebner basis.

Theorem 15. Let G = {gi}
s
i=1 be a set of non zero polynomials in K[x1, . . . , xn].

Then G is a Groebner basis with respect to ≤opglex if and only if for all f ∈ K[x1, . . . , xn],
the remainder r of the division of f by G is unique.

Proof. The proof is the same as in the standard case [1, Theorem 1.6.7] �

If G is a Groebner basis then the remainder r is called the normal form of f
with respect to G, and we write r = NFG(f). As an immediate consequence of
Theorem 15, if G ⊂ K[x1, . . . , xn] is a Groebner basis and f1, f2 ∈ K[x1, . . . , xn]
then f1 − f2 ∈< G >⇔ NFG(f1) = NFG(f2).

Theorem 16. Let (ΛV, d) be a pure elliptic model with χπ = 0, w ∈ ΛX be a cocycle
representing the top class of (ΛV, d) and G a Groebner basis of < dy1, . . . , dyn >

with respect to ≤opglex. Then the reduction w
G
−→+ w0 gives w0 ∈ ΛkX, where

k = cat0(ΛV, d).
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Proof. Observe that

i) (w
G
−→+ w0) =⇒ || lt(w)|| ≤ || lt(w0)||

ii) || lt(w)|| = l ⇐⇒ w ∈ Λ≥lX and w /∈ Λ≥l+1X.

By Lemma 1 there is a top class w1 ∈ Λ≥kX with k = cat0(ΛV, d). Let w0 be then
the normal form of w1 with respect to G then by (i) w0 ∈ Λ≥kX. Now, let w be any
cocycle that represents the top class, then by Theorem 15 w−w1 ∈ G⇒ NFG(w) =
NFG(w1) = w0. Finally, observe that w0 is a monomial because if w0 = t1 + t2 with
t1 and t2 in ΛX and reduced with respect to G then both t1 and t2 are cocycles
representing the top class so that there are λ ∈ K\{0} and f ∈< dy1, . . . , dyn > such
that t1 = λt2+f , hence t1 = NFG(t1) = NFG(λt2+f) = NFG(λt2) = λNFG(t2) = λt2
and this implies w0 ∈ ΛkX. �

As an immediate consequence we obtain the following algorithm for computing
cat0(ΛV, d) for S a pure elliptic spaces with positive Euler characteristic.

Algorithm for computing the rational category

Input: n = dimX and {dy1, . . . , dyn}
Output: The rational category of the pure elliptic model (ΛV, d) with χπ = 0.

Initialization: Let I =< dy1, . . . , dyn >, this is the coboundary ideal.
Apply Proposition 2 to compute a cocycle w ∈ ΛX that represents the funda-
mental class.
Apply Buchberger’s Algorithm to compute a Groebner basis G for I with
respect to ≤opglex.
Apply the division algorithm to obtain the normal form w0 = NFG(w).
Compute k = ||w0||.
Then k is the rational category of (ΛV, d).

Example 17. Let S be the rational space whose minimal model (ΛV, d) is given by
V even = {x1, x2, x3}, V

odd = {y1, y2, y3} with |xi| = 2i, yi = 12 for i = 1, 2, 3, and
the differential given by

dy1 = x6
1 + 36x3

2 + 28x1x2x3 + 35x2
3

dy2 = 26x3
2 + 11x1x2 x3 + 44x2

3

dy3 = 10x3
2 + 14x1x2 x3 + 39x2

3

First, apply Proposition 2 (and construct ψi by taking the suspension of the xi

with greatest degree) and obtain a representative of the top class

w = 254x6
1x

3
2 + 574x5

1x
2
2 x3

Then we apply Buchberger’s algorithm to obtain a Groebner basis of I given by
G= x1 x2 x3 + 287/6957x6

1 , x6
1x3 + 127/287x7

1x2, x
6
1x

2
2 + 23749/164738x8

1x2, x
9
1x2 +

13569304322
20983167711

x11
1 , x13

1 , x2
3 −

127
6957

x6
1, x

3
2 + 187

13914
x6

1.
Finally, we reduce w with respect to G and the normal form is given by

1737050805429097

145979897765427
x12

1 , hence cat0(S) = 12.
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Remark 18. Standard software for computing Groebner Basis are CoCoA [3] and
Macaulay2. The above Groebner Basis was calculated with version 4.1 of the com-
puter algebra system CoCoA. This is the input:

Use R::=Q[xyz],DegLex;

Opposite:= - Ord(R);

Use R::=Q[xyz], Ord(Opposite);

I:=Ideal(x^6 + 36y^3 + 28x y z + 35z^2,

26 y^3 + 11x y z + 44z^2 ,

10 y^3 + 14x y z + 39z^2);

ReducedGBasis(I);

NF(254 x^6 y^3+ 574 x^5 y^2 z,I);

Remark 19. If cat0(ΛV, d) = ∞ then Proposition 2 provides w such that [w] = 0,
hence w reduces to 0. This is because by [14] w is in the image of the evaluation
map, ev(ΛV,d), and by [15, Theorem 3.2] image of ev(ΛV,d) is non zero if and only if
(ΛV, d) is elliptic. See [12] for applications of this result.

3 cat0(ΛV, d) for pure elliptic spaces

We generalize the above to any pure elliptic space (ΛV, d). We shall apply reduction
and computation of Groebner bases for R-modules.

Write A = K[x1, . . . , xn], M = ΛX ⊗ Λm−nY , p = m − n. Let B ⊂ M be the
A-module of coboundaries in M then B is an A-submodule of M , and B is generated
by {d(yi1 · yi2 . . . · yip+1

) : 1 ≤ i1 < i2 · · · < ip+1 ≤ m} .

3.1 A Groebner basis for the submodule of coboundaries

We consider {ek}
q
k=1 = {yi1 · yi2 . . . · yip : 1 ≤ i1 < i2 < . . . < ip ≤ m} a basis of the

A-module M . By Hilbert’s basis theorem M is a noetherian A-module.
Then by a monomial in M we mean a vector of the type Xe1 (1 ≤ i ≤ q) where

X is a power product in A. If Xei and Y ej are monomials in M , we say that Xei

divides Y ej provided that i = j and X divides Y . In this case we define
Xei

Y ei

=
X

Y
.

Similarly, by a term, we mean a vector of the type cX where c ∈ k, and X is a
monomial.

Definition 20. By a term order on the monomials of M we mean a total order <
on these monomials satisfying the following two conditions:

(i) X < ZX, for every monomial X of M and power product Z 6= 1 of A.

(ii) If X < Y , then ZX < ZY for all monomials X,Y ∈ M and every power
product Z ∈ A.

Definition 21. For monomials X = Xei and Y = Y ej of M , we define X ≤top

Y ⇐⇒ (X ≤opglex Y ) or (X = Y and i < j)
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As for the ≤opglex order, the ≤top order is neither a term order nor a well-order,
but again it is a total order and verifies that xα ≤top xβ then for all γ ∈ Nn,
xα · xγ ≤top x

β · xγ . Since ≤top is not a well-ordering, we will have to modify the
proof of some of the following theorems. The key fact is that B is homogeneous
(w.r.t homological degree) and finite dimensional in each degree. We will prove that
the the division algorithm and Buchberger’s algorithm terminate in a finite number
of steps.

Definition 22. For all f ∈ M , with f 6= 0, me may write f = a1X1 + a2X2 +
· · ·+arXr, where ai ∈ K\{0} for 1 ≤ i ≤ r and X i are monomials in M satisfying
Xr ≤top Xr−1 ≤top . . . ≤top X1. We define

• lm(f) = X1, the leading monomial of f ;

• lc(f) = a1, the leading coefficient of f ;

• lt(f) = a1X1, the leading term of f .

We define lt(0) = 0, lm(0) = 0, and lc(0) = 0.
Now that we have defined monomials (in place of power products), divisibility

and quotients of monomials, and term orders, the definitions of reduction, reduced
vector, remainder, and the division algorithm can be lifted word for word as above.
The basic idea behind the algorithm is the same as for polynomials: when dividing
f by f1, . . . ,f s, we want to cancel monomials of f using the leading terms of the
{f i}, and continue this process until it cannot be done anymore.

Theorem 23. If f and f i, i = 1, . . . , s are homogeneous elements of M with respect
to the homological degree. Then the division of f by {f i}

s
i=1 with respect to ≤top

terminates in a finite number of steps.

Proof. The proof is the same as that for Theorem 9. �

For a subset V of M , the leading term module of V is the submodule of M given
by lt(W ) =< lt(w)|w ∈ W >.

Definition 24. A set on non zero vectors G = {g1, g2, . . . , gt} contained in the
submodule C ⊂ M is called a Groebner basis for C if and only if lt(G) = lt(C).
We say that the set G is a Groebner basis provided G is a Groebner basis for the
submodule, < G >, it generates.

Theorem 25. Let G = {gi}
s
i=1 be a set of non zero vectors in M . Then G is a

Groebner basis with respect to ≤top if and only if for all f ∈M , the remainder r of
the division of f by G is unique.

Proof. The proof is the same as in the classical proof [1, Theorem 3.5.14]. �

We introduce the analog of S-polynomial. Let X = Xei and Y = Y ej be
two monomials in M . Then by the least common multiple of X and Y (denoted
lcm(X,Y ), we mean lcm(X, Y )ei, if i = j or 0 otherwise.
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Definition 26. Let 0 6= f , g ∈ M . Let L = lcm(lm(f), lm(g)). Then the vector

S(f , g) =
L

lt(f)
f −

L

lt(g)
g is called the S-polynomial of f and g.

Remark 27. Observe that the reduction and the S-polynomial of two homogeneous
element (with respect to the homological degree) is a homogeneous element.

Theorem 28 (Buchberger’s criterion). Let G = {g1, g2, . . . , gt} be a set of non
zero vector in M . Then G is a Groebner basis with respect to ≤top if and only if for

all i 6= j, S(gi, gj)
G
−→+ 0.

Proof. The proof is analogous to that of Theorem 13. �

This last Theorem allow us to give the analog of Buchberger’s Algorithm for
computing Groebner basis. This algorithm is exactly the same as above (with the
new definitions).

Theorem 29. G = {g1, g2, . . . , gt} be a set of homogeneous (with respect to the
homological degree) non zero vector in M . Then Buchberger’s Algorithm for G with
the ≤top order terminates in a finite number of steps and gives a Groebner basis of
the module generated by G.

Proof. Observe that, if at stage i we denote by Gi the partial Groebner basis com-
puted so far, then lt(Gi) is an ascending chain of submodules. Hence, by the noethe-
rian property of M , the algorithm finitely terminates. Now, Buchberger’s criterion
implies that the algorithm terminates giving G a Groebner basis M . �

Theorem 30. Let G be a Groebner basis for the coboundary module B with respect
to top, w ∈ Λm−nV be a cocycle that represents the top class and w0 = NFG(w).
Then cat0(ΛV, d) = m− n + || lt(w0)||.

Proof. Let p = max{l | ∃w ∈ Λ≥lX ⊗ Λm−nY, and [w] is a top class}, then
cat0(ΛV, d) = m− n + p. Observe that

i) (w
G
−→+ w0) =⇒ || lt(w)|| ≤ || lt(w0)||

ii) || lt(w)|| = l ⇐⇒ w ∈ Λ≥lX ⊗ Λm−nY and w /∈ Λ≥l+1X ⊗ Λm−nY .

By Lemma 1 there is a cocycle w1 ∈ Λ≥lX⊗Λm−nY such that [w1] is a top class and
l +m− n = cat0(ΛV, d). Then w0 = NFG(w1) ∈ Λ≥lX ⊗ Λm−nY and cat0(ΛV, d) =
m − n + || lt(w0)||. Finally, let w ∈ Λm−nV be any cocycle that represents the
top class. Then w − w1 ∈ G ⇒ NFG(w) = NF(w1) = w0 hence cat0(ΛV, d) =
m− n + || lt(w0)||. �

As an immediate consequence we obtain the following algorithm for computing
cat0(ΛV, d) for pure elliptic spaces.
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Algorithm for computing the rational category

Apply Proposition 2 to compute w ∈ Λm−nV that represents the top class.
Compute the generators S (as above) of the coboundary module B.
Apply Buchberger’s algorithm to obtain a Groebner basis G for S with respect
to ≤top.
Obtain the normal form wo of w with respect to G by the division algorithm.
Compute l = || lt(w0)||.
Then k = m− n+ l is the rational category of the space.

Example 31. Let (ΛV, d) be the minimal model given by X = X2 =< x1, . . . , x4 >,
Y =< y1, . . . , y6 > and the differential

dy1 = x1x4 dy2 = x2
2x3 dy3 = x4

2

dy4 = x1x
4
4 dy5 = x7

1 + x7
3 dy6 = x7

4

Then a representative of the top class, w, is given by

w = x2x
8
3x

6
4y3y4 − x3

2x
7
3x

6
4y2y4 + x2x

11
3 x

6
4y1y3 − x3

2x
10
3 x

6
4y1y2.

The module M has 20 generators. The Groebner Basis of M has 34 elements. The
reduction of w with respect to M gives again w0 = w.
Now p = || lt(w0)|| = 15, so that cat0(ΛV, d) = p +m− n = 17.

Remark 32. For the computation of the rational category we only need the reduc-
tion of w representing the top class with respect to a Groebner basis of coboundaries.
Thus, it suffices to compute a truncate Groebner basis, that is, during the computa-
tion of Buchberger’s algorithm the element with homological degree greater than the
formal dimension are discarded.

3.2 Final remark and open problems

The computation of a Groebner basis can be computationally very expensive (there
are double exponential worst case bounds)[2]. But, in practice, the algorithm per-
forms quite well for many problems. In [10] is given an algorithm that is not a
polynomial time algorithm, but performs much better (in computation time) than
this one, the tradeoff is that it only provides a lower bound for the rational category.
On the other hand, in [11] is proven that the computation of the rational category
is an NP -hard problem even for the restricted class of formal pure spaces. Since
this result cannot be applied to determine the algorithmic complexity of computing
the rational category of a pure elliptic space, this remains an open problem.

For non pure space, in [12] is given an algorithm for computing a cocycle that
represents the top class. A straightforward modification of our algorithm with a
stage by stage optimization yields only a lower bound for cat0(ΛV, d). So, as above,
we ask: what is the algorithmic complexity of computing the rational category of
any elliptic space?. Is there a “good” approximate algorithm for this problem?.

I thank the referee for very useful suggestions which improved the presentation
of this paper.
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variationnels. Herman, Paris 1986.

[14] Aniceto Murillo. The top cohomology class of certain spaces. Journal of Pure
and Applied Algebra, 84:209–214, 1993.

[15] Aniceto Murillo. On the evaluation map. Trans. Amer. Math. Soc.,339:611-622,
1993.

[16] Dennis Sullivan. Infinitesimal computations in topology. Publ. Math. IHES,
pages 269–331, 1978.

Escuela Universitaria Politécnica.
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