The center of primitive locally pseudoconvex algebras

Mati Abel

Abstract

It is shown that the center of a unital primitive locally A-pseudoconvex Hausdorff algebra over $\mathbb C$ and of a unital topologically primitive locally pseudoconvex Fréchet algebra over $\mathbb C$ are topologically isomorphic to $\mathbb C$.

It is well known (see [9], Corollary 2.4.5; see also [5], Proposition 3, p. 127, and [4], Theorem 2.6.26 (ii), p. 255) that the center of a unital primitive Banach algebra over \mathbb{C} is topologically isomorphic to \mathbb{C} . Similar result holds for unital primitive spectral algebras over \mathbb{C} (see the proof of Theorem 6.7 in [7] or [8], Theorem 4.2.11); for unital primitive p-Banach algebras over \mathbb{C} (see [3], Corollary 9.3.7); for unital primitive locally m-convex Q-algebras over \mathbb{C} (see [10], Corollary 2) and for unital primitive locally A-convex algebras over \mathbb{C} in which all maximal ideals are closed (see [11], Theorem 3).

In the present paper we will show that the center of any unital primitive locally A-pseudoconvex Hausdorff algebra over \mathbb{C} and of any unital topologically primitive locally pseudoconvex Fréchet algebra over \mathbb{C} is topologically isomorphic to \mathbb{C} .

Received by the editors October 2002.

Communicated by F. Bastin.

¹⁹⁹¹ Mathematics Subject Classification: Primary: 46H05; Secondary: 46H20.

 $[\]label{eq:Keywords} \textit{Key words and phrases}: \text{Primitive topological algebras}, \textit{Q-algebras}, \textit{locally pseudoconvex} \\ \text{Fr\'echet algebras}, \textit{locally A-pseudoconvex algebras}, \textit{locally m-pseudoconvex algebras}.$

1 Introduction

1. Let X be a linear topological space over \mathbb{K} (over \mathbb{R} or \mathbb{C}), A an algebra over \mathbb{K} and $\mathcal{L}(X)$ the set of all endomorphisms on X. The addition of elements and the scalar multiplication in $\mathcal{L}(X)$ we define pointwise and the multiplication of elements in $\mathcal{L}(X)$ by the composition (that is, if $f, g \in \mathcal{L}(X)$ and $\lambda \in \mathbb{K}$, then (f+g)(x) = f(x) + g(x), $(\lambda f)(x) = \lambda f(x)$ and (fg)(x) = f(g(x)) for each $x \in X$). Then $\mathcal{L}(X)$ is an algebra over \mathbb{K} .

Let π be a representation of A on X (that is, a homomorphism or anti-homomorphism of A into $\mathcal{L}(X)$). If we define on X a left module multiplication $_{\pi}$ by $a_{\pi} \cdot x = \pi(a)(x)$ and a right module multiplication \cdot_{π} similarly by $x \cdot_{\pi} a = \pi(a)(x)$ for each $a \in A$ and $x \in X$, then X becomes respectively a left A-module, which we denote by $_{\pi}X$, and a right A-module, which we denote by X_{π} .

The left¹ A-module $_{\pi}X$ is nontrivial if $A_{\pi} \cdot X \neq \{\theta_X\}$, where θ_X is the zero element of X, and is irreducible if $_{\pi}X$ is a nontrivial left A-module in which $_{\pi}X$ and $\{\theta_X\}$ are the only A-submodules of $_{\pi}X$. A representation π of A on X is irreducible if $_{\pi}X$ is an irreducible left A-module (respectively X_{π} is an irreducible right A-module).

2. Let A be a locally pseudoconvex space over \mathbb{K} . Then A has a base $\{U_{\alpha} : \alpha \in A\}$ of neighbourhoods of zero which consists of balanced (that is, $\mu a \in U_{\alpha}$ if $a \in U_{\alpha}$ and $|\mu| \leq 1$) and pseudoconvex (that is,

$$U_{\alpha} + U_{\alpha} \subset 2^{\frac{1}{k_{\alpha}}} U_{\alpha}$$

for a $k_{\alpha} \in (0,1]$) sets U_{α} . It is well known (see [12], p. 4, or [3], p. 189) that the topology of A we can give by a family $\{p_{\alpha} : \alpha \in A\}$ of k_{α} -homogeneous seminorms. In particular, when A is a locally pseudoconvex algebra over \mathbb{K} in which for each $a \in A$ and $\alpha \in A$ there are positive numbers $M(a,\alpha)$ and $N(a,\alpha)$ such that $p_{\alpha}(ab) \leq M(a,\alpha)p_{\alpha}(b)$ and $p_{\alpha}(ba) \leq N(a,\alpha)p_{\alpha}(b)$ for all $b \in A$, then A is a locally absorbingly pseudoconvex or locally A-pseudoconvex algebra. Furthermore, if all seminorms p_{α} satisfy the condition $p_{\alpha}(ab) \leq p_{\alpha}(a)p_{\alpha}(b)$ for all $a, b \in A$, then A is a locally multiplicatively pseudoconvex or locally m-pseudoconvex algebra. In case, when $k_{\alpha} = 1$ for each $\alpha \in A$, then A is a locally convex (respectively locally A-convex and locally m-convex) algebra. Moreover, if A has a unit element and the set of all invertible elements InvA of A is open, then A is a Q-algebra.

3. Let now A be a locally pseudoconvex algebra over \mathbb{K} , the topology of which has been given by a family $\{p_{\alpha} : \alpha \in \mathcal{A}\}$ of k_{α} -homogeneous seminorms, M a closed maximal regular left (right) ideal of A, A-M the quotient space of A modulo M endowed with the quotient topology and π_M the canonical homomorphism from A onto A-M. Similarly as in [3], p. 108-109, it is easy to show that the quotient topology on A-M coincides with the topology defined on A-M by the family $\{\dot{p}_{\alpha} : \alpha \in \mathcal{A}\}$ of k_{α} -homogeneous seminorms, where

$$\dot{p}_{\alpha}(\pi_M(a)) = \inf\{p_{\alpha}(a+m) : m \in M\}$$
(1)

for each $a \in A$ and $\alpha \in A$. The algebraic operations in A - M we define, as usual, by $x_1 + x_2 = \pi_M(a_1 + a_2)$ and $\mu x_1 = \pi_M(\mu a_1)$ for each $x_1, x_2 \in A - M$ and $\mu \in \mathbb{K}$,

¹Nontriviality and irreducibility of the right A-module X_{π} are defined similarly.

where a_1 and a_2 are arbitrary elements of the M-cosets x_1 and x_2 respectively. Then A - M is a locally pseudoconvex space.

Let now A and B be two locally pseudoconvex spaces, the topologies of which have been given by families $\{p_{\alpha} : \alpha \in \mathcal{A}\}$ and $\{q_{\beta} : \beta \in \mathcal{B}\}$ of k_{α} -homogeneous and r_{β} -homogeneous seminorms respectively. Then a linear mapping T from A into B is continuous if and only if for each $\beta \in \mathcal{B}$ there exist an index $\alpha \in \mathcal{A}$ and a constant $C_{\alpha\beta} > 0$ such that

$$q_{\beta}(T(a)) \leqslant C_{\alpha\beta}p_{\alpha}(a)^{\frac{r_{\beta}}{k_{\alpha}}}$$
 (2)

for each $a \in A$ (see [3], p. 192).

In particular, when A is a locally pseudoconvex Fréchet algebra over \mathbb{K} , then the topology of A we can define by such family $\{p_v : v \in \mathbb{N}\}$ of k_v -homogeneous seminorms (here $k_v \in (0,1]$ for each $v \in \mathbb{N}$) which satisfies the condition

$$p_v(ab) \leqslant p_{v+1}(a)^{\frac{k_v}{k_{v+1}}} \ p_{v+1}(b)^{\frac{k_v}{k_{v+1}}}$$
 (3)

for each $a, b \in A$ and $v \in \mathbb{N}$ (see [3], p. 207). In this case A - M is a locally pseudoconvex Fréchet space for each closed maximal regular left (right) ideal M of A.

4. Let A be a topological algebra over \mathbb{K} . For each element $a \in A$ and each maximal regular left² ideal M of A let L_a^M be a mapping from A-M into A-M defined by $L_a^M(x)=ax$ for each $x\in A-M$ and let L_M be a mapping from A into $\mathcal{L}(A-M)$ defined by $L_M(a)=L_a^M$ for each $a\in A$. Then L_M is a representation of A on A-M. Since $a_{L_M}\cdot x=L_a^M(x)=ax$ for each $a\in A$ and $x\in A-M$, then $L_M(A-M)$ is an irreducible left A-module. Indeed, $A_{L_M}\cdot (A-M)$ is not trivial, because any right regular unit element for M belongs to A. If Y is a nontrivial A-submodule of $L_M(A-M)$, then

$$K = \{a \in A : \pi_M(a) \in Y\}$$

is closed with respect to the addition and the multiplications over \mathbb{K} and A. Since $M \subset K$ and $K \setminus M$ is not empty, then K = A. But then $\pi_M(u) \in Y$ and $A - M = A\pi_M(u) \subset Y$ (u is a right unit of A modulo M). It means that Y = A - M. Hence $L_M(A - M)$ is irreducible. Thus, L_M is an irreducible representation of A on A - M. Herewith,

$$\ker L_M = \{ a \in A : aA \subset M \}$$

if M is a maximal regular left ideal and

$$\ker L_M = \{ a \in A : Aa \subset M \}$$

if M is a maximal regular right ideal of A. In both cases $\ker L_M$ is called a *primitive ideal*. A topological algebra A is a *primitive algebra* if there is a maximal regular left (or right) ideal $M \subset A$ such that $\ker L_M = \{\theta_A\}$ and is a topologically primitive algebra if this ideal M is closed. In these cases L_M is an isomorphism from A into $\mathcal{L}(A-M)$. Since $L_M(A-M)$ is an irreducible left (and $(A-M)_{L_M}$ is an irreducible

²The case, when M is a maximal regular right ideal of A, is similar.

right) A-module for each maximal regular left (respectively right) ideal M of A, then³

$$\mathcal{D}_A^M = \{ T \in \mathcal{L}(A - M) : a[T(x)] = T(ax) \text{ for each } a \in A \text{ and } x \in A - M \}$$

is a division subalgebra of $\mathcal{L}(A-M)$ for each maximal left (respectively right) ideal M of A by Schur's lemma (see, for example, [5], p. 127).

For each closed maximal regular left ideal M of A and $a_0 \notin M$ let

$$L_M(a_0) = \{ a \in A : aa_0 \in M \}.$$

Then $L_M(a_0)$ is a closed (proper) left ideal of A. If J is a left ideal of A such that $L_M(a_0) \subset J$ and $J \setminus L_M(a_0)$ is not empty, then $J\pi_M(a_0)$ is a left A-submodule of A-M and $J\pi_M(a_0) \neq \{\theta_{A-M}\}$. Since $L_M(A-M)$ is irreducible, then $J\pi_M(a_0) = A-M$. Therefore there is an element $e \in J$ such that $ea_0 - a_0 \in M$. Hence from $(a-ae)a_0 = a(a_0 - ea_0) \in M$ follows that $a-ae \in L(a_0) \subset J$ for each $a \in A$, because of which $a = (a-ae) + ae \in J$ for each $a \in A$. It means that A = J, which is not possible. Therefore, $L_M(a_0)$ is a closed maximal regular left ideal of A.

In the same way it is easy to show that the set $\{a \in A : a_0 a \in M\}$ is a closed maximal regular right ideal of A for each closed maximal regular right ideal M of A.

2 Description of \mathcal{D}_A^M

To describe the set \mathcal{D}_A^M in case of locally pseudoconvex algebra A over \mathbb{C} , we need the following

Lemma 1. (see [5], p. 127) Let A be an algebra over \mathbb{K} , M a maximal regular left (right) ideal of A, $a_0 \in A \setminus M$ and π_L the canonical homomorphism from A onto $A - L_M(a_0)$. For each $y \in A - L_M(a_0)$ let U be a mapping from $A - L_M(a_0)$ into A - M defined by

$$U(y) = a\pi_M(a_0)$$
 (respectively $U(y) = \pi_M(a_0)a$),

where a is any element of A for which $y = \pi_L(a)$. Then U is a module isomorphism from $A - L_M(a_0)$ onto A - M.

Proof. If $a, b \in A$ are such that $\pi_L(a) = \pi_L(b)$, then⁴ $(a - b)a_0 \in M$. Hence $a\pi_M(a_0) = b\pi_M(a_0)$. Thus the mapping U is a well defined linear mapping. If $U(\pi_L(a)) = \theta_{A-M}$, then $a \in L_M(a_0)$. Therefore $\pi_L(a) = \theta_{A-L_M(a_0)}$. It means that U is injective. For all $b \in A$ and $\pi_L(a) \in A - L_M(a_0)$ we have that

$$U(b\pi_L(a)) = U(\pi_L(ba)) = b(a\pi_M(a_0)) = b(U(\pi_L(a))).$$

So U is a module isomorphism which is surjective because $_{L_M}(A-M)$ is irreducible.

$$\mathcal{D}_A^M = \{T \in \mathcal{L}(A-M) \colon [T(x)]a = T(xa) \text{ for each } a \in A \text{ and } x \in A-M\}.$$

³If M is a maximal regular right ideal of A, then

⁴Here and later we present proofs of results only for left ideals, because all the proofs for right ideals are similar.

Theorem 1. Let A be a locally m-pseudoconvex Hausdorff algebra over \mathbb{C} with a unit element or a locally pseudoconvex Fréchet algebra over \mathbb{C} with a unit element. If M is a closed maximal left (right) ideal of A, then \mathcal{D}_A^M is topologically isomorphic to \mathbb{C} .

Proof. a) Let A be a locally m-pseudoconvex Hausdorff algebra, topology of which has been given by a saturated family $\{p_{\alpha}: \alpha \in \mathcal{A}\}$ of k_{α} -homogeneous submultiplicative seminorms (here $k_{\alpha} \in (0,1]$ for each $\alpha \in \mathcal{A}$), M a closed maximal left ideal of A, π_M the canonical homomorphism from A onto A - M, π_L the canonical homomorphism from A onto $A - L_M(a_0)$ for a fixed $a_0 \in A \setminus M$ and U the module isomorphism from $A - L_M(a_0)$ onto A - M defined by Lemma 1. Then

$$U^{-1} \circ T \circ U \in \mathcal{L}(A - L_M(a_0))$$

for each $T \in \mathcal{D}_A^M$. Moreover, if $y = \pi_L(a) = \pi_L(a')$ and

$$(U^{-1} \circ T)(\pi_M(a_0)) = \pi_L(b_T),$$

then

$$(U^{-1} \circ T \circ U)(y) = U^{-1}[T(a\pi_M(a_0))] = U^{-1}[T(a'\pi_M(a_0))] = U^{-1}[a'T(\pi_M(a_0))] = a'[(U^{-1} \circ T)(\pi_M(a_0))] = a'\pi_L(b_T).$$

For each $\alpha \in \mathcal{A}$ and $a \in A$ let

$$\tilde{p}_{\alpha}(\pi_L(a)) = \inf\{p_{\alpha}(a+l) : l \in L_M(a_0)\}. \tag{4}$$

Then $\{\tilde{p}_{\alpha} : \alpha \in \mathcal{A}\}$ is the family of k_{α} -homogeneous seminorms on $A - L_M(a_0)$ which defines the quotient topology on it. Herewith, for each nonzero $x \in A - L_M(a_0)$ there is an index $\alpha_0 \in \mathcal{A}$ such that $\tilde{p}_{\alpha_0}(x) > 0$, because $A - L_M(a_0)$ is a Hausdorff space. Since

$$\tilde{p}_{\alpha}[(U^{-1} \circ T \circ U)(y)] = \tilde{p}_{\alpha}(a'\pi_{L}(b_{T})) = \tilde{p}_{\alpha}(\pi_{L}(a'b_{T})) =$$

$$\inf\{p_{\alpha}(a'b_{T} + l) : l \in L_{M}(a_{0})\} \leqslant \inf\{p_{\alpha}(a'(b_{T} + l)) : l \in L_{M}(a_{0})\} \leqslant$$

$$p_{\alpha}(a')\tilde{p}_{\alpha}(\pi_{L}(b_{T}))$$

for each $a' \in a + L_M(a_0)$, then taking the infimum over all elements of $a + L_M(a_0)$, we have

$$\tilde{p}_{\alpha}[(U^{-1} \circ T \circ U)(y)] \leqslant K_{\alpha,T} \ \tilde{p}_{\alpha}(y)$$

for each $\alpha \in \mathcal{A}$ and $y \in A - L_M(a_0)$, where $K_{\alpha,T} > \tilde{p}_{\alpha}(\pi_L(b_T))$ for each $\alpha \in \mathcal{A}$. Taking this into account, for each $\alpha \in \mathcal{A}$ we can define k_{α} -homogeneous seminorms r_{α} on \mathcal{D}_A^M by

$$r_{\alpha}(T) = \sup_{\tilde{p}_{\alpha}(\pi_{L}(a)) \leqslant 1} \tilde{p}_{\alpha}[(U^{-1} \circ T \circ U)(\pi_{L}(a))]$$

for each $T \in \mathcal{D}_A^M$. Then r_{α} is a k_{α} -homogeneous seminorm on \mathcal{D}_A^M for each $\alpha \in \mathcal{A}$. To show that every r_{α} is submultiplicative, for each $a \in A$ let $\mu_a = n$ (for any fixed $n \in \mathbb{N}$) if $\tilde{p}_{\alpha}(\pi_L(a)) = 0$ and $\mu_a = (\tilde{p}_{\alpha}(\pi_L(a)))^{-1}$ if $\tilde{p}_{\alpha}(\pi_L(a)) > 0$. Then

$$\tilde{p}_{\alpha}(\pi_L(\mu_a^{\frac{1}{k_{\alpha}}}a)) \leqslant 1.$$

Therefore from

$$p_{\alpha}[(U^{-1} \circ T \circ U)(\pi_L(\mu_a^{\frac{1}{k_{\alpha}}}a))] \leqslant r_{\alpha}(T)$$

follows that

$$p_{\alpha}[(U^{-1} \circ T \circ U)(\pi_L(a))] \leqslant r_{\alpha}(T) \ \tilde{p}_{\alpha}(\pi_L(a)) \tag{5}$$

for each $a \in A$ (if $\tilde{p}_{\alpha}(\pi_L(a)) = 0$, then from

$$p_{\alpha}[(U^{-1} \circ T \circ U)(\pi_L(a))] \leqslant \frac{1}{n} r_{\alpha}(T)$$

follows that $\tilde{p}_{\alpha}[(U^{-1} \circ T \circ U)(\pi_L(a))] = 0)$. Hence

$$r_{\alpha}(T_1 \circ T_2) = \sup_{\tilde{p}_{\alpha}(\pi_L(a)) \leq 1} p_{\alpha}[(U^{-1} \circ (T_1 \circ T_2) \circ U)(\pi_L(a))] =$$

$$\sup_{\tilde{p}_{\alpha}(\pi_L(a))\leqslant 1} p_{\alpha}\{(U^{-1}\circ T_1\circ U)[(U^{-1}\circ T_2\circ U)(\pi_L(a))]\}\leqslant$$

$$r_{\alpha}(T_1) \sup_{\tilde{p}_{\alpha}(\pi_L(a)) \leq 1} p_{\alpha}[(U^{-1} \circ T_2 \circ U)(\pi_L(a))] \leq r_{\alpha}(T_1)r_{\alpha}(T_2)$$

for each $T_1, T_2 \in \mathcal{D}_A^M$.

Let now T be a nonzero element of \mathcal{D}_A^M . Then $U^{-1} \circ T \circ U$ is a nonzero element of $\mathcal{L}(A-M)$. Therefore there is an element $a \in A$ such that $(U^{-1} \circ T \circ U)(\pi_L(a))$ is nonzero in $A - L_M(a_0)$. Taking this into account, there is an index $\alpha_0 \in \mathcal{A}$ such that

$$0 < \tilde{p}_{\alpha_0}[(U^{-1} \circ T \circ U)(\pi_L(a))] \leqslant r_{\alpha_0}(T) \ \tilde{p}_{\alpha_0}(\pi_L(a))$$

- by (5). Hence $r_{\alpha_0}(T) > 0$. Consequently, \mathcal{D}_A^M is a locally *m*-pseudoconvex Hausdorff division algebra in the topology defined on \mathcal{D}_A^M by the family $\{r_\alpha : \alpha \in \mathcal{A}\}$ of k_α -homogeneous submultiplicative seminorms and therefore \mathcal{D}_A^M is topologically isomorphic to \mathbb{C} (see [1], Corollary 1, or [2], Theorem 3.2).
- b) Let now A be a locally pseudoconvex Fréchet algebra over \mathbb{C} and $\{p_v : v \in \mathbb{N}\}$ a family of k_v -homogeneous seminorms on A with $k_v \in (0,1]$ for each $v \in \mathbb{N}$, which defines the topology of A. We can assume that the system $\{p_v : v \in \mathbb{N}\}$ satisfies the condition (3) for each $v \in \mathbb{N}$ and each $a, b \in A$. Let again M be a closed maximal left ideal of A, π_M the canonical homomorphism from A onto A M and π_L the canonical homomorphism from A onto $A L_M(a_0)$ for some $a_0 \in A \setminus M$. Let $\{\dot{p}_v : v \in \mathbb{N}\}$ and $\{\tilde{p}_v : v \in \mathbb{N}\}$ denote the families of k_v -homogeneous seminorms (defined by (1) and (4)), which define the quotient topologies on A M and $A L_M(a_0)$ respectively, and let U be the module isomorphism from $A L_M(a_0)$ onto A M defined by Lemma 1. Then A M and $A L_M(a_0)$ are locally pseudoconvex Fréchet spaces (because M and $L_M(a_0)$ are closed linear subspaces of A), $U^{-1} \circ T \circ U \in \mathcal{L}(A L_M(a_0))$ for each $T \in \mathcal{D}_A^M$ and

$$\dot{p}_v(U(\pi_L(a))) = \dot{p}_v(a'\pi_M(a_0)) = \dot{p}_v(\pi_M(a'a_0)) =$$

$$\inf\{p_v(a'a_0 + m) : m \in M\} \leqslant \inf\{p_v(a'(a_0 + m)) : m \in M\} \leqslant$$

$$p_{v+1}(a')^{\frac{k_v}{k_{v+1}}} \inf\{p_{v+1}(a_0 + m)^{\frac{k_v}{k_{v+1}}} : m \in M\} \leqslant$$

$$p_{v+1}(a')^{\frac{k_v}{k_{v+1}}} \dot{p}_{v+1}(\pi_M(a_0))^{\frac{k_v}{k_{v+1}}}$$

for each $a' \in a + L_M(a_0)$ by (3). Hence

$$\dot{p}_v(U(\pi_L(a))) \leqslant C_{v,M} \ \tilde{p}_{v+1}(\pi_L(a))^{\frac{k_v}{k_{v+1}}}$$

for each $\pi_L(a) \in A - L_M(a_0)$ and $v \in \mathbb{N}$, where

$$C_{v,M} > \tilde{p}_{v+1}(\pi_M(a_0))^{\frac{k_v}{k_{v+1}}}$$

for all $v \in \mathbb{N}$. Therefore U is a continuous mapping by (2).

Let now $a \in A$ and $y \in A - M$. Then there is an element $b \in A$ such that $y = \pi_M(b)$. Since

$$\dot{p}_v(L_M(a)(y)) = \dot{p}_v(\pi_M(ab)) = \inf\{p_v(ab+m) : m \in M\} \leqslant \inf\{p_v(a(b+m)) : m \in M\} \leqslant p_{v+1}(a)^{\frac{k_v}{k_{v+1}}} \inf\{p_{v+1}(b+m)^{\frac{k_v}{k_{v+1}}} : m \in M\} \leqslant M_v(a)\dot{p}_{v+1}(y)^{\frac{k_v}{k_{v+1}}}$$

by (3), where

$$M_v(a) > p_{v+1}(a)^{\frac{k_v}{k_{v+1}}}$$

for all $v \in \mathbb{N}$, then $L_M(a)$ is a continuous mapping for each $a \in A$ by (2). Defining seminorms r_v on \mathcal{D}_A^M similarly as above by

$$r_v(T) = \sup_{\tilde{p}_v(\pi_L(a)) \le 1} \tilde{p}_v[(U^{-1} \circ T \circ U)(\pi_L(a))]$$

for each $T \in \mathcal{D}_A^M$ and $v \in \mathbb{N}$, then \mathcal{D}_A^M (in the topology defined by the family $\{r_v : v \in \mathbb{N}\}$) is a metrizable locally pseudoconvex division algebra over \mathbb{C} . To show that \mathcal{D}_A^M is complete, let (T_n) be a Cauchy sequence in \mathcal{D}_A^M . Then for each $v \in \mathbb{N}$ and $\varepsilon > 0$ there is a number $N = N(v, \varepsilon) \in \mathbb{N}$ such that $r_v(T_m - T_n) < \varepsilon$ whenever m > n > N. Hence

$$\tilde{p}_v[(U^{-1} \circ (T_m - T_n) \circ U)(\pi_L(a))] < \varepsilon \tilde{p}_v(\pi_L(a))$$
(6)

whenever m > n > N for each $y = \pi_L(a) \in A - L_M(a_0)$ by the inequality (5). Therefore $((U^{-1} \circ T_n \circ U)(y))$ is a Cauchy sequence in $A - L_M(a_0)$ for each $y \in A - L_M(a_0)$. Since $A - L_M(a_0)$ is complete, then the sequence $((U^{-1} \circ T_n \circ U)(y))$ converges in $A - L_M(a_0)$ for each $y \in A - L_M(a_0)$. It means that for each $a \in A$ there exists the limit

$$T(\pi_L(a)) = \lim_{n \to \infty} (U^{-1} \circ T_n \circ U)(\pi_L(a)). \tag{7}$$

It is easy to show that T is a module homomorphism from $A - L_M(a_0)$ into $A - L_M(a_0)$. Therefore $U \circ T \circ U^{-1} \in \mathcal{L}((A - M)_{L_M})$. To show that $U \circ T \circ U^{-1} \in \mathcal{D}_A^M$, let x be an arbitrary element of A - M. Then there is an element $b \in A$ such that $U^{-1}(x) = \pi_L(b)$. Since U is a continuous module isomorphism from $A - L_M(a_0)$ onto A - M and $L_M(a)$ is continuous for each $a \in A$, then

$$a[(U\circ T\circ U^{-1})(x)]=(aU)[T(U^{-1}(x))]=(aU)[T(\pi_L(b))]=$$

$$(L_{M}(a) \circ U) \left[\lim_{n \to \infty} (U^{-1} \circ T_{n} \circ U)(\pi_{L}(b)) \right] = \lim_{n \to \infty} (L_{M}(a) \circ T_{n})(x) =$$

$$\lim_{n \to \infty} a[T_{n}(x)] = \lim_{n \to \infty} T_{n}(ax) = \lim_{n \to \infty} T_{n}[a(U(\pi_{L}(b)))] =$$

$$\lim_{n \to \infty} T_{n}[U(\pi_{L}(ab))] = U[\lim_{n \to \infty} (U^{-1} \circ T_{n} \circ U)(\pi_{L}(ab))] =$$

$$(U \circ T)[\pi_{L}(ab)] = (U \circ T)[a\pi_{L}(b)] = (U \circ T)[a(U^{-1}(x))] =$$

$$(U \circ T)[U^{-1}(ax)] = (U \circ T \circ U^{-1})(ax)$$

for each $a \in A$ and $x \in A - M$. Consequently, $U \circ T \circ U^{-1} \in \mathcal{D}_A^M$. If now $m \to \infty$ in (6), then

$$\tilde{p}_v[(T - U^{-1} \circ T_n \circ U)(\pi_L(a))] \leqslant \varepsilon \tilde{p}_v(\pi_L(a)) \tag{8}$$

by (7) whenever n > N for each $\pi_L(a) \in A - L_M(a_0)$. Therefore

$$r_v(U \circ T \circ U^{-1} - T_n) = \sup_{\tilde{p}_v(\pi_L(a)) \leqslant 1} \tilde{p}_v[(T - (U^{-1} \circ T_n \circ U))(\pi_L(a))] \leqslant \sup_{\tilde{p}_v(\pi_L(a)) \leqslant 1} \varepsilon \tilde{p}_v(\pi_L(a)) = \varepsilon$$

by (8) whenever n > N. Consequently, the sequence (T_n) converges in the topology of \mathcal{D}_A^M . It means that \mathcal{D}_A^M is complete. Thus \mathcal{D}_A^M is a locally pseudoconvex Fréchet division algebra over \mathbb{C} and therefore \mathcal{D}_A^M is topologically isomorphic to \mathbb{C} (see again [1], Corollary 1, or [2], Corollary 3.1).

3 The center of primitive locally pseudoconvex algebras

Let A be a primitive topological algebra over \mathbb{C} . When the center Z(A) of A is a field? The following result gives an answer to this question in case of locally pseudoconvex algebras.

Theorem 2. Let A be a unital primitive locally A-pseudoconvex Hausdorff algebra over \mathbb{C} or a unital topologically primitive locally pseudoconvex Fréchet algebra over \mathbb{C} . Then the center Z(A) of A is topologically isomorphic to \mathbb{C} .

Proof. Let A be a unital primitive locally A-pseudoconvex Hausdorff algebra over \mathbb{C} . Then A has a topology τ' , finer than τ (see [2], Lemma 2.2), such that (A, τ') is a locally m-pseudoconvex Hausdorff algebra over \mathbb{C} . Let β be a base of τ' and τ_A the topology on A which subbase is $\beta_A = \beta \cup \{\text{Inv}A\}$. Then it is easy to see that (A, τ_A) is a locally m-pseudoconvex Q-algebra over \mathbb{C} . Because A is primitive, then there is a closed maximal left ideal M of A such that L_M is an isomorphism from A into $\mathcal{L}(A-M)$. The same statement is true in case when A is a unital topologically primitive locally pseudoconvex Fréchet algebra over \mathbb{C} . Since $L_M(Z(A)) \subset \mathcal{D}_A^M$ and \mathcal{D}_A^M is topologically isomorphic to \mathbb{C} in both cases by Theorem 1, then in both cases Z(A) is also topologically isomorphic to \mathbb{C} (because Z(A) is a Hausdorff space).

References

- [1] M. Abel, Gelfand-Mazur algebras. In "Topological vector spaces, algebras and related areas. Pitman Research Notes in Math. Series **316**, Longman Group Ltd., Harlow, 1994", 116–129.
- [2] M. Abel, A. Kokk, *Locally pseudoconvex Gelfand-Mazur algebras*. Eesti NSV Tead. Akad. Toimetised, Füüs.-Mat., **37**, 1988, 377–386 (Russian).
- [3] V. K. Balachandran, *Topological Algebras*. North-Holland Math. Studies **185**, Elsevier, Amsterdam, 2000.
- [4] H. G. Dales, *Banach algebras and automatic continuity*. London Math. Soc. Monographs. New Series **24**, Oxford Univ. Press, New York, 2000
- [5] F. F. Bonsal, J. Duncan, Complete normed algebras. Springer-Verlag, Berlin, 1973.
- [6] A. Mallios, Topological Algebras. Selected Topics. North-Holland Math. Stud. 124, Elsevier Sci. Publ., Amsterdam, 1986.
- [7] Th. W. Palmer, Spectral algebras. Rocky Mountain J. Math., 22, (1992), no. 1, 293–328.
- [8] Th. W. Palmer, Banach algebras and the general theory of *-algebras. Vol. I. Algebras and Banach algebras. Encyclopedia of Math. and Appl. 49, Cambridge Univ. Press, Cambridge, 1994.
- [9] C. E. Rickart, General Topology of Banach Algebras. D. van Nostrand, Princeton, 1960.
- [10] Y. Tsertos, On primitive topological algebras. Bull. Math. Greek Mat. Soc., 28, (1987), 81–92.
- [11] Y. Tsertos, On primitive A-convex algebras. Comment. Math. Prace Mat., 41 (2001), 203–219.
- [12] L. Waelbroeck, *Topological vector spaces and algebras*. Lecture Notes in Math. **230**, Springer-Verlag, Berlin, 1973.

Institute of Pure Mathematics University of Tartu 2 - 614 Liivi Str. 50409 Tartu, ESTONIA email: mati.abel@math.ut.ee