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Abstract. Let E be an elliptic curve defined over the real numbers
R and let P ∈ E(R). In this note we give an elementary proof
of necessary and sufficient conditions for the preimages of P under
duplication to be real-valued.

1. Introduction

Let K be a field and E/K an elliptic curve. For the remainder of the
paper we fix an algebraic closure K of K. It is well-known that the points
E(K) of E defined over K form an abelian group and the group structure
of elliptic curves is a major area of current research with different appli-
cations depending on the isomorphism type of K (e.g. finite field, number
field, p-adic field). Let m ≥ 1 be a positive integer. Then E admits an en-
domorphism defined over K, denoted by [m], that maps a point P ∈ E to
P+· · ·+P (m times) ∈ E. If, in addition, m is coprime to the characteristic
of K, then a point P ∈ E has m2 preimages under [m], with coordinates
in K. Since the group operation on E is defined over K (i.e. given by
coordinate functions with coefficients in K), it follows that if P ∈ E(K),
then [m]P ∈ E(K) as well. However, the preimages of P ∈ E(K) might
well be defined over non-trivial extensions of K and, in fact, the Galois
theory of the fields defined by the preimages of the identity element of E
(the torsion point fields of E) is one of the most active areas of research in
modern number theory. The field of definition of the preimages is precisely
what we focus on here.

In this paper we set m = 2, take K to be the field of real numbers
R, and fix an elliptic curve E/R. Our main theorem is a necessary and
sufficient condition for the preimages [2]−1P of P ∈ E(R) to be real-valued
as well. The reason we focus on this special case is twofold. In the proof
of the Weak Mordell-Weil Theorem, in order to perform a 2-descent over
a number field K, one needs to know the precise conditions under which a
point P ∈ E(K) has all of its preimages under [2] defined over K. For that
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reason, our result is not a new one, though standard proofs involve Galois
cohomology or other complicated machinery. While the Galois cohomol-
ogy of an elliptic curve is essential to understanding its arithmetic, in this
particular instance one can arrive at necessary and sufficient conditions
for rationality using purely elementary methods; indeed in [4] a different
elementary proof from ours was recently given.

Our other reason for presenting this special case is that our interpretation
exploits the visual aspect of the real points on an elliptic curve. Given
an elliptic curve E/R, the real points E(R) either form one connected
component: E(R) = E0(R) or two: E(R) = E0(R) ∪ E1(R). In both
cases, the component E0(R) is known as the the identity component (see
below for an explanation of the terminology) and is non-compact, while
E1(R) is compact. Our main theorem can be presented visually in terms
of these components rather than in terms of algebraic conditions on the
coefficients of the equation defining the curve. This is how the result is
typically stated, such as in [2, Theorem V.1.1] and [4].

We do not assume the reader has a deep familiarity with elliptic curves.
In fact, the elementary nature of the proofs is possible precisely because
the statements about elliptic curves can be easily translated into statements
about the roots of real quartic polynomials. However, we will briefly recall
some basic facts and notation in order to state the main result of the paper.
In Section 2 we give a quick background on elliptic curves that is needed to
translate the statement of the problem into polynomial algebra. We refer
the reader to [3] for a thorough treatment of the subject.

Let P2

K denote the projective plane overK. In homogeneous coordinates
[x, y, z], we identify the affine plane K2 with the coordinates [x, y, 1] and
the points at infinity with [x, y, 0]. An elliptic curve E/K is a smooth
projective cubic curve with coordinates in P

2

K . One can show [3, Remark
III.1.3] that if the characteristic of K does not equal 2 or 3, then we may
assume the affine locus of E is given by the equation

y2 = x3 + ax+ b, (1.1)

with a, b ∈ K. Together with a single projective point [0, 1, 0] at infinity
serving as the identity element O, the solutions to (1.1) with coordinates in
K form an abelian group. The symbol E refers to the set of all K-solutions
to (1.1) (together with [0, 1, 0]), while E(L) refers to the subgroup of E
consisting only of solutions with coordinates in the subfield L of K.

When K is the field R of real numbers, then the real points E(R) of E
come in one or two connected components, depending on whether the dis-
criminant of the polynomial x3+ax+b is negative or positive, respectively.
The component of E(R) containing the identity O is called the identity
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Figure 1. Real points of y2 = x3 − x and y2 = x3 + x+ 1, respectively.

component and denoted E0(R), while the other (compact) component (for
elliptic curves with positive discriminant) is denoted E1(R).

Let P ∈ E(R) be non-trivial, i.e. P 6= O. When E(R) = E0(R) has one
component, then a priori P has either 0 or 2 preimages under duplication,
while if E(R) has two components, then P has 0 or 4 preimages. In terms
of graphs, the real points of an elliptic curve can be visualized as one of the
two cases in Figure 1. Our main theorem can then be expressed in terms
of these components.

Theorem 1.1. Let E/R be an elliptic curve with Weierstrass model y2 =
x3 + ax + b and let P ∈ E(R) be non-trivial. If E(R) has one connected

component, then P has two real preimages under duplication. If E(R) has
two components then P has four real preimages if P ∈ E0(R) and zero real

preimages otherwise.

2. Background on Elliptic Curves

This section is not meant to be exhaustive, but rather to collect some
salient facts about elliptic curves for completeness. In fact, the reader with
expertise in this area can easily skip this section, while a non-specialist
may find the exposition too terse. The point of this brief section is to show
that in order to determine whether the preimages under the duplication
map are real or complex, it suffices to determine whether a certain quartic
polynomial has real or complex roots.

Setting some additional notation, let P/m ⊂ E be the set of preimages
in K of P by [m]. We remind the reader of the non-trivial fact [3, Theorem
III.6.1] that the set P/m consists of m2 points of E when m and char(K)
are coprime. The preimages of O by [m] are called the m-torsion points of
E and denoted by E[m]. In this paper, we are concerned with determining
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the field of definition of the set P/2, given that P has coordinates in R.
Thus, P/2 always consists of 4 points defined over C and we will determine
conditions that ensure when they are in fact defined over R.

For the remainder of the paper we focus on the special case m = 2 and
work in coordinates. Because R has characteristic zero, we assume E is
given by the Weierstrass equation

y2 = x3 + ax+ b,

with a, b ∈ R. We set f(x) = x3 + ax + b and remind the reader that the
smoothness of E implies f(x) has no repeated roots, i.e. that the discrimi-
nant of f is non-zero:

disc(f) = −4a3 − 27b2 6= 0.

Let P ∈ E(R) be non-trivial and set P = (t, u). Let Q ∈ P/2 have
coordinates Q = (x, y). The duplication map [2] : E → E is then given by
explicit rational functions [3, III.2.3]:

t =
x4 − 2ax2 − 8bx+ a2

4x3 + 4ax+ 4b
(2.1)

u =
x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx+ (−a3 − 8b2)

8y(x3 + ax+ b)
. (2.2)

That is, given a, b, t, u ∈ R, the four elements of P/2 have coordinates (x, y)
given by the solutions to (2.1) and (2.2) above. Clearing denominators in
(2.1), it follows that the x-coordinates of the members of P/2 are given by
the roots of the quartic polynomial

x4 − 4tx3 − 2ax2 + (−4ta− 8b)x+ (a2 − 4tb). (2.3)

In the proof of Theorem 1.1, we appeal to the theorem of [1, p. 45] on the
classification of the roots of a real quartic. In order to apply those results,
we need to first put the polynomial (2.3) into reduced form. Hence, we
translate x in (2.3) by t and set the following notation:

F (x, t)
def
= x4 − (2a+ 6t2)x2 − 8u2x+ a2 − 3t2a− 9bt− 3u2t, (2.4)

where (t, u) are the coordinates of P and u2 = t3 + at+ b.
The non-trivial 2-torsion points of E are given in coordinates by (t, 0)

[3, III.2.3(d)], and since a real cubic polynomial has either one real root
or three real roots, we will distinguish between these two cases in Section
3 below. This is manifest algebraically through the discriminant disc(f)
of f(x). Visually, an elliptic curve E/R with negative discriminant has
one connected component and with positive discriminant two components.
With all of this notation now in place, we are ready to prove the main
theorem of the paper.
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3. The Main Result

We briefly recall what is already known. In the standard proof of the
Weak Mordell-Weil Theorem using a 2-descent over a number field K, one
assumes that the elliptic curve has full 2-torsion defined over K. In the
course of the proof, one requires a criterion for checking the K-rationality
of the preimages of a non-trivial K-rational point P . Writing E in the form

y2 = (x− e1)(x− e2)(x − e3),

one shows that (t, u) ∈ E(K) has four rational preimages if and only if each
t−ei is a square in K [2, Theorem V.1.1]. In [4], the author gives a beautiful
elementary proof of this fact for arbitrary fields using only basic properties
of the arithmetic of elliptic curves in contrast to the standard proofs which
use more technical machinery. Below, we offer an alternative, elementary
proof of the rationality of preimages under duplication that yields a purely
visual result over the real numbers. Our intent is not to recreate the proof
in [4] but rather to highlight the implication over the real numbers. We also
do not assume E has full 2-torsion defined over the real numbers, but rather
treat the cases where f(x) has one real root or three real roots separately.

Proof of Theorem 1.1. In [1, p. 45, Theorem], the author determines the
nature of the roots of a quartic in terms of its discriminant and coefficients;
all references below to [1] are to the Theorem on p. 45. To apply those
results, we compute the discriminant ∆ of the quartic F (x, t):

∆ = disc F (x, t) = 212(t3 + ta+ b)2 disc(f). (3.1)

Note that the sign of ∆ is determined by the sign of disc(f), and that ∆ = 0
if and only if t3 + at + b = 0 (so P is a 2-torsion point). This leads us to
consider three cases separately; in the first two P does not have order 2.
Therefore, for Cases 1 and 2 we may apply the result of [1, p. 45] since the
coefficient of x is non-zero. A different argument will be used in Case 3.

Case 1: ∆ < 0. In this case E(R) has one real (identity) component E0(R)
and P has either 2 or 0 preimages under duplication. By the classification
of quartics in [1], if ∆ < 0, then the quartic F (x, t) has two (distinct) real
roots and two imaginary roots; the two real roots serve as the x-coordinates
of the preimages. And since P does not have order 2, it follows that u 6= 0
and so equation (2.2) gives y as a rational expression in terms of a, b, x, and
u. Therefore, if E(R) has one real component and P ∈ E(R), then P has
two real preimages.

Case 2: ∆ > 0. Here E(R) has two real components, the identity E0(R)
and the non-identity E1(R). We again appeal to the result of [1] quoted
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above. There are two possibilities for the roots of the real quartic x4 +
qx2 + rx + s with positive discriminant ∆: either all are real, or all are
imaginary. The case of real roots occurs if and only if q < 0 and s < q

2

/4.
In the context of the polynomial F (x, t), the quantities s − q2/4 and q are
given by the following:

s− q2/4 = −12t(t3 + at+ b) and q = −2a− 6t2.

Note that the sign of s−q2/4 is determined by that of t since−12(t3+at+b) =
−12u2 < 0. Thus, s− q

2

/4 < 0 if and only if t > 0.
To determine when q < 0, note that the hypothesis ∆ > 0 implies

disc(f) = −4a3 − 27b2 > 0, which is only possible if a < 0. Hence, the

square-root
√

−a/3 is real. We then see that q < 0 if and only if |t| >
√

−a/3. Together, the two conditions q < 0 and s < q2/4 are simultaneously

satisfied if and only if t >
√

−a/3.
Finally, consider the location of the roots of f(x) on the real number

line. By Rolle’s theorem, the three real distinct roots of f(x) are separated

by the real roots of f ′(x) = 3x2 + a, which are x = ±
√

−a/3. The compo-

nent of E(R) to the left of
√

−a/3 is E1(R) and to the right of
√

−a/3 is

E0(R). Hence, t >
√

−a/3 and (t, u) ∈ E(R) if and only if (t, u) ∈ E0(R).

Case 3: ∆ = 0. In this case P is a 2-torsion point of E with coordinates
(t, 0) and F (x, t) simplifies to

F (x, t) = x4 − (2a+ 6t2)x2 + a2 − 3t2a− 9bt = (x2 − (a+ 3t2))2. (3.2)

The preimages of P are 4-torsion points of E and we will show that in each
of the cases where E has one or two components, there is a unique 2-torsion
point in E0(R) with real preimages. We treat the two cases separately and
remark that the result of [1] does not apply to either case since the coeffi-
cient of x is 0.

Case 3a: ∆ = 0 and disc(f) < 0. Here E(R) = E0(R) consists of one
component and hence one non-trivial 2-torsion point defined over R. Let
P = (t, 0) denote the unique non-trivial 2-torsion point of E(R). Observe
further that if the cubic polynomial f(x) = x3 + ax + b has one real root
t, then a+ 3t2 > 0 (denote the three roots of f by t, −t/2± is, note that
a = −3t2/4 + s2, and add 3t2). Denote by θ the positive square root of
a + 3t2. Since we translated x by t in (2.4) to put F (x, t) into reduced
form, we can recover the x-coordinates of the preimages of P from (3.2) as
x = t± θ. Therefore, the four preimages of P are given by

(t+ θ,±
√

f(t+ θ)) and (t− θ,±
√

f(t− θ)).
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Because f has a single real root t, and because f(x) > 0 if and only if
x > t, it follows that f(t + θ) > 0 and f(t − θ) < 0. Hence, f(t + θ) has
real square roots and f(t − θ) does not. Thus, P has two real preimages,

given in coordinates by (t+ θ,±
√

f(t+ θ)).

Case 3b: ∆ = 0 and disc(f) > 0. Since disc(f) > 0, we have that E(R)
consists of two connected components and hence E[2] ⊂ E(R). We will
show there is precisely one non-trivial 2-torsion point whose preimages are
all real-valued; namely the point belonging to E0(R). We will also show
that none of the preimages of the other two nontrivial 2-torsion points are
real-valued.

If the x-coordinates of the 2-torsion points of E are denoted t1, t2, and
t3, then by the same reasoning as in Case 2 above, exactly one of the ti is
greater than

√

−a/3. Without loss of generality we take t1 < t2 < t3 and

note that t1, t2 ∈ E1(R), t3 ∈ E0(R), and t1 < −
√

−a/3 and t3 >
√

−a/3.
For i ∈ {1, 3}, let θi denote the positive square root of 3t

2
i +a. We will now

show that (t3, 0) is the 2-torsion point with real preimages.

Since t3 >
√

−a/3, it follows from (3.2) that the x-coordinates of the
preimages of (t3, 0) are real-valued and given by t3±θ3. For the y-coordinates,
we must determine when

y2 = x3 + ax+ b =
x4 − 2ax2 − 8bx+ a2

4t3
> 0. (3.3)

By (3.1), we have disc x4 − 2ax2 − 8bx+ a2 = 212b2 disc(f) ≥ 0; note that
since disc(f) > 0 it follows that −2a > 0.

If b 6= 0, then by [1] none of the roots of x4 − 2ax2 − 8bx + a2 are
real-valued and the sign of its leading term is positive. Hence,

x4 − 2ax2 − 8bx+ a2 > 0

for all x and so by (3.3) y2 > 0 if and only if t3 > 0. If b = 0, then
y2 = (x2 − a)2/4t3 and so again y2 > 0 if and only if t3 > 0. In both cases
taking square roots shows explicitly that the y-coordinates of the preimages
are real-valued as well. This shows that the unique 2-torsion point of E
belonging to E0(R) has four real preimages under duplication.

To finish the proof of Case 3b we must show that neither of the points
(t1, 0), (t2, 0) ∈ E1(R) have any real-valued preimages. Note that it is not

possible for t2 =
√

−a/3 for then t2 would be simultaneously a root of
f and f ′, contradicting the separability assumption of f . Thus, we know
|t2| <

√

−a/3 and additionally t3 < −
√

−a/3. Because of the range of
values of t2, it follows that 3t

2
2 + a < 0, so its square root is imaginary, and

hence the x-coordinates of the preimages of (t2, 0) are not real-valued.
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The x-coordinates of the preimages of (t1, 0) are given by t1 ± θ1. It
therefore remains to show that both f(t1±θ1) are negative, and hence that

the y-coordinates,
√

f(t1 ± θ1), of the preimages are not real-valued. But
for any w < t1, we have f(w) < 0, hence, f(t1 − θ1) < 0.

It is routine to check that f(t1+θ1) = θ21(3t1+2θ1). Hence, to finish the
proof of Theorem 1.1 it suffices to show 3t1+2θ1 < 0. Since t1+ t2+ t3 = 0,
we may write

3t1 + 2θ1 = 3t1 + 2
√

3t2
1
+ a

= 3t1 + 2
√

3t2
1
− t2

1
− t1t2 − t2

2

= 3t1 + 2
√

(2t1 + t2)(t1 − t2).

Because t1 < t2 and (2t1 + t2)(t1 − t2) > 0, the quantity (2t1 + t2)(t1 − t2)
is maximized when 2t2 + t1 = 0. Setting t2 = −t1/2 yields

3t1 + 2θ1 = 3t1 + 3|t1| = 0.

However, if t2 = −t1/2 then t3 = −t1/2 as well, contradicting the separability
assumption of f . It follows that

2
√

(2t1 + t2)(t1 − t2) < 3|t1|

and hence that 3t1+2θ1 < 0. This completes the proof of Theorem 1.1. �
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