POLYNOMIALS, BINARY TREES, AND
POSITIVE BRAIDS

CHAD WILEY AND JEFFREY GRAY

ABSTRACT. In knot theory, a common task is to take a given knot
diagram and generate from it a polynomial. One method for accom-
plishing this is to employ a skein relation to convert the knot into a
type of labeled binary tree and from this tree derive a two-variable
polynomial. The purpose of this paper is to determine, in a simpli-
fied setting, which polynomials can be generated from labeled binary
trees. We give necessary and sufficient conditions for a polynomial
to be constructible in this fashion and we will provide a method for
reconstructing the generating tree from such a polynomial. We con-
clude with an application of this theorem to a class of knots and links
given by closed positive braids.

1. INTRODUCTION

Binary trees are a commonly used object in mathematics and computer
science, appearing in problems of graph theory, probability, sorting and
elsewhere. The problem discussed in this paper was inspired by a problem
in knot theory, specifically the use of skein trees to compute knot polyno-
mials. In such problems, a skein relation is used to recursively transform
a knot diagram into a weighted sum of two simpler diagrams. Sufficiently
simplified diagrams can then be replaced with constants, resulting in a
polynomial. Since each knot diagram is transformed into two diagrams,
this process can be formulated in terms of generating a binary tree, called
a skein tree. A good example of a knot polynomial computed via skein
relations is the bracket polynomial, introduced in [4].

Following the example of skein trees, this paper will consider binary
trees whose edges and vertices are labeled and use such trees to define
polynomials in two variables. The main intent of the paper is to show that
this is a reversible process; given a two-variable polynomial, it is possible to
determine whether that polynomial could have been generated by a binary
tree and, moreover, decide which tree or trees generate that polynomial.
As an application, we note that polynomials which are generated in this
fashion are invariants of a particular class of knots, so this result allows us
to determine which polynomials could appear as such an invariant.

MISSOURI J. OF MATH. SCI., SPRING 2014 1

C. WILEY AND J. GRAY

We begin by discussing definitions and terminology relevant to the prob-
lem.

1.1. Definitions and Terminology. In this paper we are concerned with
binary trees, which are trees in which one vertex (the root) has degree 2 and
every other vertex has degree 1 or 3. A simpler way to visualize a binary
tree is to use the following construction. Begin with a single point, which
we will call the root. Add two more vertices to the diagram, and connect
each of them to the root with an edge. This process can be repeated as
often as one likes, each time choosing a leaf in the tree and connecting
two new vertices to it. We’ll refer to this process as branching. Beginning
with the root and performing the branching operation repeatedly produces
a binary tree.

The level of a vertex in a binary tree is the number of edges in the path
from the vertex to the root. The root has level 0 by definition. The height
of a binary tree is the maximum level among all the vertices of the tree.
A binary tree that contains the maximum number of vertices for its height
will be referred to as a fully branched tree.

In many applications involving trees, it is helpful to give labels to the
edges and/or vertices of the tree. Such a tree is called a labeled tree.

We will also borrow a bit of notation from family trees and call vertex p
a descendant of a non-root vertex ¢ if p has a higher level than ¢ and the
path from p to ¢ does not include the root. We also refer to ¢ as an ancestor
of p in this situation. We define every non-root vertex to be a descendant of
the root, and the root is an ancestor of every other vertex in the tree. The
set of descendants of a vertex p together with the edges connecting them is
called the subtree of p. Removing the subtree of a vertex is called pruning
the vertex, and it can be thought of as the inverse operation to branching.

2. PoLyNnoMIALS FROM TREES

The basic construction for generating a two-variable polynomial from a
binary tree is as follows. Start with a labeled binary tree. Each edge in
the tree can have one of two possible labels. The actual labels used are not
important; for convenience we’ll label our edges either L or R depending
on whether the edge is angled down and left or down and right when the
tree is read from top to bottom.

We will also label the vertices of the tree. The root is always given the
label 1. Every other vertex is labeled by tracing the path from the vertex
back to the root and multiplying together all the L’s and R’s (which are
considered to be commutative). Thus every vertex in the tree receives a
label of the forms L?R’, where a and b are nonnegative integers.

2 MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

POLYNOMIALS, BINARY TREES, AND POSITIVE BRAIDS

Definition. The polynomial generated by a labeled binary tree is defined
to be the sum of the labels of the leaves. We denote the coefficient of the
term L®R? in the polynomial by C, ;. If a polynomial can be generated by
some labeled binary tree, we refer to that polynomial as a tree polynomial.

For example, L? + 2L R+ R? is a tree polynomial. It is generated by the
tree given in Figure 1.

FIGURE 1. A labeled binary tree

3. THE MAIN THEOREM

The primary goal of this paper is to determine necessary and sufficient
conditions for a two variable polynomial to be a tree polynomial. The most
natural condition to begin with is based on the fact that any binary tree can
be turned into a fully branched binary tree through the branching process
described above. Since the polynomial generated by a fully branched binary
tree of height n is (L + R)", we can phrase this property in polynomial
terms as follows: if each term L®R? is multiplied by (L + R)" ", the
resulting polynomial is (L + R)".

As a bookkeeping device, we rephrase this property in terms of a matrix
equation.

Definitions. Let P(L, R) be a two-variable polynomial of degree n. We
define ¥ to be the coefficient vector of P. That is, ¥’ is a column vector of
length w whose entries are the coefficients of P, including zeros.
Specifically, the entry of ¥ that corresponds to L*R? is Cy p.

MISSOURI J. OF MATH. SCI., SPRING 2014 3

C. WILEY AND J. GRAY

We adopt the convention that in vector form the coefficients are listed in
order of descending degree, and within each degree in descending powers of
L. For clarity, we will often indicate which L*R? term each entry refers to
next to the entry itself. For example, the polynomial 2L%2+5L R+ R%2+3L+2
would result in the following vector:

L? 2
LR | b
R? 1
L 3
R 0
1 2

Definition. Define b, to be the vector of length n + 1 whose i entry is
the binomial coefficient (lfl)

Definition. Define A, to be the following block matrix:

A, = {Am) | AC=D | AW |A<o>}

where A% is the (n + 1) x (k + 1) matrix whose ij entry is defined by

n—k e . .
S <1 < — k;
agk): (7’_])7 lfj_l_]+n k’ (1)
J 0, otherwise.

To help understand the matrix A,,, consider the matrix As as an example.

1 0 0 O 1 0 0 1 0 1
A = 0 0 1 0 AT = 0 1 1 AT = 1 2 AT = 3
0 0 0 1 0 0 1 0 1 1
L L°R LR®> R® L? LR R’> L R 1
L3 1 0 0 0 1 0 0 1 0 1
An — L’R 0 1 0 0 1 1 0 2 1 3
57| 0 0 1 0 0 1 1 1 2 3
R? 0 0 0 1 0 0 1 0 1 1

The rows and columns of A3 are labeled in a very specific way. Consider
a fully branched labeled binary tree of height 3. Every vertex in that tree
has a label that matches one of the columns of A3. The entries in that
column represent the leaves contained in the subtree whose root is the
chosen vertex. For example, the vertex L? has a subtree of height one

4 MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

POLYNOMIALS, BINARY TREES, AND POSITIVE BRAIDS

with two leaves, L and L?R, and the column labeled L? encodes that
information.

A simpler way of constructing the matrix A, is to notice that the column
labeled LR is just the a+b™ row of Pascal’s triangle with an extra b zeros
at the top of the column and a zeros at the bottom.

Multiplying the coeflicient vector of a polynomial on the left by the ma-
trix A,, where n is the degree of the polynomial, has the same effect as
multiplying each LRY term in the polynomial by (L + R)" “"". By the
discussion above, we conclude that the coefficient vector of a tree polyno-
mial must satisfy A,& = b:L.

While it is not hard to see that this condition is necessary for a specified
polynomial to be a tree polynomial, it is not sufficient. The simplest coun-
terexample is the polynomial L? + 3LR + R?, which satisfies the equation
above but cannot be generated by a binary tree because no binary tree
has more than two nodes labeled LR. In addition to satisfying the matrix
equation, we must ensure that the coefficients of the polynomial are not
too large. To do this, we define the following function.

Definition. Given a two-variable polynomial, we define a function f by

B a+b—1—7
flab)y= > Ci,j(o)
0§i4ji<a+b

5<b
where a and b are nonnegative integers that are not both zero.

The purpose of the function f is to calculate, given a tree polynomial,
the number of vertices with the label L®R® that are “missing” from the
generating tree (compared to a fully branched tree). It does this by search-
ing for leaves whose level is less than a + b and then counting how many
L®R? vertices would have been in the subtree of that leaf if the tree were
fully branched. This is best shown by an example.

Consider the tree polynomial L2 + 2L2R + LR? + R. The number of
missing LR vertices in the tree that generates this polynomial is

1+41—-0-0 1+1—-1-0
f(171)=Co,0<)+Cl,0()

1-0 1-1
1+41-0-1
+Co,1(1-0)
2 1 1
p— 1
o(2) +oo) 1)

=1

MISSOURI J. OF MATH. SCI., SPRING 2014 5

C. WILEY AND J. GRAY

This is easily verified, since the tree generating L? + 2L?R + LR? + R is
fully branched except for a pruning at the vertex labeled R. This pruning
removes a single LR vertex.

It is very important to notice that the values of f can also be calculated
even for polynomials which are not tree polynomials since f does not refer-
ence any tree diagrams directly. In fact, its primary use will be in deciding
whether the coefficients of a polynomial are too large for it to be a tree
polynomial.

Note that if @ = b = 0, the formula fails since C; ; is only defined for
nonnegative integers ¢ and j. So we must define f (0,0) = 0 since no pruning
can remove the root vertex.

Given these definitions, we can now state the main theorem.

Theorem 1. Let P(L, R) be a two-variable polynomial of degree n. Let ¥
be the coefficient vector of P. Then P is a tree polynomial if and only if

(1) @ is a solution to the matriz equation An,@ = by, and

(2) 0< Cup < (a:b) — f(a,b) for all a,b > 0.

Theorem 1 tells us that a two-variable polynomial with nonnegative co-
efficients is a tree polynomial if its coefficient vector is a solution to the
given matrix equation, provided that the coefficients themselves are not
too large. Both of these conditions can be easily verified by computer.

4. THE PROOF OF THEOREM 1

We've seen already that condition (1) of the main theorem is necessary. It
is not hard to see that condition (2) is necessary as well. Since a binary tree
can have no more than (“:b) nodes labeled L®R?, the L*R" coefficient of

P (L, R), which we’ve labeled Cj 5, can be no larger than (a;rb). In practice,
however, the upper bound for C,; could be smaller; some nodes may be
ineligible to appear as leaves because an ancestor node was pruned. The
function f defined above counts precisely how many L® R’ nodes are missing
because of pruning at a higher level of the tree, and thus (a:b) — f(a,b)
is an upper bound for Cg . Thus it remains only to show that conditions
(1) and (2) together are sufficient for a polynomial P (L, R) to be a tree
polynomial.

To prove sufficiency, we must start with a two-variable polynomial
P(L, R) with degree n whose coefficient vector satisfies properties (1) and
(2) of Theorem 1 and construct a labeled binary tree whose polynomial is
P. We will give an algorithm for constructing such a tree. Begin with a
fully branched binary tree. Arrange the terms of the polynomial in ascend-
ing order of degree. Then, beginning with the first term and proceeding one
term at a time, use the coefficient of the term to decide how many vertices

6 MISSOURI J. OF MATH. SCL, VOL. 26, NO. 1

POLYNOMIALS, BINARY TREES, AND POSITIVE BRAIDS

with that label to prune. For example, if you encounter the term 3L°R*
you should choose any three terms in your current tree with labels L°R*
(the actual choice of vertices does not affect the outcome of the algorithm)
and prune them before moving on to the next term.

By design, this algorithm produces a tree whose polynomial P’ matches
P except possibly for the coefficients of terms with maximal degree. A
discrepancy could occur if at the nth level of the tree, the number of leaves
labeled LR? is greater than C, ;. But the fact that both P and P’ satisfy
condition (1) and they agree in all the terms of degree less than n guarantees
that P = P’, so this discrepancy will not occur. It remains only to show
that the algorithm will not terminate too early by requiring more prunings
than there are available nodes.

To accomplish this, we will use a pair of lemmas. Both of these lemmas
refer to the branching operation on a coefficient vector, so recall that if the
vector ¥ shown below is a coefficient vector satisfying p > 0, ¢ > 0, r > 0,
and a + b < n, then the result of branching on the L*R® term is the vector

—

w.

Let'RY | p LR | p+1

LeRMY | q | W= LR | q+1

S
Il

L*RY r LR’ r—1

Lemma 1. Property (1) of Theorem 1 is invariant under branching. That
is, if U satisfies property (1), then so does .

Proof. Consider the matrix equation in condition (1) in terms of a weighted
sum of the columns of A,, where the weights are the entries of . Then
the branching operation on an entry of ¥ corresponding to L*R? amounts
to replacing one copy of the L*R? column of A,, with the sum of one copy
each of the L4t RY and L*RY*! columns. That this replacement is always
valid is a simple consequence of the well-known recursive equation for the

binomial coefficients:
c c—1 c—1
(@)= G20+ () @

MISSOURI J. OF MATH. SCI., SPRING 2014 7

C. WILEY AND J. GRAY

Lemma 2. Property (2) of Theorem 1 is invariant under branching. That
is, if U satisfies property (2), then so does .

Proof. Suppose that the entries of ¢/ satisfy the bounds given in property
(2). Since branching can only be performed on a term with a positive coeffi-
cient and since that term is the only one which decreases during branching,
every entry of w will be nonnegative.

Now we show that for any entry in w, the upper bound is never smaller
than the upper bound for the corresponding entry in . Notice that in
order for the upper bound of the entry Cs; to decrease, the value of f (s,t)
must increase. In the passage from ¢ to W, there are only two entries that
increase: Cyq1,p and Cgpt1 (where Cyp is the entry where the branching
operation was performed as in the example above). In order for these
changes to affect the value of f (s,t), we must have s+¢ > a+ b+ 1 and
eithera+1<s,b<tora<s, b+1<t.

We’ll consider the worst case scenario: botha+1<sand b+1<¢. In
other words, both Cy41, and Cg 541 appear as coefficients in the defining
sum of f. Since these values go up when we go from ¢ to w, they will cause
the value of f (s,t) to increase. We can show that there is a corresponding
decrease elsewhere in the sum that cancels out this increase.

Note that by the above inequalities, we have s +t > a + b, a < s, and
b < t. So by definition C,; will appear as a coefficient in the defining
sum of f. The value of C,; decreases as we go from ¥ to w, reducing the
overall sum. Note that an increase of 1 in Cy41,p results in an increase of
(SH*(‘IH)J’) in the value of f and an increase of 1 in Cj 441 results in an

s—(a+1)
increase of (SH_::a(bH)).

By equation 2 we can see that the total increase in f(s,t) will be
(s+z:‘;_b). But this is precisely the amount that f (s,) will decrease due
to the decrease of 1 in the value of Cy . So there is no net change in f for
this entry, and thus the upper bound will not change.

If only Cy41 5 appears in the sum and not Cy p4+1 (i.e. ifa+1 < sandt =
s+t7(a+1)fb)

b), then the changes in C,p and Cyi1,p cause an increase of (s—(at1)
s+t—a—>b

and a decrease of (-), a net decrease in the value of f (s,t) and thus
a net increase in the upper bound for Cs ;. Similarly, if only C, y41 appears
in the sum and not Cg41 3 there is a net increase in the upper bound. Thus
the upper bounds described in property (1) can never decrease as a result
of branching. Since most of the entries in ¢’ stay the same when branching,
they will still satisfy the new upper bounds.

There are only three terms left to consider to complete the proof: C 3,
Cat1p, and Cq pr1. The entry C, p decreases in the passage from ¥ to 0,
so its upper bound is still satisfied. The entries Cqy1 and Cg 41 both

8 MISSOURI J. OF MATH. SCL, VOL. 26, NO. 1

POLYNOMIALS, BINARY TREES, AND POSITIVE BRAIDS

increase by one. But as we have seen above, the decrease in Cj, ; will cause
fla+1,b) and f (a,b+ 1) to strictly decrease and thus the upper bounds
for these entries will strictly increase. Thus these entries will satisfy the
new upper bounds as well. Since all the entries of ¢ and w are accounted
for, the proof is complete. O

Now we can show that the algorithm will not terminate too early. Sup-
pose that we have a polynomial P (L, R) with degree n and with coefficient
vector ¥. Suppose that we are applying the algorithm to P so we have a
tree T' that is being pruned so that the leaves match the terms of P. For
contradiction, assume we are now being asked to choose more vertices la-
beled LR than exist in 7. Recall that terms with the lowest degree are
handled first by the algorithm, so we can assume without loss of generality
that all choices involving terms with degree lower than a + b have been
made. In tree terms, this means that all the pruning at levels less than
a + b has been done.

Suppose that m vertices with the label L*R® have been removed from T'
by previous pruning operations and that & such vertices remain in the tree.
Then k +m = (“:b), since (“:b) is the number of L*R? vertices in a fully
branched tree. Now say that the coefficient of L*R® in P is I, with [> k.

By Lemma 1, we can apply the branching operation to the coefficient
vector ¥ of P to create a new vector o’ which is still a solution to the matrix
equation but in which all the entries with degree less than a + b have been
reduced to zero. In doing so, the entries of the degree a + b terms will go
up. In tree terms, we are constructing a new tree T’ from T which is fully
branched up to level a +b. So we are restoring all of the missing L%R?
vertices from T in T”. Since there were m such vertices missing in T, the
entry labeled L2R? in o' will be [+m. But l+m > k+m = (“:b). However,
this contradicts Lemma 2 since f (a,b) is always nonnegative.

Thus we can be sure that we are never asked to choose more vertices
than exist in the current tree and so the algorithm will run to completion.
Since the algorithm produces a binary tree whose polynomial matches the
given polynomial, we conclude that conditions (1) and (2) are sufficient and
Theorem 1 is proved.

5. APPLICATIONS TO KNOT THEORY

The original motivation for studying polynomials generated by labeled
binary trees was to better understand the process of generating knot poly-
nomials via skein relations. In particular, is it possible to reconstruct from
a particular polynomial at least one knot with the given polynomial invari-
ant? Theorem 1, while far from a complete solution to this problem, can
at least help us address a limited version.

MISSOURI J. OF MATH. SCI., SPRING 2014 9

C. WILEY AND J. GRAY

In order to generate a polynomial from a knot, we use an algorithm
described by Bigelow in [2]. We have modified it here to highlight the
relationship to binary trees. Given an oriented knot or link, express it as a
closed braid (Alexander’s Theorem [1] guarantees that this can always be
done). We will consider this diagram to be the root vertex of a binary tree.
Choose a basepoint as close as possible to the center of the closed braid.
Starting at the basepoint, travel around the diagram following the given
orientation. Each time a crossing is encountered for the first time, we label
it “good” if we are traveling on the overcrossing strand and “bad” if we are
on the undercrossing strand. If the crossing is good, we continue moving
along the diagram. If the crossing is bad, we perform a branching operation
on the current vertex of the tree. We add two edges and two child vertices
to the current vertex, where the child vertices are represented by a pair of
closed braid diagrams related to the current one by the relations in Figure
2. While these equations are just two forms of the same equation, it helps
to see both since the first is applied to positive crossings (those in which the
overcrossing strand runs bottom-left to top-right) and the second is applied
to negative crossings (in which the overcrossing strand runs bottom-right

to top-left).
=L +R
=LV =RLT

FIGURE 2. Two forms of the skein relation

The skein relation should be interpreted as a local operation. In one
child vertex, the bad crossing has been replaced by the opposite crossing,
leaving the rest of the diagram fixed. The edge connecting this child to
the current vertex is labeled L if the bad crossing was positive, and L™!
if it was negative. In the other child vertex, the bad crossing has been
replaced by a pair of uncrossed segments (removing the crossing entirely),
again leaving the rest of the diagram fixed. The edge leading to this child
vertex is labeled R if the bad crossing was positive or —RL™! if the bad
crossing was negative. Each time the skein relation is applied, the algorithm
is recursively applied to the new diagrams using the same basepoint.

We continue in this fashion until we arrive at the basepoint again. If
all the crossings in the diagram have been accounted for, and thus all the
crossings in the diagram are good, we can stop. If there are still crossings
unaccounted for, then we have a link in which one component has been

10 MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

POLYNOMIALS, BINARY TREES, AND POSITIVE BRAIDS

traversed. Since all the crossings involving that component are good, we can
move that component over the other components. Dilate that component
so that it is farther away from the center than any other part of the braid.
Then choose a new basepoint as close to the center as possible and begin
the algorithm again.

Once the recursive portion algorithm is finished, we have a labeled binary
tree whose vertices are closed braid diagrams and whose leaves are diagrams
with only good crossings. As a final step of our braid algorithm, we give
each leaf diagram a coeflicient which is the product of the labels on each
edge in the path from that leaf to the root, and then sum over all the leaves.
This is the same process described in Section 2.

In this way, we can turn a given closed braid diagram into a formal sum
of closed braid digrams whose crossings are all good. The coefficients in this
sum are products of the coefficients that appear in the skein relation. In [2],
it is shown that a trace function can be applied to each of these diagrams,
resulting in the HOMFLY polynomial, a well-known polynomial invariant.
To better match the setup of Theorem 1, we instead map each diagram
in the formal sum to 1. We also restrict our attention to closed positive
braids, those whose crossings are all positive (so that only the top equation
in Figure 2 is ever used during the algorithm). Given these restrictions, the
output of the algorithm will always be a tree polynomial.

The final result of the algorithm is the tree polynomial generated by this
tree: L+ LR+ R2.

The interesting connection between this algorithm and Theorem 1 is that
tree polynomials are invariants of a limited class of knot and link diagrams.

Theorem 2. Let K be the class of closed positive braid 3-braid diagrams
which represent knots or links of braid index 3. Then the tree polynomial
produced by the algorithm above is an invariant of K.

Proof. In [2], it is shown that the output of the algorithm is invariant under
braid isotopy. By the Markov Theorem Without Stabilization [3], it suffices
to show that the output of the algorithm is invariant under 3-braid flype
moves. This is verified in [5]. O

Taken together, Theorems 1 and 2 give us a way of determining precisely
which polynomials appear as invariants of knots and links in K.

A long-term goal is to find a way to reconstruct from a polynomial a knot
or link with that polynomial invariant. While we cannot do that at this
time, we can use properties of binary trees to determine some properties
of knots or links which generate a given polynomial. For example, suppose
B is a closed positive 3-braid in K which generates the tree polynomial
P(L,R). Precisely one term of P has the form L™RY. We know this
because there is only one path in the binary tree which generates P that

MISSOURI J. OF MATH. SCI., SPRING 2014 11

C. WILEY AND J. GRAY

N
e

)

~
v

FIGURE 3. The skein tree produced by applying the braid
algorithm to the trefoil knot.

contains no edges labeled R. In terms of the closed braid algorithm, this
path represents replacing each bad crossing with a negative crossing. So
the total number of bad crossings in B is m.

Label the strings in the original (unclosed) braid from left to right as
1, 2, and 3. Then in the closed braid, since all the crossings are positive
a bad crossing occurs during the algorithm if and only if we are traveling
from string 7 to i + 1 if the orientation is counter-clockwise, or i to ¢ — 1
if the orientation is clockwise. Since we have only three strings available,
in order to have m bad crossings there must also be at least m — 2 good
crossings in the diagram (provided m is at least 3) or else we run out of
strings. Similarly, if the diagram had more than m + 2 good crossings we
would run out of strings. Thus we have proved the following result.

Theorem 3. Suppose B is a closed positive 3-braid in K with ¢ cross-

ings, and suppose the braid algorithm applied to B results in the polynomial
P (L,R). If P contains the term L™, then

max (m —2,0) <c<m+2.

12 MISSOURI J. OF MATH. SCI., VOL. 26, NO. 1

POLYNOMIALS, BINARY TREES, AND POSITIVE BRAIDS

In terms of future results, a long term goal would be to develop a method
for reconstructing the original knot or link from a skein tree. Theorem 1 is a
small step in that direction. A reasonable next step would be to incorporate
the second version of the skein relation into Theorem 1 by including edges
labeled L=! and —RL~*.

REFERENCES

(1] J. W. Alexander, A lemma on systems of knotted curves, Proceedings of the Na-
tional Academy of Sciences, 9.3 (1923), 93-95.

(2] S. Bigelow, Braid groups and Iwahori-Hecke algebras, Problems on maping class
groups and related topics, Vol. 74, Proc. Sympos. Pure Math., 285-299, Amer.
Math. Soc., Providence, RI, 2006.

[3] J. S. Birman and W. W. Menasco, Stabilization in the braid groups, I. MTWS.
Geom. Topol., 10:413-540 (electronic), 2006.

[4] L. H. Kauffman, State models and the Jones polynomial, Topology, 26.3 (1987),
395-407.

[5] C. Wiley, Nugatory Crossings in Closed 3-Braid Diagrams, Ph.D. thesis, University
of California, Santa Barbara, 2008.

MSC2010: 05C05, 05C31

Key words and phrases: Binary trees, Skein relations, Knot polynomials,
Positive braids

DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCE, AND EcoNOMICS, EMPORIA
STATE UNIVERSITY, EMPORIA, KS 66801
E-mail address: cwileyl@emporia.edu

DEPARTMENT OF MATHEMATICS, SANTA BARBARA CITY COLLEGE, SANTA BARBARA,
CA 93101
E-mail address: jpgray4@pipeline.sbcc.edu

MISSOURI J. OF MATH. SCI., SPRING 2014 13

