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Abstract. The center of a nearring N , in general, is not a subnear-
ring of N . The center, however, is contained in a related structure,
the generalized center, which is always a subnearring. We give three
constructions of nearrings without multiplicative identity and charac-
terize their centers and generalized centers. We find that the centers
of these nearrings are always subnearrings.

1. Introduction

A (right) nearring is a triple (N,+, ·) where (N,+) is a group, written
additively though not necessarily abelian, (N, ·) is a semigroup, and the
right distributive law holds, i.e., (a + b)c = ac + bc for all a, b, c ∈ N .
So nearrings are generalizations of rings. The books [6] and [7] provide
comprehensive information on nearrings.

The center of a nearring N is C(N) = {c ∈ N | cx = xc for all x ∈ N}.
The center of a ring R is always a subring of R. However, the center of a
nearring N may not be a subnearring of N as the following example shows.

Example 1.1. Let N = (Z3[x],+, ◦), the nearring of polynomials in one
variable over the ring Z3 under usual polynomial addition and composition.
Then N has identity x, and x ∈ C(N). Let p(x) = 2x ∈ N . It follows that
p ◦ x2 = 2x2 and x2 ◦ p = (2x)2 = x2. So x + x = 2x = p 6∈ C(N), and
C(N) is not a subnearring of N .

If we consider the set of distributive elements of a nearring N , Nd =
{d ∈ N | d(a + b) = da + db for all a, b ∈ N}, and define the generalized
center of N , GC(N) = {x ∈ N | xd = dx for all d ∈ Nd}, then the set
GC(N) is always a subnearring of N . Throughout the paper, we will use
the facts that C(N) ⊆ Nd and C(N) ⊆ GC(N).

Centers and generalized centers of nearrings were first studied in [5] and
[2]. Further work appeared in [3], where necessary and sufficient conditions
for C(N) to be a subnearring were found for various classes of nearrings
with identity. In [4], the GAP package SONATA [1] was used to generate
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examples of nearrings without identity in which the centers were subnear-
rings. General constructions were found to describe these specific examples.

In this paper, we continue the work in [4]. We present three construc-
tions of nearrings in which the centers are subnearrings. These nearrings,
in general, do not have multiplicative identities. We also determine and
compare their centers and generalized centers and provide many examples
to illustrate the theory. These constructions might also be useful in other
investigations of nearrings.

2. TS Nearrings

This first construction appeared in [4]. This version, however, includes
hypotheses not considered previously. Part (1) of the theorem indicates the
result in [4], while part (2) is new.

Theorem 2.1. Let (G,+) be a finite group of even order, not necessarily
abelian. Suppose there exists ∅ 6= T ⊆ G∗ such that G\T is a (normal)
subgroup of G of index 2 and there is ∅ 6= S ⊆ T with S = S1∪̇S2∪̇ · · · ∪̇Sn,
a partition of S. Further suppose that for 1 ≤ i ≤ n, there are distinct
0 6= qi ∈ G with |qi| = 2 such that either (1) qi ∈ G\T for all i or (2)
S = T and qi ∈ Si for all i.

Define a multiplication on G by

a · b =































q1, if a ∈ T, b ∈ S1;

q2, if a ∈ T, b ∈ S2;
...

qn, if a ∈ T, b ∈ Sn;

0, otherwise.

Then N = (G,+, ·) is a right, zero-symmetric nearring.

Proof. The proof of (1) appears in [4]. For (2), since a0 = 0a = 0 for all
a ∈ N , N is zero-symmetric. We now need to show that multiplication is
associative and distributes over addition from the right.

To show associativity, let a, b, c ∈ N . If c 6∈ S or a 6∈ T , then (ab)c =
0 = a(bc). So assume c ∈ Si for some i and a ∈ T . If b ∈ Sj , then
(ab)c = qjc = qi = aqi = a(bc). If b 6∈ S, then (ab)c = 0c = 0 = a0 = a(bc).
Hence, multiplication is associative.

For distributivity, let a, b, c ∈ N . If c 6∈ S = T , then (a + b)c = 0 =
0 + 0 = ac+ bc. Thus, assume c ∈ Si. There are four cases to consider. If
a, b 6∈ T , then a+ b 6∈ T . So (a + b)c = 0 = 0 + 0 = ac+ bc. If a ∈ T and
b 6∈ T , then a + b ∈ T . So (a + b)c = qi = qi + 0 = ac + bc. If a 6∈ T and
b ∈ T , then a+ b ∈ T . So (a+ b)c = qi = 0+ qi = ac+ bc. If a, b ∈ T , then
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a + b 6∈ T . So (a + b)c = 0 = qi + qi = ac + bc. It follows that the right
distributive law holds. �

We call the nearring above a TS nearring. We note that in [4], TS
nearrings only referred to the nearrings constructed via (1). Since the
construction is similiar for (2), we use the same name.

The following results appear in [4] for part (1) of Theorem 2.1. We
include them here, without proof, for completeness.

Theorem 2.2. Let N be a TS nearring with qi ∈ G\T for all 1 ≤ i ≤ n.
Then N does not have a multiplicative identity. Furthermore,

(1) If n = 1 and S = T , then C(N) = Nd = GC(N) = N , making N
a commutative nearring.

(2) If n = 1 and S ( T , then N \ T = C(N) = Nd ( GC(N) = N .
(3) If n ≥ 2, then N \ T = C(N) = Nd ( GC(N) = N .

In all cases, C(N) is a subnearring of N .

Example 2.3. Let G = Q = {±1,±i,±j,±k}, the quaternion group of
order 8, and T = {±j,±k}. Then G\T = {±1,±i} is a subgroup of G
of index 2. Let S = S1 = {±j} ( T and q1 = −1. Then by part (2) of
Theorem 2.2, N \ T = C(N) = Nd ( GC(N) = N .

We now turn our attention to the second type of TS nearring.

Theorem 2.4. Let N be a TS nearring with S = T and qi ∈ Si for all
1 ≤ i ≤ n. Then N has a multiplicative identity if and only if N ∼= Z2.
Furthermore,

(1) If n = 1, then C(N) = Nd = GC(N) = N .
(2) If n ≥ 2, then C(N) = N\T = Nd and GC(N) = N .

In all cases, C(N) is a subnearring of N .

Proof. Suppose the nearring N has multiplicative identity, 1. Let b 6∈ T .
Then b = 1b = 0 and G\T = {0}. Since G\T is a subgroup of G of index
2, then |T | = |G\T | = 1 and T = {1} = S = S1. Constructing the addition
and multiplication tables for N using these sets and q1 = 1 yields N ∼= Z2.
The reverse implication is clear.

Assume n = 1. Then S = T = S1. We show that N ⊆ C(N). Let
x ∈ N . If x 6∈ T = S, then for any y ∈ N , xy = 0 = yx and x ∈ C(N).
If x ∈ T = S = S1, we consider two cases for y ∈ N . If y ∈ T = S = S1,
then xy = q1 = yx. If y 6∈ T = S, then xy = 0 = yx. So x ∈ C(N). We
conclude that N ⊆ C(N).

Since C(N) ⊆ Nd ⊆ N ⊆ C(N), it follows that C(N) = Nd = N .
Furthermore, since Nd = C(N), it is clear that GC(N) = N , and the result
follows.
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Now assume n ≥ 2. Let d ∈ Nd. Assume d ∈ T . Choose a ∈ S1 and b ∈
S2. Since a, b ∈ T , then a+ b 6∈ T . Hence, 0 = d(a+ b) = da+ db = q1+ q2.
So q1 = q2, a contradiction. Thus, d 6∈ T . It follows that Nd ⊆ N\T .

Let c ∈ N\T . For x ∈ N , cx = 0 = xc. So c ∈ C(N) and N\T ⊆ C(N).
Combining this inequality with the one above yields C(N) ⊆ Nd ⊆ N\T ⊆
C(N). Thus all sets are equal.

Since Nd = C(N), it is clear that GC(N) = N . This completes the
proof. �

The following examples illustrate both cases of Theorem 2.4.

Example 2.5. Let G = Z2 ×Z2 ×Z2, S = S1 = T = Z2 ×Z2 ×{1}. Then
G\T = Z2×Z2×{0} is a subgroup of G of index 2. Also let q1 = (1, 1, 1) ∈
S1. Then by part (1) of the previous theorem, C(N) = Nd = GC(N) = N .

Example 2.6. Let G = Z2 × Z2 × Z2, S = T = Z2 × Z2 × {1}. Then
G\T = Z2×Z2×{0} is a subgroup of G of index 2. Let q1 = (1, 1, 1) ∈ S1 =
{(1, 1, 1)}, q2 = (1, 0, 1) ∈ S2 = {(1, 0, 1)}, q3 = (0, 1, 1) ∈ S3 = {(0, 1, 1)},
and q4 = (0, 0, 1) ∈ S4 = {(0, 0, 1)}. Then by part (2) of the previous
theorem, C(N) = N\T = Nd and GC(N) = N .

3. A Modification of Complemented Malone Nearrings

Complemented Malone nearrings were defined in [4].
Let (G,+) be an abelian group and suppose ∅ 6= S ⊆ G∗ such that for

all x ∈ S, x 6∈ −S. Define a multiplication on G by

a · b =











a, if b ∈ S;

−a, if b ∈ −S;

0, otherwise.

In this paper we modify the definition. While the multiplication still
depends upon a set S1 and its negative −S1, we also include a second set
S2. The inclusion of this second set requires the abelian group G to have
even order and a subgroup H of index two.

Theorem 3.1. Let G be a finite, abelian group of even order with a sub-
group H of index 2. Also let ∅ 6= S1, S2 ⊆ G∗ where if x ∈ S1, then x 6∈ −S1,
S2 = −S2, and G = H ∪̇S1 ∪̇ (−S1) ∪̇S2. Let q ∈ S2 with |q| = 2.

Define a multiplication on G by

a · b =



















a, if b ∈ S1;

−a, if b ∈ −S1;

q, if a 6∈ H, b ∈ S2;

0, otherwise.
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Then N = (G,+, ·) is a right, zero-symmetric nearring without multi-
plicative identity.

Proof. Since 0a = a0 = 0 for all a ∈ N , N is zero-symmetric. For associa-
tivity, let a, b, c ∈ N . If c ∈ H , then (ab)c = 0 = a0 = a(bc). If c ∈ S1, then
(ab)c = ab = a(bc). If c ∈ −S1, then (ab)c = −(ab) and a(bc) = a(−b). We
now consider cases for the element b. If b ∈ S1, then −(ab) = −a = a(−b).
If b ∈ −S1, then −(ab) = −(−a) = a = a(−b). If b ∈ H , then −(ab) = 0 =
a(−b). If b ∈ S2 and a ∈ H , then −(ab) = 0 = a(−b). If b ∈ S2 and a 6∈ H ,
then −(ab) = −q = q = a(−b).

If c ∈ S2, we consider several cases. If b ∈ H , then (ab)c = 0c = 0 =
a0 = a(bc). If b 6∈ H , we consider the cases of a ∈ H or a 6∈ H . Assume
a ∈ H . If b ∈ S1, then (ab)c = ac = 0 = aq = a(bc). If b ∈ −S1, then
(ab)c = (−a)c = 0 = aq = a(bc). If b ∈ S2, then (ab)c = 0c = 0 = aq =
a(bc). Now assume a 6∈ H . If b ∈ S1, then (ab)c = ac = q = aq = a(bc).
If b ∈ −S1, then (ab)c = (−a)c = q = aq = a(bc). If b ∈ S2, then (ab)c =
qc = q = aq = a(bc). We have exhausted all cases and multiplication in N
is associative.

For right distributivity, let a, b, c ∈ N . If c ∈ H , then (a + b)c = 0 =
0 + 0 = ac + bc. If c ∈ S1, then (a + b)c = a + b = ac + bc. If c ∈ −S1,
then (a+ b)c = −(a+ b) = −b+ (−a) = −a+ (−b) = ac+ bc. Now assume
c ∈ S2. If a, b ∈ H , then a+ b ∈ H and (a+ b)c = 0 = 0 + 0 = ac+ bc. If
a ∈ H and b 6∈ H , then a + b 6∈ H and (a + b)c = q = 0 + q = ac + bc. If
a 6∈ H and b ∈ H , then a + b 6∈ H and (a + b)c = q = q + 0 = ac + bc. If
a, b 6∈ H , then a + b ∈ H and (a + b)c = 0 = q + q = ac + bc. Thus, the
right distributive law is satisfied.

Assume 1 is the multiplicative identity of N . Assume 1 ∈ S1 and let
x ∈ H . Then x = 1x = 0 and H = {0}. Since H is a subgroup of
G of index 2, it follows that |G| = 2. Since S1, −S1, S2, and H are
nonempty and mutually exclusive, G cannot have only two elements, and
we have a contradiction. So assume 1 ∈ −S1 ∪ S2 ∪H . Let x ∈ S1. Then
x = 1x = 1 ∈ S1, a contradiction. Hence, N does not have a multiplicative
identity. �

The following examples show that groups satisfying the hypotheses of
Theorem 3.1 exist.

Example 3.2. Let G = Z2n where n is odd, H = {0, 2, 4, . . . , 2n − 2},
S1 = {1, 3, 5, . . . , n− 2}, and q = n ∈ S2 = {n}. Then −S1 = {n+ 2, n+
4, . . . , 2n− 1} and S2 = −S2.

Example 3.3. Let G = Z2 × Z4, H = {0} × Z4, S1 = {(1, 1)}, and
q = (1, 0) ∈ S2 = {(1, 0), (1, 2)}. Then −S1 = {(1, 3)} and S2 = −S2.
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We conclude this section with a characterization of the center and gen-
eralized center of the modified complemented Malone nearring.

Theorem 3.4. Let N be the nearring described in Theorem 3.1. Then
C(N) = Nd = {0, q}, GC(N) = N , and C(N) is a subnearring of N .

Proof. First, we show that Nd ⊆ {0, q}. Let d ∈ Nd. For x ∈ S1 and y ∈ S2,
since x, y 6∈ H , then x + y ∈ H . If d ∈ H , then 0 = d(x + y) = dx + dy =
d + 0 = d and d = 0. If d 6∈ H , then 0 = d(x + y) = dx + dy = d + q and
d = −q = q. So d ∈ {0, q} and Nd ⊆ {0, q}.

Let x ∈ N . We know 0x = 0 = x0, so that 0 ∈ C(N). If x ∈ H ,
then xq = 0 = qx. If x 6∈ H , then xq = q = qx. Thus, q ∈ C(N). We
conclude that {0, q} ⊆ C(N). This yields C(N) ⊆ Nd ⊆ {0, q} ⊆ C(N).
So C(N) = Nd = {0, q}. The rest of the theorem follows. �

4. A Final Construction

Two of the constructions in [4], including the TS nearrings, used sets T
and S to define the nearring multiplication where the set S was partitioned
into smaller sets. In the following construction, we partition the set T
instead of the set S.

Theorem 4.1. Let (G,+) be a group, not necessarily abelian. Let T0 be
a proper normal subgroup of G with G/T0

∼= Zn+1, T1 be a generator of
G/T0, and T2, . . . , Tn be the remaining nonzero cosets of G determined by
T0 with Tj = jT1 for j = 1, 2, . . . , n. Furthermore, let ∅ 6= I ⊆ {1, 2, . . . , n}
and ∪i∈ITi = S ⊆ ∪n

i=1Ti = T . Let 0 6= q ∈ T0 ∪ T1 such that |q| = n+ 1.
Define a multiplication on G by

a · b =

{

iq, if a ∈ Ti, b ∈ S;
0, otherwise.

Then N = (G,+, ·) is a right, zero-symmetric nearring.

Proof. Since (G,+) is a group, we only need to check properties involving
multiplication. Since 0 ∈ T0, then a0 = 0a = 0 for all a ∈ N , and N is
zero-symmetric. We note that since Tj = jT1 for j = 1, 2, . . . , n, and T1 is
a generator of G/T0

∼= Zn+1, then addition of cosets is modulo n + 1, i.e.,
Ti + Tj = T(i+j)mod(n+1). In particular, if q ∈ T0, then iq ∈ T0, and if

q ∈ T1, then iq ∈ Ti.
To show associativity of multiplication, we consider two cases. If q ∈ T0,

then for all a, b, c ∈ N , we have ab, bc ∈ T0. It follows that (ab)c = 0 =
a(bc). Now assume q ∈ T1. If c 6∈ S, a ∈ T0, or b ∈ T0, then (ab)c = 0 =
a(bc). Thus, we assume that c ∈ S and a, b ∈ T . If a ∈ Tj and b ∈ Tk ⊆ S,
then (ab)c = (jq)c = jq = a(kq) = a(bc). If a ∈ Tj and b ∈ Tk 6⊆ S, then
(ab)c = 0c = 0 = a(kq) = a(bc). Thus, multiplication is associative.
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Now we show that the right distributive law holds. If c 6∈ S, then
(a + b)c = 0 = 0 + 0 = ac + bc. So assume c ∈ S. If a, b ∈ T0, then
a+ b ∈ T0 and (a + b)c = 0 = 0 + 0 = ac+ bc. If a ∈ T0 and b ∈ Tj ⊆ T ,
then a + b ∈ Tj and (a + b)c = jq = 0 + jq = ac + bc. If a ∈ Tj ⊆ T
and b ∈ T0, then a + b ∈ Tj and (a + b)c = jq = jq + 0 = ac + bc. If
a ∈ Ti ⊆ T and b ∈ Tj ⊆ T , then for k = (i+ j)mod(n+1), a+ b ∈ Tk and
(a+ b)c = kq = iq + jq = ac+ bc since |q| = n+ 1. �

The next theorem shows that this nearring rarely has a multiplicative
identity.

Theorem 4.2. For the nearring N defined in Theorem 4.1, N has a mul-
tiplicative identity if and only if N ∼= Z2.

Proof. Assume N has multiplicative identity, 1. If 1 ∈ T0, then for 0 6=
a ∈ N , a = 1a = 0, a contradiction. So 1 6∈ T0 and 1 ∈ T . If 1 6∈ S,
then 1 = 1 · 1 = 0 ∈ T0, a contradiction. Hence, 1 ∈ S. Let x 6∈ S.
Then 0 = 1x = x. So S = T , T0 = {0}, and G ∼= Zn+1. It follows that
T1 = {q}, T2 = {2q}, . . . , Tn = {nq}. Since 1 ∈ S = T , then 1 = kq ∈ Tk

for some 1 ≤ k ≤ n.
Assume n ≥ 2. Let x ∈ Tj 6⊆ T0 ∪ Tk. Then 1 = kq = 1x = x ∈ Tj ,

a contradiction. We conclude that n = 1 and G ∼= Z2. Letting T0 = {0},
T1 = {1}, I = {1}, and q = 1 yields N ∼= Z2. The converse is clear. �

To prove our characterization theorem, we first need a few lemmas.

Lemma 4.3. Let N be the nearring defined in Theorem 4.1, and let d ∈ Nd.
Suppose that any one of the following three conditions are satisfied:
(1) There exist x, y ∈ S such that x+ y ∈ S;
(2) There exist x ∈ S and y 6∈ S such that x+ y 6∈ S or y + x 6∈ S;
(3) There exist x, y 6∈ S such that x+ y ∈ S.

Then d ∈ T0.

Proof. For all three cases, assume d ∈ Ti.
(1) If x, y ∈ S and x + y ∈ S, then iq = d(x + y) = dx + dy = iq + iq.

Thus, iq = 0 and i = 0. So d ∈ T0.
(2) If x ∈ S, y 6∈ S and x+y 6∈ S, then 0 = d(x+y) = dx+dy = iq+0 =

iq. Thus, i = 0 and d ∈ T0. A similar proof works for y + x 6∈ S.
(3) If x, y 6∈ S and x+ y ∈ S, then iq = d(x+ y) = dx+ dy = 0+ 0 = 0.

Thus, i = 0 and d ∈ T0. �

Lemma 4.4. Let N be the nearring defined in Theorem 4.1. If there exists
d ∈ Nd such that d 6∈ T0, then n is odd and I = {1, 3, 5, . . . , n}.

Proof. Assume there exists d ∈ Nd with d 6∈ T0. Suppose T1 ⊆ T \S. Note
that if T1 + T1 = T0, then S = ∅, a contradiction. So T1 + T1 6= T0. If
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T1 + T1 = T2 ⊆ S, then by part (3) of Lemma 4.3, d ∈ T0, a contradiction.
So T2 ⊆ T \S. If T2 + T1 = T3 ⊆ S, then d ∈ T0 by part (3) of Lemma 4.3,
a contradiction. Continuing in this manner yields I = ∅, a contradiction.
Thus, T1 ⊆ S and 1 ∈ I.

If T1+T1 = T0, we are done. So assume T1+T1 6= T0. If T1+T1 = T2 ⊆ S,
then by part (1) of Lemma 4.3, d ∈ T0, a contradiction. So T2 ⊆ T \S. If
T2+T1 = T3 ⊆ N\S, then by part (2) of Lemma 4.3, d ∈ T0, a contradiction.
So T3 ⊆ S and 3 ∈ I.

Assume n is even. Continuing in the above manner yields I = {1, 3, 5, . . . ,
n − 1}. So T1 ⊆ S and Tn ⊆ T \S. Thus for x ∈ T1 and y ∈ Tn,
x + y ∈ T0 and x + y 6∈ S. By part (2) of Lemma 4.3, d ∈ T0, a con-
tradiction. It follows that n is odd. Continuing the construction above
yields I = {1, 3, 5, . . . , n}. �

We are now ready to state and prove our characterization theorem.

Theorem 4.5. Let N be the nearring defined in Theorem 4.1.
(1) If n = 1, then S = T and C(N) = Nd = GC(N) = N .
(2) If n is odd, n ≥ 3, and I = {1, 3, 5, . . . , n}, then C(N) = T0 and Nd =
T0∪Tk, where k = 1

2 (n+1). Furthermore, if k is odd, then GC(N) = T0∪Tk.
If k is even, then GC(N) = N\S = T0 ∪ T2 ∪ · · · ∪ Tn−1.
(3) Otherwise, C(N) = Nd = T0 ( GC(N) = N .

In all cases, C(N) is a subnearring of N .

Proof. We first note that in all cases, if c ∈ T0 and x ∈ N , then cx = 0 = xc.
So c ∈ C(N) and T0 ⊆ C(N).

To finish the proof of (1), assume n = 1. Then I = {1} and S = T1 = T .
Assume c ∈ T1. If a ∈ T0, then ca = 0 = ac. If a ∈ T1, then ca = q = ac.
Thus, c ∈ C(N) and T1 ⊆ C(N). We conclude that N = T0∪T1 ⊆ C(N) ⊆
Nd ⊆ N . Since C(N) ⊆ GC(N) ⊆ N , the result now follows.

To prove (2), let 3 ≤ n be odd, I = {1, 3, . . . , n}, and k = 1
2 (n + 1).

From the comment above, we know T0 ⊆ C(N). Let c ∈ C(N), say c ∈ Ti.
Assume c ∈ S. Then for x ∈ T1 ⊆ S, iq = cx = xc = q. So i = 1. For
y ∈ T3 ⊆ S, iq = cy = yc = 3q, and i = 3, a contradiction. So c 6∈ S. Now
let z ∈ T1 ⊆ S. Then iq = cz = zc = 0. So i = 0 and c ∈ T0. It follows
that C(N) ⊆ T0 and C(N) = T0.

To determine the distributive elements, we know T0 ⊆ C(N) ⊆ Nd. Let
a ∈ Tk. Since I = {1, 3, . . . , n}, it follows that S is the union of all cosets
with odd subscripts and N\S is the union of all cosets with even subscripts,
including T0. Let x, y ∈ N . There are four cases to consider. If x, y ∈ S,
then x+ y 6∈ S and a(x+ y) = 0 = (n+ 1)q = kq + kq = ax+ ay. If x ∈ S
and y 6∈ S, then x + y ∈ S and a(x + y) = kq = kq + 0 = ax + ay. If
x 6∈ S and y ∈ S, then x+ y ∈ S and a(x+ y) = kq = 0+ kq = ax+ ay. If
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x, y 6∈ S, then x + y 6∈ S and a(x + y) = 0 = 0 + 0 = ax + ay. So a ∈ Nd

and Tk ⊆ Nd. Thus, T0 ∪ Tk ⊆ Nd.
Now we show containment in the other direction. Let d ∈ Nd. If d ∈ T0,

then we are done. So assume d ∈ Ti 6= T0. Let x ∈ T1 ⊆ S. Then
x + x ∈ T2 ⊆ N\S and 0 = d(x + x) = dx + dx = iq + iq = (2i)q. Thus
(n+ 1)|(2i). Since 1 ≤ i ≤ n, then 2i ≤ 2n < 2n+ 2 = 2(n+ 1). It follows
that n+ 1 = 2i and i = 1

2 (n+ 1) = k. Thus, d ∈ Tk. Hence, Nd ⊆ T0 ∪ Tk

and Nd = T0 ∪ Tk.
We now consider GC(N). We have already established T0 ⊆ C(N) ⊆

GC(N).
Assume k is odd. Consider a ∈ Tk ⊆ S. Let y ∈ Nd = T0 ∪ Tk. If

y ∈ T0, then ay = 0 = ya. If y ∈ Tk ⊆ S, then ay = kq = ya. Thus,
a ∈ GC(N), Tk ⊆ GC(N), and T0 ∪ Tk ⊆ GC(N). For containment in the
other direction, let a ∈ GC(N). Assume a ∈ Ti. Let x ∈ Tk ⊆ Nd. So
x ∈ S. If a 6∈ S, then iq = ax = xa = 0. So i = 0 and a ∈ T0. If a ∈ S, then
iq = ax = xa = kq. So i = k and a ∈ Tk. It follows that GC(N) ⊆ T0 ∪Tk,
hence equality.

To complete the proof of (2), assume k is even. Let a ∈ N\S, say, a ∈ Ti

where i is even. Let y ∈ Nd = T0 ∪ Tk. Then y 6∈ S and ay = 0 = ya.
So a ∈ GC(N) and N\S ⊆ GC(N). For the reverse containment, let
a ∈ GC(N). Let x ∈ Tk ⊆ Nd. So x 6∈ S. If a ∈ S, then 0 = ax = xa = kq,
a contradiction. Hence, a ∈ N\S. It follows that GC(N) ⊆ N\S, hence
equality.

For part (3), assume either n is even, or n is odd with n ≥ 3 and
I 6= {1, 3, 5, . . . , n}. Let d ∈ Nd. By Lemma 4.4, d ∈ T0. So T0 ⊆ C(N) ⊆
Nd ⊆ T0. It follows that C(N) = Nd = T0 ( GC(N) = N .

It is clear that C(N) is a subnearring of N in case (1) since C(N) = N .
In cases (2) and (3), since C(N) = T0 and T0 is closed under addition and
multiplication, it follows that C(N) is a subnearring of N . �

We conclude the paper with examples for each case of Theorem 4.5.

Example 4.6. Let G = Z6 and T0 = {0, 2, 4}. Then G/T0
∼= Z2, n = 1,

and S = T1 = T = {1, 3, 5}. Letting q = 3 ∈ T1 yields case (1).

Example 4.7. Let H be any finite group, 3 ≤ n be a positive odd integer,
and G = Zn+1 × H. Let T0 = {0} × H. Then G/T0

∼= Zn+1. Letting
T1 = (1, 0) + T0, I = {1, 3, 5, . . . , n}, and q = (1, 0) ∈ T1 yields case (2). If
n = 7, then k is even; if n = 9, then k is odd.

Example 4.8. Let G = Z12 and T0 = {0, 4, 8}. Then G/T0
∼= Z4 and

n = 3. Letting T1 = 1 + T0, I = {1, 2}, and q = 9 yields case (3).
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