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1 Introduction

We investigate the nonlinear problem:

d

dt
(k(t)x′(t)) + Vx(t, x(t)) = 0, a.e. in [0,T] (1.1)

x(0) = 0,

where

H T > 0 is arbitrary, V : R × Rn → R is Gateaux differentiable in the second
variable and measurable in t function, k : [0,T] → R+, x = (x1, ..., xn).

We are looking for solutions of (1.1) being a pair (x, p) of absolutely continuous
functions x, p : [0, T ] −→ Rn, x(0) = 0 such that

d

dt
p(t) + Vx(t, x(t)) = 0,

p(t) = k(t)x′(t)).

Of course, if k is an absolutely continuous function, then our solution of (1.1) belongs
to C1,+([0, T ],Rn) of continuously differentiable functions x whose derivatives x′ are
absolutely continuous. In the sequel we will not assume that Vx is superlinear
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or sublinear. In the paper we discuss a general problem with non-local boundary
conditions:

x′(T ) =
∫ T

η
x′(s)dg(s), (1.1a)

η is a real number in the open interval (0, T ), g = (g1, ..., gn) : [0, T ] −→ Rn, gi,
i = 1, ..., n, are increasing functions and the integral in (1.1a) is meant in the sense
of Riemann-Stieltjes. Precisely speaking (1.1a) is the system of n equations:

x′i(T ) =
∫ T

η
x′i(s)dgi(s), for i = 1, ..., n.

It is clear that (1.1) is the Euler - Lagrange equation to the functional

J(x) =
∫ T

0
(−V (t, x(t)) +

k(t)

2
|x′(t)|

2
)dt (1.2)

considered on the space A0 of absolutely continuous functions x : R → Rn, x(0) =
0. A subspace of A0 of functions satisfying (1.1a) we shall denote by A0b.

Problem like (1.1), (1,1a) was studied by many authors, mainly, in one dimen-
sional case (n = 1). This is widely discussed in [3], where V has the special form:
Vx(t, x) = q(t)f(x), for some functions q : [0, 1] → R, f : R → R, where q, f are
continuous, f is nonnegative for x > 0, quiet at infinity and

sup
x∈[0,v]

f(x) ≤ θv (1.3)

for some v > 0 and θ > 0. Moreover it is assumed there that g(η+) > 0. The
methods used in [3] are of topological type. They are based on the fixed point
theorem in cones due to Krasnosielski. We consider the general case when V satisfies
hypothesis (H) and a condition analogous to (1.3), so that Vx(·, x) is measurable
only and Vx(t, ·) is not, in general, quiet at infinity, in consequence, our assumptions
are not strong enough to use the above theorem. Moreover in this paper t and x are
not separated and x ∈ Rn, n ≥ 1, in consequence, (1.1) is the system of ODE and we
do not assume that g(η+) > 0. However, we believe that our paper may contribute
some new look at this problem. This is because we propose to study (1.1), (1,1a)
by duality methods in a way, to some extend, analogous to the methods developed
for (1.1) in sublinear cases [5], [6]. Since functional (1.2) is, in general, unbounded
in A0 (especially in superlinear case), therefore it is obvious that we must look for
critical points of J of ”minmax” type. The main difficulties which appear here
are: what kind of sets we should choose over which we wish to calculate ”minmax”
of J and then to link this value with critical points of J . Of course, we have the
mountain pass theorems, the saddle points theorems, the Morse theory, ... (see e.g.
[7], [5]) but because of boundary condition (1.1a) they cannot be applied directly to
find critical points of J . It seems to us that variational methods are used to study
problem (1.1), (1,1a) for the first time.

Our aim is to find a nonlinear subspace X of A0 defined by the type of non-
linearity of V . To this effect let us denote by P positive cone in Rn i.e. P =
{x ∈ Rn : xi > 0, i = 1, ..., n} and by P̄ = {x ∈ Rn : xi ≥ 0, i = 1, ..., n}. We say
that x ≥ y for x, y ∈ Rn if x−y ∈ P̄ . Let a :=

∫ T
η

1
k(t)

dg(t) be the vector of integrals
[

∫ T
η

1
k(t)

dgi(t)
]

i=1,...,n
and α := [(1− ai)

−1]i=1,...,n. If b, c ∈ Rn by bc we always mean

a vector [bici]i=1,...,n. We set the basic hypothesis we need:
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H1 the function k is absolutely continuous and positive, V (t, ·) is convex in some
neighborhood of P̄ and Vx(t, ·) is continuous and nonnegative in P, t ∈ [0, T ],
and

∫ T
0 Vx(t, 0)dt 6= 0,

H2 the functions gi : [0, T ] → R, i = 1, ...n, are increasing and such that g(η) = 0,

H3 1−
∫ T
η

1
k(t)

dgi(t) > 0, for all i = 1, ...., n,

H4 for a given θ ∈ P, there exists v ∈ Rn, v ∈ P such that

∫ T

0
Vx(t, βv)dt ≤ θv, (1.4)

where θv = [θivi]i=1,...,n, β =
∫ T
0

1
k(r)

dr
(

θ
(

α
∫ T
η

1
k(t)

dg(t) + 1
))

, 1 = [1, ..., 1],

and there exist l, l1 ∈ L2([0, T ], R) such that

(

t → sup
{

V (t, x) : x ∈ P̄ , x ≤ βv
})

≤ l(t), t ∈ [0, T ]

(

t → sup
{

Vxi
(t, x) : x ∈ P̄ , x ≤ βv

})

≤ l1(t), t ∈ [0, T ], i = 1, ..., n.

Through the paper we shall assume hypotheses (H) and (H1-H4). We would
like to stress that because of (H1) each xj → Vxi

(t, (x1, ..., xj, ...xn)), i = 1, ..., n,
j = 1, ..., n, t ∈ [0, T ], is increasing function if (x1, ..., xj, ...xn) lies in P̄ .

Having the type of nonlinearity of V fixed we are able to define nonlinear sub-
spaces X, X̃ and X as follows.

Taking into account the structure of the space X we shall study the functional

J(x) =
∫ T

0
(−V (t, x(t)) +

1

2
k(t) |x′(t)|

2
)dt− < x(T ), k(T )x′(T ) >

on the space X. We shall look for a ”min” of J over the set X i.e.

min
x∈X

J(x).

To show that element x̄ ∈ X realizing ”min” is a critical point of J we develop a
duality theory between J and dual to it JD, described in the next section, where
the functional JD has the following form

JD(p) = −
∫ T

0

1

2k(t)
|p(t)|2 +

∫ T

0
V ∗(t,−p′(t))dt. (1.5)

To construct the set X first we put

X = {x ∈ A0b : p(t) = k(t)x′(t), t ∈ [0, T ] belongs to A, x ≤ βv}

where A is the space of absolutely continuous functions x : [0, T ] → Rn with
x′ ∈ L2. We reduce the space X to the set

X̃ =
{

x ∈ X : x ∈ P̄ , x′(t) ≥ 0, t ∈ [0, T ]
}

.
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Now we construct an operator A in a way similar as it is done in [3]. Thus we
calculate from (1.1)

x′(t) =
1

k(t)
x′(T ) +

1

k(t)

∫ T

t
Vx(s, x(s))ds.

Taking into account (1.1a) we obtain

x′(T ) = α
∫ T

η

1

k(t)

∫ T

t
Vx(s, x(s))dsdg(t) (1.6)

where
∫ T
η

1
k(t)

∫ T
t Vx(s, x(s))dsdg(t) :=

[

∫ T
η

1
k(t)

∫ T
t Vxi

(s, x(s))dsdgi(t)
]

i=1,...,n
.

Then, from (1.1a) we get

x(t) = α
∫ T

η

1

k(t)

∫ T

t
Vx(s, x(s))dsdg(t)

∫ t

0

1

k(s)
ds +

∫ t

0

1

k(r)

∫ T

r
Vx(s, x(s))dsdr.

Thus the operator A we define as

Ax(t) = α
∫ T

η

1

k(t)

∫ T

t
Vx(s, x(s))dsdg(t)

∫ t

0

1

k(s)
ds +

∫ t

0

1

k(r)

∫ T

r
Vx(s, x(s))dsdr.

The set X is defined as a subset of X̃ having the property: AX ⊂ X i.e. for each
x ∈ X there exists w ∈ X such that w = Ax.

Lemma 1.1 X̃ has the above property and, in consequence we can take X = X̃.
Proof. We easily see that if x ∈ X̃ then Ax(t) ≥ 0 and (Ax(t))′ ≥ 0. We

show that X̃ = X. Thus to end the proof it is enough to prove that if x ∈ X̃ then
Ax ≤ βv. We have

Ax = α
∫ T

η

1

k(t)

∫ T

t
Vx(s, x(s))dsdg(t)

∫ t

0

1

k(s)
ds +

∫ t

0

1

k(r)

∫ T

r
Vx(s, x(s))dsdr

≤ α
∫ T

η

1

k(t)

∫ T

t
Vx(s, βv)dsdg(t)

∫ t

0

1

k(s)
ds +

∫ t

0

1

k(r)

∫ T

r
Vx(s, βv)dsdr

≤
∫ T

0

1

k(r)
dr

(

θ

(

α
∫ T

η

1

k(t)
dg(t) + 1

))

v = βv.

This ends the proof.
It is clear that X depends strongly on the type of nonlinearity of V . We easily

see that X is not in general a closed set in A.
As the dual set to X we shall consider the following set

Xd = {p ∈ A : there exists x ∈ X such that

p(t) = k(t)x′(t), t ∈ [0, T ] } .

Remark 1.1 From the definition of A and X we derive that for each x ∈ X there
exists p ∈ Xd such that p′(·) = −Vx(·, x(·)) and therefore

∫ T

0
< −p′(t), x(t) > dt−

∫ T

0
V ∗(t,−p′(t))dt =

∫ T

0
V (t, x(t))dt.
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It is clear that Xd ⊂ P̄ . Just because of the duality theory we are able to avoid
in our proof of an existence of critical points the deformation lemmas, the Ekeland
variational principle or PS type conditions. One more advantage of our duality
results is obtaining for the first time in the superlinear case a measure of a duality
gap between primal and dual functional for approximate solutions to (1.1) (for the
sublinear case see [6]).

The main result of our paper is the following:
Theorem (Main)
Under hypothesis (H) and (H1)−(H4) there exists a pair (x̄, p̄), x̄ ∈ X, p̄ ∈ X d

being a solution to (1.1) and such that

J(x̄) = min
x∈X

J(x) = min
p∈Xd

JD(p) = JD(p̄).

We see that our hypotheses on V concern only convexity of V (t, ·) in P̄ and that
this function is rather of general type. We do not assume that V (t, x) ≥ 0.

2 Duality results

To obtain a duality principle we need a kind of perturbation of J and convexity of
a function considered on a whole space. To this effect let us define

V̆ (t, x) =

{

V (t, x) if x ∈ P̄ , t ∈ [0, T ]
∞ if x /∈ P̄ , t ∈ [0, T ].

As our all investigation reduce to the set X, therefore V̆ = V in it. We need this
notation only for the purpose of duality and hence we will not change a notation for
the functional J containing V or V̆ . Thus define for each x ∈ X the perturbation
of J as

Jx(y, a) =
∫ T

0
(V̆ (t, x(t) + y(t))−

k(t)

2
|x′(t)|

2
)dt

+ < x(T )− a, k(T )x′(T ) >

=
∫ T

0
(V̆ (t, x(t) + y(t))−

k(t)

2
|x′(t)|

2
)dt

+ < x(T ), k(T )x′(T ) > − < a, k(T )x′(T ) >

for y ∈ L2, a ∈ Rn. Of course, Jx(0) = −J(x). For x ∈ X and p ∈ Xd, we define a
type of conjugate of J by

J#
x (p) = sup

y∈L2,a∈Rn

(

∫ T

0
< y(t), p′(t) > dt+ < p(T ), a > −Jx(y, a)

)

(2.1)

= sup
y∈L2

{
∫ T

0
< y(t), p′(t) > dt−

∫ T

0
V̆ (t, x(t) + y(t))dt}

+ sup
a∈Rn

{< a, p(T ) > + < a, k(T )x′(T ) >}

+
∫ T

0

k(t)

2
|x′(t)|

2
dt− < x(T ), k(T )x′(T ) > .
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By a direct calculation we obtain

J#
x (p) = −

∫ T

0
< x(t), p′(t) > dt +

1

2

∫ T

0
k(t) |x′(t)|

2
dt (2.2)

+
∫ T

0
V ∗(t, p′(t))dt− < x(T ), k(T )x′(T ) > +l(k(T )x′(T ) + p(T )) =

=
∫ T

0
< x′(t), p(t) > dt− < x(T ), p(T ) >

+
1

2

∫ T

0
k(t) |x′(t)|

2
dt +

∫ T

0
V ∗(t, p′(t))dt +

− < x(T ), k(T )x′(T ) > +l(k(T )x′(T ) + p(T )),

where l : Rn → {0, +∞}

l(b) =

{

0, for b = 0
+∞, for b 6= 0

.

Now we take ”min” from J#
x (p) with respect to x ∈ X and calculate it. Because X

is not a linear space we need some trick to avoid calculation of the conjugate with
respect to a nonlinear space. To this effect we use the special structure of the set
Xd. First we observe that for each p ∈ Xd there exists xp ∈ X such that

p(t) = k(t)x′p(t) for all t ∈ [0, T ] .

Therefore:
∫ T

0
< x′p(t), p(t) > dt−

∫ T

0

k(t)

2

∣

∣

∣x′p(t)
∣

∣

∣

2
dt =

∫ T

0

1

2k(t)
|p(t)|2 dt.

Next let us note that, on the other hand

∫ T

0
< x′p(t), p(t) > dt−

∫ T

0

k(t)

2

∣

∣

∣x′p(t)
∣

∣

∣

2
dt

≤ sup
x∈{z∈X,p(T )=k(T )z′(T )}

{

∫ T

0
< x′(t), p(t) > dt−

∫ T

0

k(t)

2
|x(t)′|

2
dt

}

≤ sup
x∈X

{

∫ T

0
< x′(t), p(t) > dt−

∫ T

0

k(t)

2
|x(t)′|

2
dt

}

≤ sup
x′∈L2

{

∫ T

0
< x′(t), p(t) > dt−

∫ T

0

k(t)

2
|x′(t)|

2
dt

}

=
∫ T

0

1

2k(t)
|p(t)|2 dt

and actually all inequalities above are equalities. Therefore we can calculate for
p ∈ Xd

sup
x∈X

(

−J#
x (−p)

)

= sup
x∈X

{

∫ T

0
< x′(t), p(t) > dt−

1

2

∫ T

0
k(t) |x′(t)|

2
dt

−
∫ T

0
V ∗(t,−p′(t))dt− < x(T ), p(T ) > +
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< x(T ), k(T )x′(T ) > −l(k(T )x′(T )− p(T ))}

so that

sup
x∈X

(

−J#
x (−p)

)

= −
∫ T

0
V ∗(t,−p′(t))dt +

∫ T

0

1

2k(t)
|p(t)|2 dt = −JD(p). (2.3)

From (2.3) we infer for p ∈ Xd that

sup
x∈X

(

−J#
x (−p)

)

= −JD(p), (2.4)

where JD is given by (1.5).
Now we claim that for all x ∈ X

sup
p∈Xd

(

−J#
x (−p)

)

≤ −J(x). (2.5)

To prove the above assertion, fix x ∈ X. Then Remark 1.1 yields the existence of
p̄ ∈ Xd such that

∫ T

0
< −p̄′(t), x(t) > dt−

∫ T

0
V ∗(t,−p̄′(t))dt =

∫ T

0
V̆ (t, x(t))dt

and further
∫ T

0
< −p̄′(t), x(t) > dt−

∫ T

0
V ∗(t,−p̄′(t))dt

≤ sup
p∈Xd

{
∫ T

0
< −p′(t), x(t) > dt−

∫ T

0
V ∗(t,−p′(t))dt}

= sup
p′∈L2

{
∫ T

0
< −p′(t), x(t) > dt−

∫ T

0
V ∗(t,−p′(t))dt}

=
∫ T

0
V̆ (t, x(t))dt.

Hence we see that

sup
p∈Xd

(

−J#
x (−p)

)

= sup
p∈Xd

{

∫ T

0
< x(t),−p′(t) > dt−

∫ T

0
V ∗(t,−p′(t))dt (2.6)

−l(k(T )x′(T )− p(T ))}+ < x(T ), k(T )x′(T ) >

−
1

2

∫ T

0
k(t) |x′(t)|

2
dt ≤ sup

p∈Xd

{−l(k(T )x′(T )− p(T ))}

+ sup
p∈Xd

{

∫ T

0
< x(t),−p′(t) > dt−

∫ T

0
V ∗(t,−p′(t))dt

}

+ < x(T ), k(T )x′(T ) > −
1

2

∫ T

0
k(t) |x′(t)|

2
dt = −

∫ T

0
(−V̆ (t, x(t))

+
k(t)

2
|x′(t)|

2
)dt + k(T ) < x(T ), x′(T ) >= −J(x).

which is our claim.
Now we can formulate the following duality principle
Theorem 2.1 For functionals J and JD we have the duality relation

inf
x∈X

J(x) ≤ inf
p∈Xd

JD(p). (2.7)
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Proof From (2.5) and (2.4) we obtain the below chain of equalities:

inf
x∈X

J(x) = −sup
x∈X

(−J(x)) ≤ − sup
x∈X

sup
p∈Xd

(

−J#
x (−p)

)

= − sup
p∈Xd

sup
x∈X

(

−J#
x (−p)

)

= − sup
p∈Xd

(−JD(p)) = inf
p∈Xd

JD(p).

Denote by ∂Jx(y) the subdifferential of Jx. In particular,

∂Jx(0) = {p′ ∈ L2 :
∫ T

0
V ∗(t, p′(t))dt +

∫ T

0
V̆ (t, x(t))dt =

∫ T

0
< p′(t), x(t) > dt}

(2.8)
The next result formulates a variational principle for ”min” arguments.

Theorem 2.2 Let x̄ ∈ X be such that J(x̄) = inf
x∈X

J(x). Then there exists p̄ ∈ Xd

with p̄(t) = p̄(T )−
∫ T
t p̄′(s)ds, where p̄(T ) = k(T )x̄′(T ) and −p̄′ ∈ ∂Jx̄(0), such that

p̄ satisfies

JD(p̄) = inf
p∈Xd

JD(p).

Furthermore

Jx(0) + J#
x̄ (−p̄) = 0 (2.9)

JD(p̄)− J#
x̄ (−p̄) = 0. (2.10)

Proof By Theorem 2.1 to prove the first assertion it suffices to show that J(x̄) ≥
JD(p̄). Using Remark 1.1 we can observe that for x̄ there exists p̄ ∈ Xd such that
p̄′(t) = −Vx(t, x(t)) a.e. on [0, T ], which implies

∫ T

0
< −p̄′(t), x(t) > dt−

∫ T

0
V ∗(t,−p̄′(t))dt =

∫ T

0
V̆ (t, x(t))dt. (2.11)

Combining (2.11) and (2.8) we get the inclusion −p̄′ ∈ ∂Jx̄(0). Thus J∗x̄(−p̄′) =
J#

x̄ (−p̄) (where J∗x̄(−p̄′) denotes the Fenchel transform of Jx̄ at −p̄′) gives (2.9). It
follows that

−J(x̄) = −J#
x̄ (−p̄) ≤ sup

x∈X

(−J#
x (−p̄)) = −JD(p̄),

where the last equality is due to (2.4). Hence J(x̄) ≥ JD(p̄) and so JD(p̄) = J(x̄) =
inf
x∈X

J(x) = inf
p∈Xd

JD(p). (2.10) is a simply consequence of (2.9) and the chain of

equalities Jx̄(0) = −J(x̄) = −JD(p).
From equalities (2.9), (2.10) we are able to derive a dual to (1.1) Euler - Lagrange

equations.
Corollary 2.1 Let x̄ ∈ X be such that J(x̄) = inf

x∈X
J(x). Then there exists

p̄ ∈ Xd such that the pair (x̄, p̄) satisfies the relations

−p̄′(t) = Vx(t, x̄(t)), (2.12)

p̄(t) = k(t)x̄′(t), (2.13)

JD(p̄) = inf
p∈Xd

JD(p) = inf
x∈X

J(x) = J(x̄). (2.14)
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Proof. Equalities (2.9) and (2.10) imply

∫ T

0
V (t, x̄(t))dt +

∫ T

0
V ∗(t,−p̄′(t))dt−

∫ T

0
< x̄(t),−p̄′(t) > dt = 0,

∫ T

0

1

2k(t)
|p̄(t)|2 dt +

∫ T

0

k(t)

2
|x̄′(t)|

2
dt−

∫ T

0
< x̄′(t), p̄(t) > dt = 0,

and then (2.12), (2.13). Relations (2.14) are a direct consequence of Theorem 2.1
and Theorem 2.2.

As a direct consequence of the above corollary and definition of Xd we have

Corollary 2.2 By the same assumptions as in Corollary 2.1 there exists a pair
(x̄, p̄) ∈ X × Xd satisfying relations (2.14), and the pair (x̄, p̄) is a solution to
(1.1). Conversely, each pair (x̄, p̄) satisfying relations (2.14) satisfies also equations
(2.12), (2.13).

3 Variational principles and a duality gap for minimizing se-

quences

In this section we show that a statement similar to Theorem 2.2 is true for a mini-
mizing sequence of J .

Theorem 3.1 Let {xj}, xj ∈ X, j = 1, 2, ..., be a minimizing sequence for J
and let

+∞ > inf
j∈N

J(xj) = a > −∞.

Then there exist pj ∈ Xd with − p′j ∈ ∂Jxj
(0) such that {pj} is a minimizing

sequence for JD i.e.

inf
x∈X

J(x) = inf
j∈N

J(xj) = inf
j∈N

JD(pj) = inf
p∈Xd

JD(p). (3.1)

Furthermore
Jxj

(0) + J#
xj

(−pj) = 0,

JD(pj)− J#
xj

(−pj) ≤ ε, (3.2)

0 ≤ J(xj)− JD(pj) ≤ ε (3.3)

for a given ε > 0 and sufficiently large j.
Proof. We have that ∞ > inf

j∈N
J(xj) = a > −∞, and therefore for a given ε > 0

there exists j0 such that J(xj) − a < ε, for all j ≥ j0. Further, the proof is similar
to that of Theorem 2.2, so we only sketch it. First we observe that there exists
pj ∈ Xd such that p′j(t) = −Vx(t, xj(t)) a.e. on [0, T ], which implies −p′j ∈ ∂Jxj

(0).
Therefore, we also have for all j ∈ N

∫ T

0
V̆ (t, xj(t))dt =

∫ T

0
−V ∗(t,−p′j(t))dt−

∫ T

0
< xj(t), p

′
j(t) > dt.

Hence, we get inclusion −p′j ∈ ∂Jxj
(0) and the inequality

−J(xj) ≤ −JD(pj)
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which together with Theorem 2.1 implies (3.1). Again by Theorem 2.1

JD(pj) + ε ≥ J(xj) for j ≥ j0,

which implies (3.3).
Since −p′j ∈ ∂Jxj

(0) we infer Jxj
(0) + J#

xj
(−pj) = 0 for all j ∈ N . (3.2) follows

from two facts: Jxj
(0) = −J(xj) = −J#

xj
(−pj) and inf

x∈X
J(x) = inf

j∈N
JD(pj) = a.

A direct consequence of this theorem is the following corollary.
Corollary 3.1. Let {xj}, xj ∈ X, j = 1, 2, ..., be a minimizing sequence for J

and let
+∞ > inf

j∈N
J(xj) = a > −∞.

If
−p′j(t) = Vx(t, xj(t))

then pj(t) = pj(T ) −
∫ T
t p′j(s)ds, pj(T ) = k(T )x′j(T ), belongs to Xd, and {pj} is a

minimizing sequence for JD i.e.

inf
x∈X

J(x) = inf
j∈N

J(xj) = inf
j∈N

JD(pj) = inf
p∈Xd

JD(p).

Furthermore

JD(pj)− J#
xj

(−pj) ≤ ε,

0 ≤ J(xj)− JD(pj) ≤ ε (3.4)

for a given ε > 0 and sufficiently large j.

4 The existence of a minimum of J

The last problem which we have to solve is to prove the existence of x̄ ∈ X such
that

J(x̄) = min
x∈X

J(x).

To obtain this it is enough to use hypotheses (H) and (H1)-(H4), the results of
the former section and known compactness theorems.

Theorem 4.1 Under hypotheses (H) and (H1) − (H4) there exists x̄ ∈ X
such that J(x̄) = min

x∈X
J(x).

Proof. Let us observe that by (H4), J(x) is bounded below on X:

J(x) ≥
∫ T

0

k(t)

2
|x′(t)|

2
dt−

∫ T

0
l(t)dt− k(T ) |v| |β| |α|

∣

∣

∣

∣

∣

∫ T

η

1

k(t)

∫ T

t
l1(s)dsdg(t)

∣

∣

∣

∣

∣

.

(4.1)
From (4.1) we infer the boundedness below of J on X as well as that the sets
Sb = {x ∈ X, J(x) ≤ b}, b ∈ R are nonempty for sufficiently large b and bounded
with respect to the norm ‖ x′ ‖L2 . The last means that Sb, b ∈ R are relatively
weakly compact in A0b. It is a well known fact that the functional J is weakly lower
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semicontinuous in A0b and thus also in X. Therefore there exists a sequence {xn},
xn ∈ X, such that xn ⇀ x̄ weakly in A0b with x̄ ∈ A0b (we use the fact that {xn}
is uniformly convergent to x̄ and formula (1.6)) and lim inf

n→∞
J(xn) ≥ J(x̄). Moreover,

the uniform convergence of {xn} to x̄, implies that x ≤ βv. In order to finish the
proof we must only show that x̄ ∈ X.

To proof that we apply the duality results of Section 3. To this effect let us recall
from Corollary 3.1 that for

p′n(t) = −Vx(t, xn(t)), t ∈ [0, T ] (4.2)

pn(t) = pn(T ) −
∫ T
t p′n(s)ds, where pn(T ) = k(T )x′n(T ), belongs to Xd. Then {pn} is

a minimizing sequence for JD. We easily check that {pn(T )} is a bounded sequence
and therefore we may assume (up to a subsequence) that it is convergent. From
(4.2) we infer that {p′n} is a bounded sequence in L2 norm and that it is pointwise
convergent to

p̄′(t) = −Vx(t, x̄(t))

and so {pn} is uniformly convergent to p̄ where p̄(t) = p̄(T )−
∫ T
t p̄′(s)ds.

By Corollary 3.1 (see (3.4)) we also have (taking into account (4.2)) that for
εn → 0 (n →∞)

0 ≤
∫ T

0
(

1

2k(t)
|pn(t)|

2 +
k(t)

2
|x′n(t)|

2
)dt−

∫ T

0
< x′n(t), pn(t) > dt ≤ εn

and so, taking a limit

0 =
∫ T

0

1

2k(t)
|p̄(t)|2 dt + lim

n→∞

∫ T

0

k(t)

2
|x′n(t)|

2
dt−

∫ T

0
< x̄′(t), p̄(t) > dt

and next, in view of the property of Fenchel inequality,

0 =
∫ T

0

1

2k(t)
|p̄(t)|2 dt +

∫ T

0

k(t)

2
|x̄′(t)|

2
dt−

∫ T

0
< x̄′(t), p̄(t) > dt

and further
p̄(t) = k(t)x̄′(t).

Thus, as x̄ ∈ A0b and x ≤ βv, x̄ ∈ X and so the proof is completed.
A direct consequence of Theorem 4.1 and Corollary 2.2 is the following main

theorem.
Theorem 4.2 Under hypothesis (H) and (H1)−(H4) there exists a pair (x̄, p̄)

being a solution to (1.1), (1.1a) and such that

J(x̄) = min
x∈X

J(x) = min
p∈Xd

JD(p) = JD(p̄).
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